Concurrency Theory Lecture 16: HML and Strong Bisimilarity

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1718/ct

December 4, 2017

Jost-Pieter Katoen and Thomas Noll Concurrency Theory 1/26 Lecture 16: HML and Strong Bisimilarity Aims of this lecture Overview Aims of this lecture Introduction Hennessy-Milner logic Correspondence HML and strong bisimilarity Characteristic properties Summary

Overview

1 Aims of this lecture

2 Introduction

3 Hennessy-Milner logic

Orrespondence HML and strong bisimilarity

5 Characteristic properties

6 Summary

Concurrency Theory

Aims of this lecture

Summary so far

Lecture 16: HML and Strong Bisimilarity

Joost-Pieter Katoen and Thomas Noll

- Weak and strong bisimilarity are based on mutually mimicking of processes.
- ► They possess the required properties of behavioural equivalences.¹
- In particular, \sim and \approx^c are deadlock sensitive.
- ▶ Hennessy-Milner logic is a logic for expressing properties of processes.

Aim of this lecture

Joost-Pieter Katoen and Thomas Noll

1. Study the connection between strong bisimilar processes and HML.

¹For weak bisimilarity the notion of observation congruence was needed.

Concurrency Theory

Overview

1 Aims of this lecture

2 Introduction

- 3 Hennessy-Milner logic
- Orrespondence HML and strong bisimilarity

5 Characteristic properties

6 Summary

Joost-Pieter Katoen and Thomas Noll

Lecture 16: HML and Strong Bisimilarity

Overview

Aims of this lecture

2 Introduction

Hennessy-Milner logic

- Orrespondence HML and strong bisimilarity
- 5 Characteristic properties
- 6 Summary

ecture 16: HML and Strong Bisimilarity

Verifying correctness of reactive systems

Equivalence checking approach

$Impl \equiv Spec$

- \blacktriangleright \equiv is an abstract equivalence, e.g. \sim or \approx^{c}
- ► Spec is often expressed in the same language as Impl, e.g., CCS
- ► *Spec* provides the full specification of the intended behaviour.

Model checking approach

$Impl \models Property$

- \blacktriangleright |= is the satisfaction relation
- > Property is a particular feature, often expressed via a logic, e.g., HML
- Property is a partial specification of the intended behaviour

Joost-Pieter Katoen and Thomas Noll

Concurrency Theory

6/26

Lecture 16: HML and Strong Bisimilarity Hennessy-Milner logic

HML syntax

Syntax of HML formulae

[Hennessy & Milner, 1985]

$$F, G ::= true \mid false \mid F \land G \mid F \lor G \mid \langle a \rangle F \mid [a] F$$

where *a* is an action.

Intuitive interpretation

- true, all processes satisfy this property
- false, no process satisfies this property
- \blacktriangleright $\land,$ \lor logical conjunction and disjunction
- $\langle a \rangle$ *F*, there is at least one *a*-successor that satisfies *F*
- [a] F, all *a*-successors have to satisfy F.

Note that negation is not an elementary operation in $\ensuremath{\mathsf{HML}}$.

Concurrency Theory

Hennessy-Milner logic

Hennessy-Milner logic

HML semantics

HML semantics

Joost-Pieter Katoen and Thomas Noll

Let $P \in Prc$, F.G HML-formulae, and a an action. Then:

 $P \models \text{true} \quad \text{for each } P \in Prc$ $P \models \text{false} \quad \text{for no } P \in Prc$ $P \models F \land G \quad \text{iff } P \models F \text{ and } P \models G$ $P \models F \lor G \quad \text{iff } P \models F \text{ or } P \models G$ $P \models \langle a \rangle F \quad \text{iff } P \stackrel{a}{\rightarrow} P' \text{ for some } P' \in Prc \text{ with } P' \models F$ $P \models [a] F \quad \text{iff } P' \models F \text{ for all } P' \in Prc \text{ with } P \stackrel{a}{\rightarrow} P'.$

We write $P \not\models F$ whenever P does not satisfy F, i.e., not $(P \models F)$.

Joost-Pieter Katoen and Thomas Noll	Concurrency Theory 9/26
Lecture 16: HML and Strong Bisimilarity	Hennessy-Milner logic
Negation	
Complement of an HML-formula	
$true^{c} = false$	$(F \lor G)^c = F^c \land G^c$
$false^{c} = true$	$(\langle a \rangle F)^c = [a] F^c$
$(F \wedge G)^c = F^c \vee G^c$	$([a] F)^c = \langle a \rangle F^c$
Theorem	
For any $P \in Prc$ and HML-formula	F:
1 . $P \models F$ implies $P \not\models F^c$	
2 . $P \models F^c$ implies $P \not\models F$.	
Proof.	
By structural induction on F . Rathe	er straightforward.

Concurrency Theory

Examples

Joost-Pieter Katoen and Thomas Noll	Concurrency Theory	10/26
Lecture 16: HML and Strong Bisimilarity	Correspondence HML and strong bisimilarity	
Overview		
Aims of this lecture		
Introduction		
Hennessy-Milner logic		
4 Correspondence HML and str	rong bisimilarity	
5 Characteristic properties		
6 Summary		

Correspondence HML and strong bisimilarity

Strong bisimulation

Strong bisimulation

[Park, 1981, Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$:

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Strong bisimilarity

The processes P and Q are strongly bisimilar, denoted $P \sim Q$, iff there is a strong bisimulation \mathcal{R} with $(P, Q) \in \mathcal{R}$. Thus,

$$\sim = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is a strong bisimulation} \}.$$

Concurrency Theor

Relation \sim is called strong bisimilarity.

Joost-Pieter Katoen and Thomas Noll

Lecture 16: HML and Strong Bisimilarity

Correspondence HML and strong bisimilarit

Relationship HML and trace equivalence

Recall from Lecture 4:

HML and trace equivalence

If $P, Q \in Prc$ satisfy the same HML-formulae, i.e., for every HML-formula F it holds $P \models F$ iff $Q \models F$, then Tr(P) = Tr(Q). The converse does not hold.

Image-finite transition system

Image-finite process

ture 16: HML and Strong Bisimilarity

A process *P* is image-finite iff the set $\{ P' \in Prc \mid P \xrightarrow{\alpha} P' \}$ is finite for every action α (possibly $\alpha = \tau$). A labeled transition system is image-finite if so is each of its states.

Examples

The process $A_{rep} = a.nil || A_{rep}$ is not image-finite. By induction on n, one can prove that for each $n \in \mathbb{N}$:

$$A_{rep} \xrightarrow{a} \underbrace{a.nil \mid \mid \cdots \mid a.nil}_{n \text{ times}} \mid \mid nil \mid \mid A_{rep}$$

Also the process $A^{\omega} = \sum_{i \ge 0} a^i$ with $a^0 = \text{nil}$ and $a^{i+1} = a \cdot a^i$ is not image-finite.

loost-Pieter Katoen and Thomas Noll

Lecture 16: HML and Strong Bisimilarity

Correspondence HML and strong bisimilarity

Concurrency Theory

Relationship HML and strong bisimilarity

Hennessy-Milner theorem

Let (*Prc*, *Act*, $\{ \rightarrow a \in Act \}$) be an image-finite LTS and *P*, $Q \in Prc$. Then:

 $P\sim Q$

if and only if

for every HML-formula $F : (P \models F \text{ iff } Q \models F)$.

Proof.

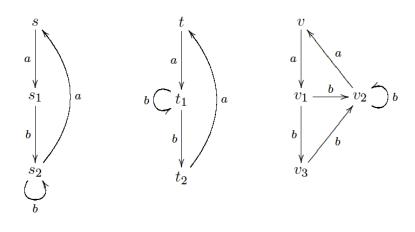
On the board.

Showing $P \not\sim Q$ thus amounts to finding a single HML-formula F with $P \models F$ and $Q \not\models F$.

15/26

Correspondence HML and strong bisimilarity

Example



It follows $s \not\sim t$ and $s \not\sim v$ and $t \not\sim v$. Distinguishing HML-formulas for:

• s and t is: $F = \langle a \rangle \langle b \rangle [b]$ false	as $t \models F$ and $s eq F$
• s and v is: $F = \langle a \rangle \langle b \rangle [a]$ false	as $v \models F$ and $s eq F$
• t and v is: $F = \langle a \rangle \langle b \rangle$ ($\langle a \rangle$ true /	$\wedge \langle b \rangle$ true) as $v \models F$ and $t \not\models F$.
post-Pieter Katoen and Thomas Noll	Concurrency Theory 17/26

Characteristic properties

Lecture 16: HML and Strong Bisimilarity

Overview

- 1 Aims of this lecture
- 2 Introduction
- 3 Hennessy-Milner logic
- 4 Correspondence HML and strong bisimilarity
- **5** Characteristic properties

6 Summary

Lecture 16: HML and Strong Bisimilarity

Counterexample for non image-finite processes

Joost-Pieter	Katoen	and	Thomas	Noll

Concurrency Theory

Characteristic properties

Lecture 16: HML and Strong Bisimilarity

Characteristic properties

The Hennessy-Milner theorem asserts that for image-finite processes, strong bisimilarity and HML-equivalence coincide.

As a next step, we show that for finite transition systems, the equivalence classes under \sim can be characterised with a single formula in HML extended with recursion.

For finite process P, this HML-formula X_P is called P's characteristic property.

Characteristic propertie

The need for recursion

The need for recursion

There is no recursion-free HML-formula F_p that can characterize the process P defined by X = a.X up to strong bisimilarity.

Proof.

By contraposition. Let HML-formula F_p with $\llbracket F_p \rrbracket = \{Q \mid P \sim Q\}$. In particular, $P \models F_p$ and $Q \models F_p$ implies $P \sim Q$ for each Q. We will show that this cannot hold for any formula F_p . Let P_0, P_1, P_2, \ldots be defined by $P_0 =$ nil and $P_{i+1} = a.P_i$. P_i can execute *i a*-actions in a row and then terminates. Nothing else. Obviously $P \not\sim P_i$ for every *i*. Claim: for every HML-formula *F* it holds $P \models F$ iff $P_k \models F$ where *k* is the modal depth² of *F*. This can be proven by induction on the structure of *F*. Thus, $P \sim P_k$. Contradiction.

²The maximal number of nested occurrences of modal operators in *F*. Joost-Pieter Katoen and Thomas Noll Concurrency Theory

Lecture 16: HML and Strong Bisimilarity

Characteristic formula

Consider the finite LTS ({ P_1, \ldots, P_n }, Act, \rightarrow) and let $\mathcal{X} = \{X_{P_1}, \ldots, X_{P_n}, \ldots\}$ contain (at least) *n* variables.

Intuitively, X_P is the syntactic symbol for the characteristic formula of process P.

A characteristic formula for P has to describe which actions P can perform, which actions it cannot perform and what happens after performing an action.

Example

A coffee machine (again) on the black board.

HML with recursion

Syntax of recursive HML formulae

Let $\mathcal{X} = \{X_1, \dots, X_n\}$ be a set of variables. The syntax of HML over \mathcal{X} is defined by the grammar:

Characteristic prop

 $F, G ::= X_i \mid \text{true} \mid \text{false} \mid F \land G \mid F \lor G \mid \langle a \rangle F \mid [a] F$

where $0 < i \le n$ and *a* is an action. A mutually recursive equation system has the form

$$(X_i = F_{X_i} \mid 0 < i \leq n)$$

Concurrency Theor

Characteristic properties

where F_{X_i} is a HML-formula over \mathcal{X} for every $0 < i \leq n$.

We skip the details of the semantics; see Lecture 5 for the details.

Joost-Pieter Katoen and Thomas Noll

[Ingolfsdottir et. al, 1987]

[Hennessy & Milner, 1985]

Lecture 16: HML and Strong Bisimilarity

Characteristic property

Characteristic property

For finite process $P \in Prc$, let recursive HML-formula X_P be defined by:

$$X_{P} \stackrel{max}{=} \bigwedge_{a,P'.P \xrightarrow{a} P'} \langle a \rangle X_{P'} \land \bigwedge_{a} [a] \left(\bigvee_{a,P'.P \xrightarrow{a} P'} X_{P'} \right)$$

Then: $Q \models X_P$ iff $P \sim Q$ for every $Q \in Prc$. The formula X_P is called the characteristic property of P.

Proof.

Outside the scope of this lecture.

Characteristic properties

and Strong Bisimilarity	and	HML	16:	Lecture

Summary

Concurrency Theory

Overview

- 1 Aims of this lecture
- 2 Introduction
- 3 Hennessy-Milner logic
- ④ Correspondence HML and strong bisimilarity
- **(5)** Characteristic properties
- 6 Summary

- 1. Strong bisimilarity and HML-equivalence coincide for image-finite processes.
- 2. This result does not hold for processes that are not image-finite.
- 3. Any two strong bisimilar processes satisfy the same HML formulas.
- 4. For finite processes a recursive HML-formula does exist that precisely characterises the strong bisimilar processes.

Joost-Pieter Katoen and Thomas Noll

Concurrency Theory