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Weak bisimulation Aim of this lecture

Summary so far

I Strong bisimulation is based on mutual mimicking of processes
I Strong bisimilarity (∼) is a congruence, is deadlock sensitive
I Implies trace equivalence, and can be computed in polynomial time

But ∼ does not distinguish between internal (τ -) actions and observable
actions.

Aims of this lecture

1. A notion of bisimulation that treats τ -actions as unobservable
2. How to treat divergences, i.e., loops of τ -actions?
3. A slight adaptation that yields a CCS congruence
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Weak bisimulation Introduction

Strong bisimulation

Strong bisimulation [Park, 1981, Milner, 1989]

A binary relation R ⊆ Prc× Prc is a strong bisimulation whenever for
every (P,Q) ∈ R, and α ∈ Act:
1. if P α−−→P ′ then there exists Q′ ∈ Prc s.t. Q α−−→Q′ and (P ′,Q′) ∈ R
2. if Q α−−→Q′ then there exists P ′ ∈ Prc s.t. P α−−→P ′ and (P ′,Q′) ∈ R.

Strong bisimilarity
The processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is
a strong bisimulation R with (P,Q) ∈ R. Thus,

∼ =
⋃
{R | R is a strong bisimulation }.

Relation ∼ is called strong bisimilarity.
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Weak bisimulation Introduction

Properties of strong bisimilarity

Properties of strong bisimilarity

1. ∼ is an equivalence relation.
2. P ∼ Q =⇒ Tr(P) = Tr(Q).
3. ∼ is a CCS congruence.
4. ∼ is deadlock sensitive.
5. checking ∼ is decidable for finite-state processes

and can be done in polynomial time.1

6. ∼ has a nice game characterization.

Question: is there a need to consider another behavioural equivalence?
Yes.

1In fact, computing ∼ is P-complete. It is thus one of the “hardest problems”
admitting a polynomial-time algorithm.
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Weak bisimulation Introduction

Inadequacy of strong bisimilarity

Sequential two-place buffer

sB0 = in.sB1
sB1 = in.sB2 + out.sB0
sB2 = out.sB1.

Parallel two-place buffer

pB = (oB[f ] || oB[g ]) \{ com }
with f (in) = in and f (out) = com
and g(in) = com and g(out) = out

oB = in.out.oB
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Weak bisimulation Introduction

Inadequacy of strong bisimilarity

Sequential buffer 6∼ parallel buffer

Problem: the sequential buffer cannot simulate the (invisible) τ -action.

Thus, the requirement in ∼ to exactly match all actions is often too strong.
This suggests to weaken this and not insist on exact matching of τ -actions.

Rationale: τ -actions are special as they are unobservable.
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Weak bisimulation Introduction

The rationales for abstracting from τ

I The τ -actions are internal and thus unobservable.

I This is natural in parallel communication yielding τ :
synchronization in CCS is binary and as observation
means communication with the process,
the result of any communication is unobservable

I Strong bisimilarity treats τ -actions as any other action.

I Can we yield the nice properties of ∼ while “abstracting” from
τ -actions?
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Weak bisimulation Weak bisimulation

Weak transition relation

Weak transition relation

α⇒ =
{ ( τ−→

)∗ ◦ α−−→ ◦
( τ−→

)∗ if α 6= τ( τ−→
)∗ if α = τ.

where
( τ−→

)∗ is the reflexive and transitive closure of the relation τ−→ .

Informal meaning

1. If α 6= τ , then s α⇒ t means that
from s we can get to t by doing zero or more τ actions, followed by
the action α, followed by zero or more τ actions.

2. If α = τ , then s α⇒ t means that
from s we can reach t by doing zero or more τ actions.
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Weak bisimulation Weak bisimulation

Weak bisimulation

Weak bisimulation [Milner, 1989]

A binary relation R ⊆ Prc× Prc is a weak bisimulation whenever for every
(P,Q) ∈ R, and α ∈ Act (including α = τ):
1. if P α−−→P ′ then there exists Q′ ∈ Prc s.t. Q α⇒Q′ and (P ′,Q′) ∈ R
2. if Q α−−→Q′ then there exists P ′ ∈ Prc s.t. P α⇒P ′ and (P ′,Q′) ∈ R.

Weak bisimilarity
The processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a
weak bisimulation R with (P,Q) ∈ R. Thus,

≈ =
⋃
{R | R is a weak bisimulation }.

Relation ≈ is called an observational equivalence or weak bisimilarity.
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Weak bisimulation Weak bisimulation

Weak bisimulation

P α−−→ P ′ P α−−→ P ′

R can be completed to R R

Q Q α⇒ Q′

and

P P α⇒ P ′

R can be completed to R R
Q α−−→ Q′ Q α−−→ Q′
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Weak bisimulation Weak bisimulation

Explanation
Weak bisimulation [Milner, 1989]

A binary relation R ⊆ Prc× Prc is a weak bisimulation whenever for every
(P,Q) ∈ R, and α ∈ Act (including α = τ):
1. if P α−−→P ′ then there exists Q′ ∈ Prc s.t. Q α⇒Q′ and (P ′,Q′) ∈ R
2. if Q α−−→Q′ then there exists P ′ ∈ Prc s.t. P α⇒P ′ and (P ′,Q′) ∈ R.

Remark
Each clause in the definition of weak bisimulation subsumes two cases:

I P α−−→P ′ where α 6= τ
implies ex. Q′ ∈ Prc with Q ( τ−→ )∗ α−−→ ( τ−→ )∗ Q′ and (P ′,Q′) ∈ R

I P τ−→P ′
implies ex. Q′ ∈ Prc such that Q ( τ−→ )∗ Q′ and (P ′,Q′) ∈ R
(where Q′ = Q is admissible)

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 15/33
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Weak bisimulation Weak bisimulation

Examples
Weak bisimulation [Milner, 1989]

A binary relation R ⊆ Prc× Prc is a weak bisimulation whenever for every
(P,Q) ∈ R, and α ∈ Act (including α = τ):
1. if P α−−→P ′ then there exists Q′ ∈ Prc s.t. Q α⇒Q′ and (P ′,Q′) ∈ R
2. if Q α−−→Q′ then there exists P ′ ∈ Prc s.t. P α⇒P ′ and (P ′,Q′) ∈ R.

A first example
Let P = τ.a.nil and Q = a.nil. Then P 6∼ Q. Claim: P ≈ Q. Rewrite P
as: P = τ.P1 with P1 = a.nil. Let R = { (P,Q), (P1,Q), (nil, nil) }. Check
that R is a weak bisimulation. As (P,Q) ∈ R, it follows P ≈ Q.

Buffers
Check that the parallel and sequential buffer are weakly bisimilar.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 16/33
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Let P = τ.a.nil and Q = a.nil. Then P 6∼ Q. Claim: P ≈ Q. Rewrite P
as: P = τ.P1 with P1 = a.nil. Let R = { (P,Q), (P1,Q), (nil, nil) }. Check
that R is a weak bisimulation. As (P,Q) ∈ R, it follows P ≈ Q.

Buffers
Check that the parallel and sequential buffer are weakly bisimilar.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 16/33
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Weak bisimulation Properties of weak bisimilarity

Divergence

For every P ∈ Prc,
P ≈ τ.P

Proof.
We show that

R = { (P, τ.P) } ∪ idPrc

is a weak bisimulation:
1. every transition of P, P α−−→P ′

can be simulated by τ.P τ−→P α−−→P ′
i.e., equivalently τ.P α⇒P ′ with (P ′,P ′) ∈ R (since idPrc ⊆ R)

2. the only transition of τ.P is τ.P τ−→P;
it is simulated by P τ⇒P with (P,P) ∈ R (since idPrc ⊆ R).
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Weak bisimulation Properties of weak bisimilarity

Divergence

A polling process [Koomen, 1982]

Let:
A? = a.nil + τ.B?
B? = b.nil + τ.A?

Claim: A? ≈ B? ≈ a.nil + b.nil. (Check this!)
But note that A? τ−→B? τ−→A? is a τ -loop, whereas a.nil + b.nil does not
have a loop, not even a τ -loop.
Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually
will do so.2

Note that also Div ≈ nil where Div = τ.Div. Thus, a deadlock process is
weakly bisimilar to a process that can only diverge. This is justified by the
fact that “observations” can only be made by interacting with the process.

2This is called fair abstraction from divergence. Divergence is a τ -loop.
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Weak bisimulation Properties of weak bisimilarity

Divergence

A polling process [Koomen, 1982]

Let:
A? = a.nil + τ.B?
B? = b.nil + τ.A?

Claim: A? ≈ B? ≈ a.nil + b.nil. (Check this!)
But note that A? τ−→B? τ−→A? is a τ -loop, whereas a.nil + b.nil does not
have a loop, not even a τ -loop.
Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually
will do so.2

Note that also Div ≈ nil where Div = τ.Div. Thus, a deadlock process is
weakly bisimilar to a process that can only diverge. This is justified by the
fact that “observations” can only be made by interacting with the process.

2This is called fair abstraction from divergence. Divergence is a τ -loop.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/33



Weak bisimulation Properties of weak bisimilarity

Divergence

A polling process [Koomen, 1982]

Let:
A? = a.nil + τ.B?
B? = b.nil + τ.A?

Claim: A? ≈ B? ≈ a.nil + b.nil. (Check this!)

But note that A? τ−→B? τ−→A? is a τ -loop, whereas a.nil + b.nil does not
have a loop, not even a τ -loop.
Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually
will do so.2

Note that also Div ≈ nil where Div = τ.Div. Thus, a deadlock process is
weakly bisimilar to a process that can only diverge. This is justified by the
fact that “observations” can only be made by interacting with the process.

2This is called fair abstraction from divergence. Divergence is a τ -loop.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/33



Weak bisimulation Properties of weak bisimilarity

Divergence

A polling process [Koomen, 1982]

Let:
A? = a.nil + τ.B?
B? = b.nil + τ.A?

Claim: A? ≈ B? ≈ a.nil + b.nil. (Check this!)
But note that A? τ−→B? τ−→A? is a τ -loop, whereas a.nil + b.nil does not
have a loop, not even a τ -loop.

Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually
will do so.2

Note that also Div ≈ nil where Div = τ.Div. Thus, a deadlock process is
weakly bisimilar to a process that can only diverge. This is justified by the
fact that “observations” can only be made by interacting with the process.

2This is called fair abstraction from divergence. Divergence is a τ -loop.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/33



Weak bisimulation Properties of weak bisimilarity

Divergence

A polling process [Koomen, 1982]

Let:
A? = a.nil + τ.B?
B? = b.nil + τ.A?

Claim: A? ≈ B? ≈ a.nil + b.nil. (Check this!)
But note that A? τ−→B? τ−→A? is a τ -loop, whereas a.nil + b.nil does not
have a loop, not even a τ -loop.
Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually
will do so.2

Note that also Div ≈ nil where Div = τ.Div. Thus, a deadlock process is
weakly bisimilar to a process that can only diverge. This is justified by the
fact that “observations” can only be made by interacting with the process.

2This is called fair abstraction from divergence. Divergence is a τ -loop.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/33



Weak bisimulation Properties of weak bisimilarity

Divergence

A polling process [Koomen, 1982]

Let:
A? = a.nil + τ.B?
B? = b.nil + τ.A?

Claim: A? ≈ B? ≈ a.nil + b.nil. (Check this!)
But note that A? τ−→B? τ−→A? is a τ -loop, whereas a.nil + b.nil does not
have a loop, not even a τ -loop.
Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually
will do so.2

Note that also Div ≈ nil where Div = τ.Div.

Thus, a deadlock process is
weakly bisimilar to a process that can only diverge. This is justified by the
fact that “observations” can only be made by interacting with the process.

2This is called fair abstraction from divergence. Divergence is a τ -loop.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/33



Weak bisimulation Properties of weak bisimilarity

Divergence

A polling process [Koomen, 1982]

Let:
A? = a.nil + τ.B?
B? = b.nil + τ.A?

Claim: A? ≈ B? ≈ a.nil + b.nil. (Check this!)
But note that A? τ−→B? τ−→A? is a τ -loop, whereas a.nil + b.nil does not
have a loop, not even a τ -loop.
Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually
will do so.2

Note that also Div ≈ nil where Div = τ.Div. Thus, a deadlock process is
weakly bisimilar to a process that can only diverge.

This is justified by the
fact that “observations” can only be made by interacting with the process.

2This is called fair abstraction from divergence. Divergence is a τ -loop.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/33



Weak bisimulation Properties of weak bisimilarity

Divergence

A polling process [Koomen, 1982]

Let:
A? = a.nil + τ.B?
B? = b.nil + τ.A?

Claim: A? ≈ B? ≈ a.nil + b.nil. (Check this!)
But note that A? τ−→B? τ−→A? is a τ -loop, whereas a.nil + b.nil does not
have a loop, not even a τ -loop.
Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually
will do so.2

Note that also Div ≈ nil where Div = τ.Div. Thus, a deadlock process is
weakly bisimilar to a process that can only diverge. This is justified by the
fact that “observations” can only be made by interacting with the process.

2This is called fair abstraction from divergence. Divergence is a τ -loop.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/33



Weak bisimulation Properties of weak bisimilarity

Properties of weak bisimilarity

Properties of ≈

1. P ∼ Q implies P ≈ Q.
2. ≈ is an equivalence relation (reflexive, symmetric, transitive).
3. ≈ is the largest weak bisimulation.
4. ≈ is (non-τ) deadlock sensitive.3

5. ≈ abstracts from τ -loops.

Proof.
1. Straightforward. 2.–4. Similar to the proofs for ∼. Left as as exercise.
5. Previous slide.

3Where w -deadlocks are considered on observable traces w .
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Weak bisimulation Properties of weak bisimilarity

Weak bisimilarity versus trace equivalence

Observational trace language
The observational trace language of P ∈ Prc is defined by:

ObsTr(P) = { ŵ ∈ Act∗ | ∃P ′ ∈ Prc.P w−−→P ′ }

where ŵ is obtained from w by omitting all τ -actions.

Trace equivalence
P,Q ∈ Prc are observational trace equivalent if ObsTr(P) = ObsTr(Q).

Theorem
P ≈ Q implies that P and Q are observational trace equivalent. The
reverse does not hold.
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Weak bisimulation Properties of weak bisimilarity

Milner’s τ -laws

Milner’s τ -laws

α.τ.P ≈ α.P
P + τ.P ≈ τ.P

α.(P + τ.Q) ≈ α.(P + τ.Q) + α.Q.

Proof.
Left as an exercise. Build appropriate weak bisimulation relations.
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Weak bisimulation Properties of weak bisimilarity

Congruence
CCS congruence
Let P,Q ∈ Prc be CCS processes. Assume P ≈ Q. Then:

α.P ≈ α.Q for every action α
P||R ≈ Q||R for every process R
P\L ≈ Q\L for every set L ⊆ A
P[f ] ≈ Q[f ] for every relabelling f .

What about choice?
τ.a.nil ≈ a.nil but τ.a.nil + b.nil 6≈ a.nil + b.nil.

Thus, weak bisimilarity is not a congruence for CCS.
This motivates a slight adaptation of ≈.
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Weak bisimulation Observation congruence

Overview

1 Aim of this lecture

2 Introduction

3 Weak bisimulation

4 Properties of weak bisimilarity

5 Observation congruence

6 Deciding weak bisimilarity and game interpretation

7 Summary
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Weak bisimulation Observation congruence

Observation congruence

Observation congruence [Milner, 1989]

P,Q ∈ Prc are observationally congruent, denoted P ≈c Q, if for every
α ∈ Act (including α = τ):
1. if P α−−→P ′ then there is a sequence of transitions

Q τ⇒Q1
α−−→Q2

τ⇒Q′ such that P ′ ≈ Q′

2. if Q α−−→Q′ then there is a sequence of transitions
P τ⇒P1

α−−→P2
τ⇒P ′ such that P ′ ≈ Q′.

Remark
≈c differs from ≈ only in that ≈c requires τ -moves by P or Q to be mimicked by
at least one τ -move in the other process. This only applies to the first step; the
successors just have to satisfy P ′ ≈ Q′ (and not necessarily P ′ ≈c Q′).
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Weak bisimulation Observation congruence

Examples

Example

1. Sequential and parallel two-place buffer:

P1
in ↓↑ out

P2
in ↓↑ out

P3

Q1
in↙↖ out
Q2

τ−→Q3
out↖↙ in

Q4

P1 ≈c Q1 since P1 ≈ Q1 and neither P1 nor Q1 has initial τ -steps.

2. τ.b.nil 6≈c b.nil (since τ.b.nil τ−→ but b.nil τ−−→/ )
thus the counterexample to congruence of ≈ for + does not apply.

3. b.τ.nil ≈c b.nil (since τ.nil ≈ nil).
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Weak bisimulation Observation congruence

Properties of observation congruence

Theorem
For every P,Q ∈ Prc, it holds:
1. P ∼ Q implies P ≈c Q, and P ≈c Q implies P ≈ Q
2. ≈c is a CCS congruence
3. P ≈c Q if and only if P + R ≈ Q + R for every R ∈ Prc
4. ≈c is an equivalence relation
5. P ≈ Q if and only if (P ≈c Q or P ≈c τ.Q or τ.P ≈c Q)

Proof.
Omitted.

Note: as ≈ implies trace equivalence and is (non-τ) deadlock-sensitive,
≈c implies trace equivalence and is (non-τ) deadlock-sensitive.
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Weak bisimulation Deciding weak bisimilarity and game interpretation

Overview

1 Aim of this lecture

2 Introduction

3 Weak bisimulation

4 Properties of weak bisimilarity

5 Observation congruence

6 Deciding weak bisimilarity and game interpretation

7 Summary
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Weak bisimulation Deciding weak bisimilarity and game interpretation

Weak bisimilarity as a game

Game rules
In each round the current configuration (s, t) is changed as follows:
1. the attacker chooses one of the processes in the current configuration,

say t, and makes an α−−→ -move for some α ∈ Act to t ′, say, and
2. the defender must respond by making an α⇒ -move in the other

process s of the current configuration under the same action α,
yielding s α⇒ s ′.

The new pair of processes (s ′, t ′) becomes the current configuration.
The game continues with another round.

Game results

1. If one player cannot move, the other player wins.
2. If the game can be played ad infinitum, the defender wins.
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The new pair of processes (s ′, t ′) becomes the current configuration.
The game continues with another round.

Game results

1. If one player cannot move, the other player wins.
2. If the game can be played ad infinitum, the defender wins.
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Game characterization of weak bisimilarity

Theorem [Stirling, 1995], [Thomas, 1993]

1. s ≈ t iff the defender has a universal winning strategy from
configuration (s, t).

2. s 6≈ t iff the attacker has a universal winning strategy from
configuration (s, t).

(By means of a universal winning strategy, a player can always win,
regardless of how the other player selects her moves.)

Proof.
Similar as for strong bisimilarity. Left as an exercise.
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Deciding weak bisimilarity

Checking whether P ≈ Q (or P ≈c Q) over finite-state processes can be
reduced to checking strong bisimilarity ∼, using a technique called
saturation.

Intuitively, saturation amounts to:
1. First pre-computing the weak transition relation ⇒ , and then
2. Constructing a new pair of finite-state processes whose original

transitions are replaced by weak transitions.

The question whether P ≈ Q now boils down to checking ∼ on the
saturated processes. (Details are outside the scope of this lecture.)

As computing ⇒ and ∼ can be done in polynomial time, P ≈ Q can be
checked in polynomial time.
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Weak bisimulation Summary

Overview
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Summary

1. Weak bisimilarity is based on mutual mimicking processes
2. But: τ -actions do not need to be mimicked, as they are internal
3. Weak bisimilarity is not a congruence for choice (+)
4. Observation congruence remedies this by forcing initial τ -actions to

be mimicked
5. Divergence is weakly bisimilar to a deadlock process
6. Checking (non-)weak bisimilarity can be done using a two-player game
7. Weak bisimilarity can be determined in polynomial-time
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