Concurrency Theory Weak bisimulation

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1718/ct

November 27, 2017

Overview

- Aim of this lecture
- 2 Introduction
- 3 Weak bisimulation
- Properties of weak bisimilarity
- 5 Observation congruence
- 6 Deciding weak bisimilarity and game interpretation

7 Summary

Overview

Aim of this lecture

2 Introduction

- 3 Weak bisimulation
- Properties of weak bisimilarity
- 5 Observation congruence
- 6 Deciding weak bisimilarity and game interpretation

Summary

- Strong bisimulation is based on mutual mimicking of processes
- Strong bisimilarity (\sim) is a congruence, is deadlock sensitive
- Implies trace equivalence, and can be computed in polynomial time

- Strong bisimulation is based on mutual mimicking of processes
- Strong bisimilarity (\sim) is a congruence, is deadlock sensitive
- Implies trace equivalence, and can be computed in polynomial time

But \sim does not distinguish between internal (7-) actions and observable actions.

- Strong bisimulation is based on mutual mimicking of processes
- Strong bisimilarity (\sim) is a congruence, is deadlock sensitive
- Implies trace equivalence, and can be computed in polynomial time

But \sim does not distinguish between internal (7-) actions and observable actions.

Aims of this lecture

- Strong bisimulation is based on mutual mimicking of processes
- Strong bisimilarity (\sim) is a congruence, is deadlock sensitive
- Implies trace equivalence, and can be computed in polynomial time

But \sim does not distinguish between internal (7-) actions and observable actions.

Aims of this lecture

- 1. A notion of bisimulation that treats τ -actions as unobservable
- 2. How to treat divergences, i.e., loops of τ -actions?
- 3. A slight adaptation that yields a CCS congruence

Overview

Aim of this lecture

2 Introduction

- 3 Weak bisimulation
- Properties of weak bisimilarity
- 5 Observation congruence
- 6 Deciding weak bisimilarity and game interpretation

Summary

Strong bisimulation

Strong bisimulation

[Park, 1981, Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$:

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Strong bisimulation

Strong bisimulation

[Park, 1981, Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$:

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Strong bisimilarity

The processes P and Q are strongly bisimilar, denoted $P \sim Q$, iff there is a strong bisimulation \mathcal{R} with $(P, Q) \in \mathcal{R}$. Thus,

 $\sim = \bigcup \{ \, \mathcal{R} \mid \mathcal{R} \text{ is a strong bisimulation} \, \}.$

Relation \sim is called strong bisimilarity.

Properties of strong bisimilarity

Properties of strong bisimilarity

- 1. \sim is an equivalence relation.
- 2. $P \sim Q \implies Tr(P) = Tr(Q)$.
- 3. \sim is a CCS congruence.
- 4. \sim is deadlock sensitive.
- 5. checking \sim is decidable for finite-state processes and can be done in polynomial time.^1
- 6. \sim has a nice game characterization.

 $^{^1}$ In fact, computing \sim is P-complete. It is thus one of the "hardest problems" admitting a polynomial-time algorithm.

Properties of strong bisimilarity

Properties of strong bisimilarity

- 1. \sim is an equivalence relation.
- 2. $P \sim Q \implies Tr(P) = Tr(Q)$.
- 3. \sim is a CCS congruence.
- 4. \sim is deadlock sensitive.
- 5. checking \sim is decidable for finite-state processes and can be done in polynomial time.^1
- 6. \sim has a nice game characterization.

Question: is there a need to consider another behavioural equivalence?

 1 In fact, computing \sim is P-complete. It is thus one of the "hardest problems" admitting a polynomial-time algorithm.

Properties of strong bisimilarity

Properties of strong bisimilarity

- 1. \sim is an equivalence relation.
- 2. $P \sim Q \implies Tr(P) = Tr(Q)$.
- 3. \sim is a CCS congruence.
- 4. \sim is deadlock sensitive.
- 5. checking \sim is decidable for finite-state processes and can be done in polynomial time.^1
- 6. \sim has a nice game characterization.

Question: is there a need to consider another behavioural equivalence? Yes.

 $^{^1}$ In fact, computing \sim is P-complete. It is thus one of the "hardest problems" admitting a polynomial-time algorithm.

Sequential two-place buffer

$$sB_0 = in.sB_1$$

 $sB_1 = in.sB_2 + \overline{out}.sB_0$
 $sB_2 = \overline{out}.sB_1.$

Sequential two-place buffer

$$sB_0 = in.sB_1$$

 $sB_1 = in.sB_2 + \overline{out}.sB_0$
 $sB_2 = \overline{out}.sB_1.$

Parallel two-place buffer

$$pB = (oB[f] || oB[g]) \setminus \{ com \}$$

with $f(in) = in$ and $f(out) = com$
and $g(in) = com$ and $g(out) = out$
 $oB = in.\overline{out}.oB$

Sequential buffer $\not\sim$ parallel buffer

Problem: the sequential buffer cannot simulate the (invisible) τ -action.

Sequential buffer $\not\sim$ parallel buffer

Problem: the sequential buffer cannot simulate the (invisible) τ -action.

Thus, the requirement in \sim to exactly match all actions is often too strong.

Problem: the sequential buffer cannot simulate the (invisible) τ -action.

Thus, the requirement in \sim to exactly match all actions is often too strong. This suggests to weaken this and not insist on exact matching of τ -actions.

Problem: the sequential buffer cannot simulate the (invisible) τ -action.

Thus, the requirement in \sim to exactly match all actions is often too strong. This suggests to weaken this and not insist on exact matching of τ -actions. Rationale: τ -actions are special as they are unobservable.

The rationales for abstracting from $\boldsymbol{\tau}$

• The τ -actions are internal and thus unobservable.

• The τ -actions are internal and thus unobservable.

This is natural in parallel communication yielding \(\tau:\) synchronization in CCS is binary and as observation means communication with the process, the result of any communication is unobservable

• The τ -actions are internal and thus unobservable.

- This is natural in parallel communication yielding τ: synchronization in CCS is binary and as observation means communication with the process, the result of any communication is unobservable
- Strong bisimilarity treats τ -actions as any other action.

• The τ -actions are internal and thus unobservable.

- This is natural in parallel communication yielding τ: synchronization in CCS is binary and as observation means communication with the process, the result of any communication is unobservable
- Strong bisimilarity treats τ -actions as any other action.
- Can we yield the nice properties of ~ while "abstracting" from *τ*-actions?

Overview

Aim of this lecture

2 Introduction

- 3 Weak bisimulation
- Properties of weak bisimilarity
- 5 Observation congruence
- 6 Deciding weak bisimilarity and game interpretation

7 Summary

Weak transition relation

$$\stackrel{\boldsymbol{\alpha}}{\Longrightarrow} = \begin{cases} \left(\stackrel{\tau}{\longrightarrow} \right)^* \circ \stackrel{\boldsymbol{\alpha}}{\longrightarrow} \circ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \boldsymbol{\alpha} \neq \tau \\ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \boldsymbol{\alpha} = \tau. \end{cases}$$

where $\left(\xrightarrow{\tau} \right)^*$ is the reflexive and transitive closure of the relation $\xrightarrow{\tau}$.

Weak transition relation

$$\stackrel{\alpha}{\Longrightarrow} = \begin{cases} \left(\stackrel{\tau}{\longrightarrow} \right)^* \circ \stackrel{\alpha}{\longrightarrow} \circ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \alpha \neq \tau \\ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \alpha = \tau. \end{cases}$$

where $\left(\xrightarrow{\tau} \right)^*$ is the reflexive and transitive closure of the relation $\xrightarrow{\tau}$.

Informal meaning

Weak transition relation

$$\stackrel{\alpha}{\implies} = \begin{cases} \left(\stackrel{\tau}{\longrightarrow} \right)^* \circ \stackrel{\alpha}{\longrightarrow} \circ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \alpha \neq \tau \\ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \alpha = \tau. \end{cases}$$

where $\left(\xrightarrow{\tau} \right)^*$ is the reflexive and transitive closure of the relation $\xrightarrow{\tau}$.

Informal meaning

1. If $\alpha \neq \tau$, then $s \stackrel{\alpha}{\Longrightarrow} t$ means that from s we can get to t by doing zero or more τ actions, followed by the action α , followed by zero or more τ actions.

Weak transition relation

$$\stackrel{\alpha}{\implies} = \begin{cases} \left(\stackrel{\tau}{\longrightarrow} \right)^* \circ \stackrel{\alpha}{\longrightarrow} \circ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \alpha \neq \tau \\ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \alpha = \tau. \end{cases}$$

where $\left(\xrightarrow{\tau} \right)^*$ is the reflexive and transitive closure of the relation $\xrightarrow{\tau}$.

Informal meaning

1. If $\alpha \neq \tau$, then $s \stackrel{\alpha}{\Longrightarrow} t$ means that from s we can get to t by doing zero or more τ actions, followed by the action α , followed by zero or more τ actions.

2. If
$$\alpha = \tau$$
, then $s \stackrel{\alpha}{\Longrightarrow} t$ means that
from s we can reach t by doing zero or more τ actions.

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Weak bisimulation

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Weak bisimilarity

The processes P and Q are weakly bisimilar, denoted $P \approx Q$, iff there is a weak bisimulation \mathcal{R} with $(P, Q) \in \mathcal{R}$.

Weak bisimulation

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

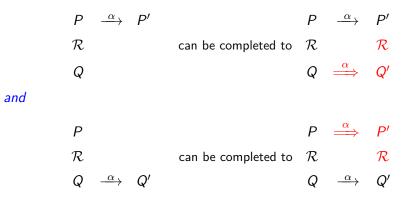
Weak bisimilarity

The processes P and Q are weakly bisimilar, denoted $P \approx Q$, iff there is a weak bisimulation \mathcal{R} with $(P, Q) \in \mathcal{R}$. Thus,

 $\approx = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is a weak bisimulation } \}.$

Relation \approx is called an observational equivalence or weak bisimilarity.

Weak bisimulation



Explanation

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Explanation

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Remark

Each clause in the definition of weak bisimulation subsumes two cases:

Examples

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Examples

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

A first example

Let $P = \tau.a.$ nil and Q = a.nil. Then $P \not\sim Q$. Claim: $P \approx Q$. Rewrite P as: $P = \tau.P_1$ with $P_1 = a.$ nil. Let $\mathcal{R} = \{(P, Q), (P_1, Q), (\text{nil}, \text{nil})\}$. Check that \mathcal{R} is a weak bisimulation. As $(P, Q) \in \mathcal{R}$, it follows $P \approx Q$.

Examples

Weak bisimulation

[Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$ (including $\alpha = \tau$):

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$

2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

A first example

Let $P = \tau.a.$ nil and Q = a.nil. Then $P \not\sim Q$. Claim: $P \approx Q$. Rewrite P as: $P = \tau.P_1$ with $P_1 = a.$ nil. Let $\mathcal{R} = \{(P, Q), (P_1, Q), (\text{nil}, \text{nil})\}$. Check that \mathcal{R} is a weak bisimulation. As $(P, Q) \in \mathcal{R}$, it follows $P \approx Q$.

Buffers

Check that the parallel and sequential buffer are weakly bisimilar.

Overview

Aim of this lecture

2 Introduction

- 3 Weak bisimulation
- Properties of weak bisimilarity
 - 5 Observation congruence
- 6 Deciding weak bisimilarity and game interpretation

7) Summary

For every
$$P \in Prc$$
,

$$P \approx \tau . P$$

For every
$$P \in Prc$$
,

$$P \approx \tau.P$$

Proof.

We show that

$$\mathcal{R} = \{(P, \tau.P)\} \cup id_{Prc}$$

is a weak bisimulation:

For every
$$P \in Prc$$
,

$$P\approx \tau.P$$

Proof.

We show that

$$\mathcal{R} = \{(P, \tau.P)\} \cup id_{Prc}$$

is a weak bisimulation:

1. every transition of $P, P \xrightarrow{\alpha} P'$ can be simulated by $\tau.P \xrightarrow{\tau} P \xrightarrow{\alpha} P'$ i.e., equivalently $\tau.P \xrightarrow{\alpha} P'$ with $(P', P') \in \mathcal{R}$ (since $id_{Prc} \subseteq \mathcal{R}$)

For every
$$P \in Prc$$
,

$$P\approx \tau.P$$

Proof.

We show that

$$\mathcal{R} = \{(P, \tau.P)\} \cup id_{Prc}$$

is a weak bisimulation:

- 1. every transition of $P, P \xrightarrow{\alpha} P'$ can be simulated by $\tau.P \xrightarrow{\tau} P \xrightarrow{\alpha} P'$ i.e., equivalently $\tau.P \xrightarrow{\alpha} P'$ with $(P', P') \in \mathcal{R}$ (since $id_{Prc} \subseteq \mathcal{R}$)
- the only transition of τ.P is τ.P → P; it is simulated by P → P with (P, P) ∈ R (since id_{Prc} ⊆ R).

A polling process

²This is called fair abstraction from divergence. Divergence is a τ -loop. Joost-Pieter Katoen and Thomas Noll Concurrency Theory

A polling process

[Koomen, 1982]

Let:

$$A? = a.nil + \tau.B?$$

$$B? = b.nil + \tau.A?$$

²This is called fair abstraction from divergence. Divergence is a τ -loop.

A polling process

Let:

 $\begin{array}{rcl} A? &=& a.nil + \tau.B? \\ B? &=& b.nil + \tau.A? \end{array}$

Claim: $A? \approx B? \approx a.nil + b.nil.$ (Check this!)

 $^2 {\sf This}$ is called fair abstraction from divergence. Divergence is a $\tau\text{-loop}.$

A polling process

Let:

 $A? = a.nil + \tau.B?$ $B? = b.nil + \tau.A?$

Claim: $A? \approx B? \approx a.nil + b.nil.$ (Check this!)

But note that $A? \xrightarrow{\tau} B? \xrightarrow{\tau} A?$ is a τ -loop, whereas a.nil + b.nil does not have a loop, not even a τ -loop.

²This is called fair abstraction from divergence. Divergence is a τ -loop.

A polling process

Let:

 $A? = a.nil + \tau.B?$ $B? = b.nil + \tau.A?$

Claim: $A? \approx B? \approx a.nil + b.nil.$ (Check this!)

But note that $A? \xrightarrow{\tau} B? \xrightarrow{\tau} A?$ is a τ -loop, whereas a.nil + b.nil does not have a loop, not even a τ -loop.

Thus, \approx assumes that if a process can escape from a $\tau\text{-loop,}$ it eventually will do so.^2

²This is called fair abstraction from divergence. Divergence is a τ -loop.

A polling process

Let:

 $A? = a.nil + \tau.B?$ $B? = b.nil + \tau.A?$

Claim: $A? \approx B? \approx a.nil + b.nil.$ (Check this!)

But note that $A? \xrightarrow{\tau} B? \xrightarrow{\tau} A?$ is a τ -loop, whereas a.nil + b.nil does not have a loop, not even a τ -loop.

Thus, \approx assumes that if a process can escape from a $\tau\text{-loop,}$ it eventually will do so.^2

Note that also $Div \approx nil$ where $Div = \tau.Div$.

²This is called fair abstraction from divergence. Divergence is a τ -loop.

A polling process

[Koomen, 1982]

Let:

 $A? = a.nil + \tau.B?$ $B? = b.nil + \tau.A?$

Claim: $A? \approx B? \approx a.nil + b.nil.$ (Check this!)

But note that $A? \xrightarrow{\tau} B? \xrightarrow{\tau} A?$ is a τ -loop, whereas a.nil + b.nil does not have a loop, not even a τ -loop.

Thus, \approx assumes that if a process can escape from a $\tau\text{-loop,}$ it eventually will do so.^2

Note that also $Div \approx nil$ where $Div = \tau . Div$. Thus, a deadlock process is weakly bisimilar to a process that can only diverge.

²This is called fair abstraction from divergence. Divergence is a τ -loop.

A polling process

[Koomen, 1982]

Let:

 $A? = a.nil + \tau.B?$ $B? = b.nil + \tau.A?$

Claim: $A? \approx B? \approx a.nil + b.nil.$ (Check this!)

But note that $A? \xrightarrow{\tau} B? \xrightarrow{\tau} A?$ is a τ -loop, whereas a.nil + b.nil does not have a loop, not even a τ -loop.

Thus, \approx assumes that if a process can escape from a $\tau\text{-loop,}$ it eventually will do so.^2

Note that also $Div \approx$ nil where $Div = \tau . Div$. Thus, a deadlock process is weakly bisimilar to a process that can only diverge. This is justified by the fact that "observations" can only be made by interacting with the process.

²This is called fair abstraction from divergence. Divergence is a τ -loop.

Properties of weak bisimilarity

Properties of \approx

- **1**. $P \sim Q$ implies $P \approx Q$.
- 2. \approx is an equivalence relation (reflexive, symmetric, transitive).
- 3. \approx is the largest weak bisimulation.
- 4. \approx is (non- τ) deadlock sensitive.³
- 5. \approx abstracts from τ -loops.

³Where *w*-deadlocks are considered on observable traces *w*.

Properties of weak bisimilarity

Properties of \approx

- **1**. $P \sim Q$ implies $P \approx Q$.
- 2. \approx is an equivalence relation (reflexive, symmetric, transitive).
- 3. \approx is the largest weak bisimulation.
- 4. \approx is (non- τ) deadlock sensitive.³
- 5. \approx abstracts from τ -loops.

Proof.

- 1. Straightforward. 2.–4. Similar to the proofs for \sim . Left as as exercise.
- 5. Previous slide.

³Where *w*-deadlocks are considered on observable traces *w*.

Observational trace language

The observational trace language of $P \in Prc$ is defined by:

$$ObsTr(P) = \{ \widehat{w} \in Act^* \mid \exists P' \in Prc. \ P \xrightarrow{w} P' \}$$

where \hat{w} is obtained from w by omitting all τ -actions.

Observational trace language

The observational trace language of $P \in Prc$ is defined by:

$$ObsTr(P) = \{ \widehat{w} \in Act^* \mid \exists P' \in Prc. \ P \xrightarrow{w} P' \}$$

where \hat{w} is obtained from w by omitting all τ -actions.

Trace equivalence

 $P, Q \in Prc$ are observational trace equivalent if ObsTr(P) = ObsTr(Q).

Observational trace language

The observational trace language of $P \in Prc$ is defined by:

$$ObsTr(P) = \{ \widehat{w} \in Act^* \mid \exists P' \in Prc. \ P \xrightarrow{w} P' \}$$

where \hat{w} is obtained from w by omitting all τ -actions.

Trace equivalence

 $P, Q \in Prc$ are observational trace equivalent if ObsTr(P) = ObsTr(Q).

Theorem

 $P \approx Q$ implies that P and Q are observational trace equivalent. The reverse does not hold.

Milner's τ -laws

Milner's τ -laws

Milner's τ -laws

Milner's τ -laws

$$\begin{array}{rcl} \alpha.\tau.P &\approx & \alpha.P \\ P + \tau.P &\approx & \tau.P \\ \alpha.(P + \tau.Q) &\approx & \alpha.(P + \tau.Q) + \alpha.Q. \end{array}$$

Milner's τ -laws

Milner's τ -laws

$$\begin{array}{rcl} \alpha.\tau.P &\approx & \alpha.P \\ P + \tau.P &\approx & \tau.P \\ \alpha.(P + \tau.Q) &\approx & \alpha.(P + \tau.Q) + \alpha.Q. \end{array}$$

Proof.

Left as an exercise. Build appropriate weak bisimulation relations.

Congruence

CCS congruence

Let $P, Q \in Prc$ be CCS processes. Assume $P \approx Q$. Then:

Congruence

CCS congruence

Let $P, Q \in Prc$ be CCS processes. Assume $P \approx Q$. Then:

$$\begin{array}{lll} \alpha.P &\approx & \alpha.Q \text{ for every action } \alpha \\ P||R &\approx & Q||R \text{ for every process } R \\ P \setminus L &\approx & Q \setminus L \text{ for every set } L \subseteq A \\ P[f] &\approx & Q[f] \text{ for every relabelling } f. \end{array}$$

What about choice?

 τ .a.nil \approx a.nil but τ .a.nil + b.nil $\not\approx$ a.nil + b.nil.

Congruence

CCS congruence

Let $P, Q \in Prc$ be CCS processes. Assume $P \approx Q$. Then:

$$\begin{array}{lll} \alpha.P &\approx & \alpha.Q \text{ for every action } \alpha \\ P||R &\approx & Q||R \text{ for every process } R \\ P \setminus L &\approx & Q \setminus L \text{ for every set } L \subseteq A \\ P[f] &\approx & Q[f] \text{ for every relabelling } f. \end{array}$$

What about choice?

 τ .a.nil \approx a.nil but τ .a.nil + b.nil $\not\approx$ a.nil + b.nil.

Thus, weak bisimilarity is not a congruence for CCS. This motivates a slight adaptation of \approx .

Overview

Aim of this lecture

2 Introduction

- 3 Weak bisimulation
- Properties of weak bisimilarity
- 5 Observation congruence
- 6 Deciding weak bisimilarity and game interpretation

7 Summary

Observation congruence

Observation congruence

[Milner, 1989]

- *P*, $Q \in Prc$ are observationally congruent, denoted $P \approx^{c} Q$, if for every $\alpha \in Act$ (including $\alpha = \tau$):
 - 1. if $P \xrightarrow{\alpha} P'$ then there is a sequence of transitions $Q \xrightarrow{\tau} Q_1 \xrightarrow{\alpha} Q_2 \xrightarrow{\tau} Q'$ such that $P' \approx Q'$

Observation congruence

Observation congruence

[Milner, 1989]

- *P*, $Q \in Prc$ are observationally congruent, denoted $P \approx^{c} Q$, if for every $\alpha \in Act$ (including $\alpha = \tau$):
 - 1. if $P \xrightarrow{\alpha} P'$ then there is a sequence of transitions $Q \xrightarrow{\tau} Q_1 \xrightarrow{\alpha} Q_2 \xrightarrow{\tau} Q'$ such that $P' \approx Q'$
 - 2. if $Q \xrightarrow{\alpha} Q'$ then there is a sequence of transitions $P \xrightarrow{\tau} P_1 \xrightarrow{\alpha} P_2 \xrightarrow{\tau} P'$ such that $P' \approx Q'$.

Observation congruence

Observation congruence

[Milner, 1989]

- *P*, $Q \in Prc$ are observationally congruent, denoted $P \approx^{c} Q$, if for every $\alpha \in Act$ (including $\alpha = \tau$):
 - 1. if $P \xrightarrow{\alpha} P'$ then there is a sequence of transitions $Q \xrightarrow{\tau} Q_1 \xrightarrow{\alpha} Q_2 \xrightarrow{\tau} Q'$ such that $P' \approx Q'$
 - 2. if $Q \xrightarrow{\alpha} Q'$ then there is a sequence of transitions $P \xrightarrow{\tau} P_1 \xrightarrow{\alpha} P_2 \xrightarrow{\tau} P'$ such that $P' \approx Q'$.

Remark

 \approx^{c} differs from \approx only in that \approx^{c} requires τ -moves by P or Q to be mimicked by at least one τ -move in the other process.

Observation congruence

Observation congruence

[Milner, 1989]

- *P*, $Q \in Prc$ are observationally congruent, denoted $P \approx^{c} Q$, if for every $\alpha \in Act$ (including $\alpha = \tau$):
 - 1. if $P \xrightarrow{\alpha} P'$ then there is a sequence of transitions $Q \xrightarrow{\tau} Q_1 \xrightarrow{\alpha} Q_2 \xrightarrow{\tau} Q'$ such that $P' \approx Q'$
 - 2. if $Q \xrightarrow{\alpha} Q'$ then there is a sequence of transitions $P \xrightarrow{\tau} P_1 \xrightarrow{\alpha} P_2 \xrightarrow{\tau} P'$ such that $P' \approx Q'$.

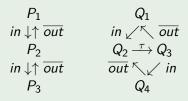
Remark

 \approx^{c} differs from \approx only in that \approx^{c} requires τ -moves by P or Q to be mimicked by at least one τ -move in the other process. This only applies to the first step; the successors just have to satisfy $P' \approx Q'$ (and not necessarily $P' \approx^{c} Q'$).

Examples

Example

 $1. \ \mbox{Sequential}$ and parallel two-place buffer:



 $P_1 \approx^c Q_1$ since $P_1 \approx Q_1$ and neither P_1 nor Q_1 has initial τ -steps.

Examples

Example

 $1. \ \mbox{Sequential}$ and parallel two-place buffer:

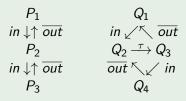
$$\begin{array}{cccc}
P_1 & Q_1 \\
in \downarrow \uparrow \overline{out} & in \swarrow \overline{\frown} & \overline{out} \\
P_2 & Q_2 \xrightarrow{\tau} Q_3 \\
in \downarrow \uparrow \overline{out} & \overline{out} & \overline{\frown} & \zeta & in \\
P_3 & Q_4
\end{array}$$

 $P_1 \approx^c Q_1$ since $P_1 \approx Q_1$ and neither P_1 nor Q_1 has initial τ -steps. 2. $\tau.b.nil \not\approx^c b.nil$ (since $\tau.b.nil \xrightarrow{\tau}$ but $b.nil \xrightarrow{\tau}$) thus the counterexample to congruence of \approx for + does not apply.

Examples

Example

 $1. \ \mbox{Sequential}$ and parallel two-place buffer:



 $P_1 \approx^c Q_1$ since $P_1 \approx Q_1$ and neither P_1 nor Q_1 has initial τ -steps.

- 2. τ .*b*.nil $\not\approx^{c}$ *b*.nil (since τ .*b*.nil $\xrightarrow{\tau}$ but *b*.nil $\xrightarrow{\tau}$) thus the counterexample to congruence of \approx for + does not apply.
- 3. $b.\tau.nil \approx^{c} b.nil$ (since $\tau.nil \approx nil$).

Properties of observation congruence

Theorem

For every $P, Q \in Prc$, it holds:

- 1. $P \sim Q$ implies $P \approx^c Q$, and $P \approx^c Q$ implies $P \approx Q$
- 2. \approx^{c} is a CCS congruence
- 3. $P \approx^{c} Q$ if and only if $P + R \approx Q + R$ for every $R \in Prc$
- 4. \approx^{c} is an equivalence relation
- 5. $P \approx Q$ if and only if $(P \approx^c Q \text{ or } P \approx^c \tau.Q \text{ or } \tau.P \approx^c Q)$

Properties of observation congruence

Theorem

For every $P, Q \in Prc$, it holds:

- 1. $P \sim Q$ implies $P \approx^c Q$, and $P \approx^c Q$ implies $P \approx Q$
- 2. \approx^{c} is a CCS congruence
- 3. $P \approx^{c} Q$ if and only if $P + R \approx Q + R$ for every $R \in Prc$
- 4. \approx^{c} is an equivalence relation
- 5. $P \approx Q$ if and only if $(P \approx^c Q \text{ or } P \approx^c \tau.Q \text{ or } \tau.P \approx^c Q)$

Proof.

Omitted.

Note: as \approx implies trace equivalence and is (non- τ) deadlock-sensitive, \approx^{c} implies trace equivalence and is (non- τ) deadlock-sensitive.

Overview

Aim of this lecture

2 Introduction

- 3 Weak bisimulation
- Properties of weak bisimilarity
- 5 Observation congruence

6 Deciding weak bisimilarity and game interpretation

7 Summary

Game rules

In each round the current configuration (s, t) is changed as follows:

1. the attacker chooses one of the processes in the current configuration, say *t*, and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in Act$ to *t'*, say, and

Game rules

In each round the current configuration (s, t) is changed as follows:

- 1. the attacker chooses one of the processes in the current configuration, say *t*, and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in Act$ to *t'*, say, and
- the defender must respond by making an → -move in the other process s of the current configuration under the same action α, yielding s → s'.

Game rules

In each round the current configuration (s, t) is changed as follows:

- 1. the attacker chooses one of the processes in the current configuration, say *t*, and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in Act$ to *t'*, say, and
- the defender must respond by making an → -move in the other process s of the current configuration under the same action α, yielding s→ s'.

The new pair of processes (s', t') becomes the current configuration. The game continues with another round.

Game results

- 1. If one player cannot move, the other player wins.
- 2. If the game can be played *ad infinitum*, the defender wins.

Game characterization of weak bisimilarity

Theorem

[Stirling, 1995], [Thomas, 1993]

- 1. $s \approx t$ iff the defender has a universal winning strategy from configuration (s, t).
- 2. $s \not\approx t$ iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of how the other player selects her moves.)

Proof.

Similar as for strong bisimilarity. Left as an exercise.

Checking whether $P \approx Q$ (or $P \approx^{c} Q$) over finite-state processes can be reduced to checking strong bisimilarity \sim , using a technique called saturation.

Checking whether $P \approx Q$ (or $P \approx^{c} Q$) over finite-state processes can be reduced to checking strong bisimilarity \sim , using a technique called saturation.

Intuitively, saturation amounts to:

1. First pre-computing the weak transition relation \Rightarrow ,

Checking whether $P \approx Q$ (or $P \approx^{c} Q$) over finite-state processes can be reduced to checking strong bisimilarity \sim , using a technique called saturation.

Intuitively, saturation amounts to:

- 1. First pre-computing the weak transition relation \Longrightarrow , and then
- 2. Constructing a new pair of finite-state processes whose original transitions are replaced by weak transitions.

Checking whether $P \approx Q$ (or $P \approx^{c} Q$) over finite-state processes can be reduced to checking strong bisimilarity \sim , using a technique called saturation.

Intuitively, saturation amounts to:

- 1. First pre-computing the weak transition relation \Longrightarrow , and then
- 2. Constructing a new pair of finite-state processes whose original transitions are replaced by weak transitions.

The question whether $P \approx Q$ now boils down to checking \sim on the saturated processes. (Details are outside the scope of this lecture.)

As computing \implies and \sim can be done in polynomial time, $P \approx Q$ can be checked in polynomial time.

Overview

Aim of this lecture

2 Introduction

- 3 Weak bisimulation
- Properties of weak bisimilarity
- 5 Observation congruence
- Deciding weak bisimilarity and game interpretation

7 Summary

Summary

- 1. Weak bisimilarity is based on mutual mimicking processes
- 2. But: τ -actions do not need to be mimicked, as they are internal
- 3. Weak bisimilarity is not a congruence for choice (+)
- 4. Observation congruence remedies this by forcing initial $\tau\text{-actions to}$ be mimicked
- 5. Divergence is weakly bisimilar to a deadlock process
- 6. Checking (non-)weak bisimilarity can be done using a two-player game
- 7. Weak bisimilarity can be determined in polynomial-time