

Concurrency Theory

Winter Semester 2017/18

Lecture 1: Introduction

Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1718/ct/

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

Staff

- Lectures:
 - Joost-Pieter Katoen (katoen@cs.rwth-aachen.de)
 - Thomas Noll (noll@cs.rwth-aachen.de)
- Exercise classes:
 - Philipp Berger (berger@cs.rwth-aachen.de)
 - Sebastian Junges (sebastian.junges@cs.rwth-aachen.de)
- Student assistants:
 - Moritz Dederichs
 - Justus Fesefeldt

Lecture 1: Introduction

Target Audience

- Master program Informatik
 - Theoretische Informatik
- Master program Software Systems Engineering
 - Theoretical Foundations of SSE

Concurrency Theory

Target Audience

- Master program Informatik
 - Theoretische Informatik
- Master program Software Systems Engineering
 - Theoretical Foundations of SSE
- In general:
 - interest in formal models for concurrent (software) systems
 - application of mathematical modelling and reasoning methods
- Expected: basic knowledge in
 - essential concepts of operating systems and system software
 - formal languages and automata theory
 - mathematical logic

Course Objectives

Objectives

- Understand the foundations of concurrent systems
- Model (and compare) concurrent systems in a rigorous manner
- Understand the main semantical underpinnings of concurrency

Course Objectives

Objectives

- Understand the foundations of concurrent systems
- Model (and compare) concurrent systems in a rigorous manner
- Understand the main semantical underpinnings of concurrency

Motivation

- Supporting the design phase
 - "Programming Concurrent Systems"
 - synchronisation, scheduling, semaphores, ...

Course Objectives

Objectives

- Understand the foundations of concurrent systems
- Model (and compare) concurrent systems in a rigorous manner
- Understand the main semantical underpinnings of concurrency

Motivation

- Supporting the design phase
 - "Programming Concurrent Systems"
 - synchronisation, scheduling, semaphores, ...
- Verifying functional correctness properties
 - "Model Checking"
 - validation of mutual exclusion, fairness, absence of deadlocks, ...

Concurrency Theory

Course Objectives

Objectives

- Understand the foundations of concurrent systems
- Model (and compare) concurrent systems in a rigorous manner
- Understand the main semantical underpinnings of concurrency

Motivation

- Supporting the design phase
 - "Programming Concurrent Systems"
 - synchronisation, scheduling, semaphores, ...
- Verifying functional correctness properties
 - "Model Checking"
 - validation of mutual exclusion, fairness, absence of deadlocks, ...
- Comparing expressivity of models of concurrency
 - "interleaving" vs. "true concurrency"
 - equivalence, refinement, abstraction, ...

Organisation

- Schedule:
 - Lecture Mon 14:15–15:45 9U10 (starting 09 Oct)
 - Lecture Thu 14:15–15:45 9U10 (starting 12 Oct)
 - Exercise class Fri 14:15–15:45 9U10 (starting 20 Oct)
- Irregular lecture dates checkout web page!

Organisation

- Schedule:
 - Lecture Mon 14:15–15:45 9U10 (starting 09 Oct)
 - Lecture Thu 14:15–15:45 9U10 (starting 12 Oct)
 - Exercise class Fri 14:15–15:45 9U10 (starting 20 Oct)
- Irregular lecture dates checkout web page!
- 1st assignment sheet: 13 Oct on web page
 - submission by 20 Oct before exercise class
 - presentation on 20 Oct
- Work on assignments in groups of three

Organisation

- Schedule:
 - Lecture Mon 14:15–15:45 9U10 (starting 09 Oct)
 - Lecture Thu 14:15–15:45 9U10 (starting 12 Oct)
 - Exercise class Fri 14:15–15:45 9U10 (starting 20 Oct)
- Irregular lecture dates checkout web page!
- 1st assignment sheet: 13 Oct on web page
 - submission by 20 Oct before exercise class
 - presentation on 20 Oct
- Work on assignments in groups of three
- Examination (6 ECTS credits):
 - oral or written (depending on number of participants)
- Admission requires at least 50% of the points in the exercises
- Solutions to exercises and exam in English or German

Moodle for Theoretical Computer Science

- Developed by Models and Theory of Distributed Systems group at TU Berlin (Prof. Nestmann)
- Learning units (in German):
 - A: fixed-point theory
 - B: bisimulation
- Procedure:
 - initial questionnaire (motivation, knowledge level)
 - division into groups A/B
 - online access to learning units (for two weeks)
 - final questionnaire
- Full details provided next week
- Please support this activity!

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

$$x := 0;$$

 $(x := x + 1 || x := x + 2)$

Concurrency Theory

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

$$x := 0;$$

 $(x := x + 1 || x := x + 2)$

At first glance: x is assigned 3

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

 $(x := x + 1 || x := x + 2)$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 || x := x + 2$) value of $x : 0$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 0$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 0$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 1$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 2$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2,

Concurrency Theory

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 0$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2,

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 0$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2,

Concurrency Theory

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 0$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2,

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 2$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2,

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x: 1$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 0$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 0$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 2$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

($x := \frac{x+1}{3} \parallel x := x+2$) value of $x : 2$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

$$x := 0;$$

($x := x + 1 \parallel x := x + 2$) value of $x : 3$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1, or 3

Concurrency Theory

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

$$x := 0;$$

 $(x := x + 1 || x := x + 2)$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1, or 3
- If exclusive access to shared memory and atomic execution of assignments guaranteed
 only possible outcome: 3

Concurrency and Interaction

The problem arises due to the combination of

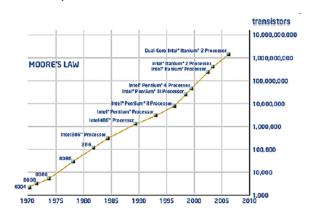
- concurrency and
- interaction (here: via shared memory)

Concurrency and Interaction

The problem arises due to the combination of

- concurrency and
- interaction (here: via shared memory)

Conclusion


When modelling concurrent systems, the precise description of the mechanisms of both concurrency and interaction is crucially important.

Concurrency Everywhere

- Operating systems
- Embedded/reactive systems:
 - parallelism (at least) between hardware, software, and environment
- High-end parallel hardware infrastructure
 - high-performance computing
- Low-end parallel hardware infrastructure:
 - increasing performance only achievable by parallelism
 - multi-core computers, GPGPUs, FPGAs

Moore's Law: Transistor density doubles every 2 years

Concurrency and Interaction

Problems Everywhere

- Operating systems:
 - mutual exclusion
 - fairness
 - no deadlocks, ...
- Shared-memory systems:
 - memory models
 - inconsistencies ("sequential consistency" vs. relaxed notions)
- Embedded systems:
 - safety
 - liveness, ...

Shared-memory Multiprocessor Multi-threaded Software Concurrent Executions

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

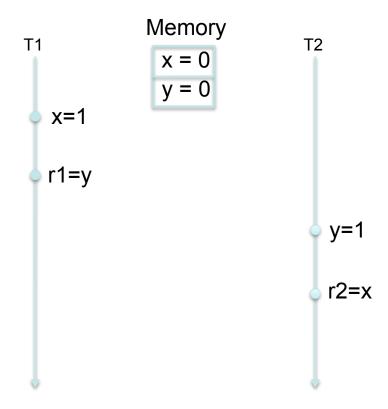
A Closer Look at Reactive Systems

Overview of the Course

Memory Models

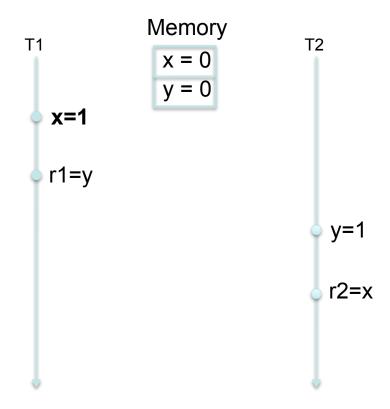
An illustrative example

Initially: x = y = 0

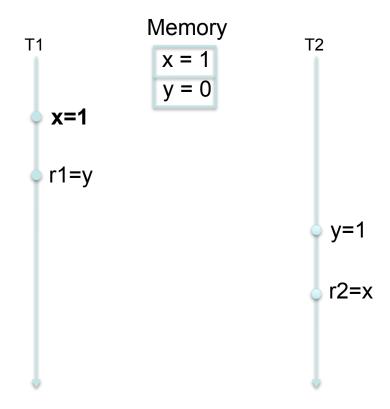

thread1 thread2:

3: y = 11: x = 1

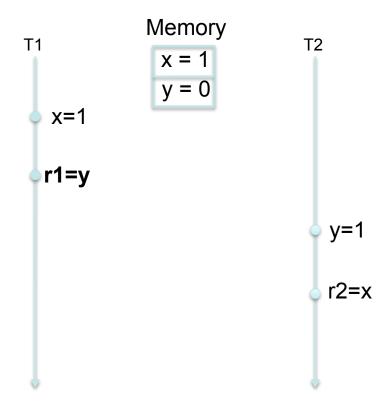
2: r1 = y4: r2 = x



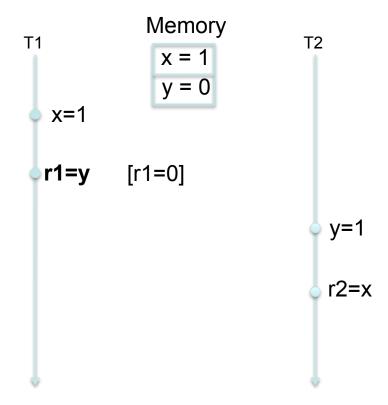
Memory Models



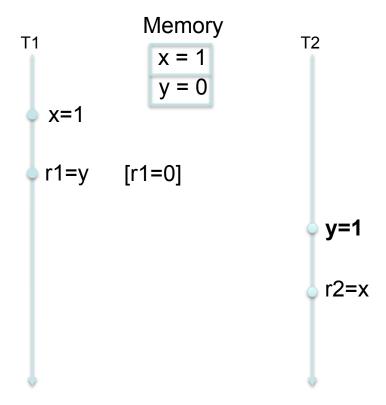
Memory Models

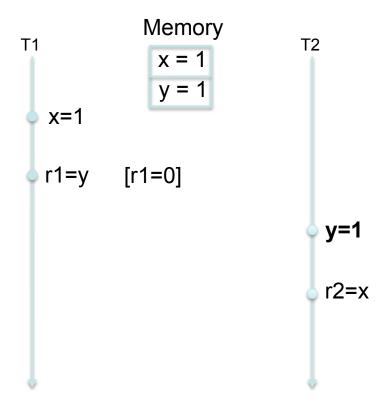


Memory Models


Memory Models

Memory Models


Sequential Consistency (SC)

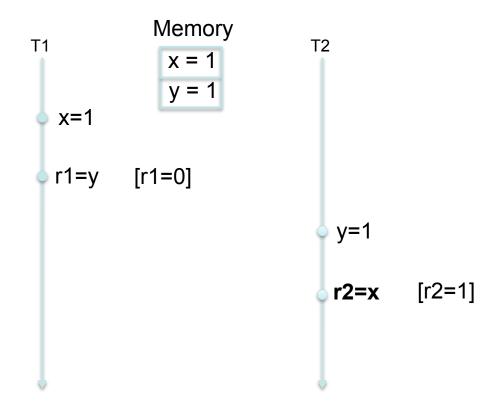

Concurrency Theory

Memory Models

Memory Models

Memory Models

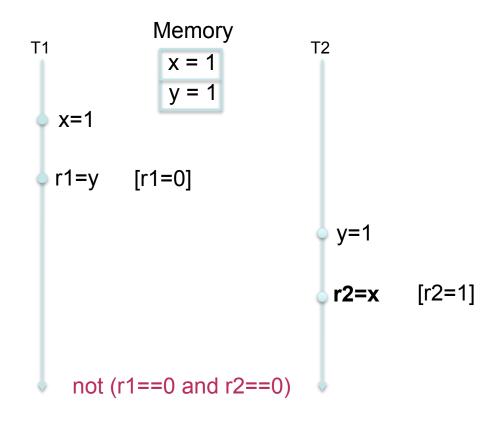
Sequential Consistency (SC)



Concurrency Theory

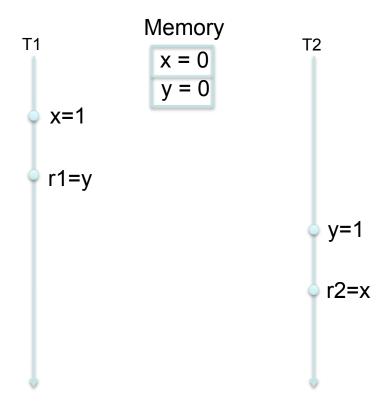
Memory Models

Sequential Consistency (SC)



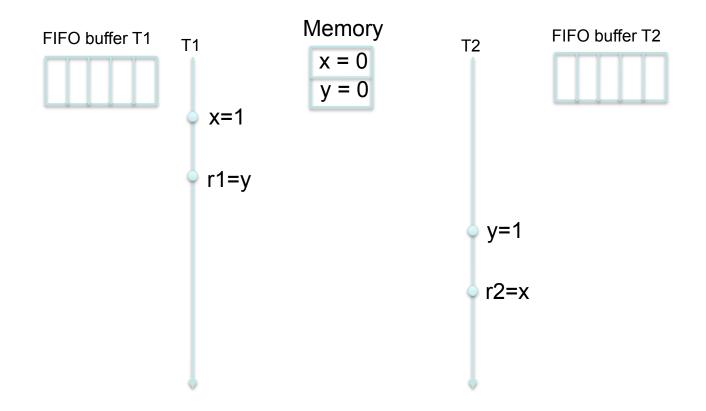
Concurrency Theory

Memory Models


Sequential Consistency (SC)

Memory Models

Total Store Ordering (TSO)

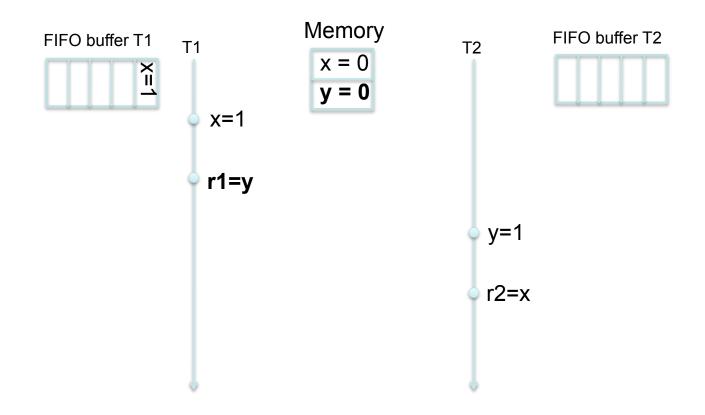


Concurrency Theory

Memory Models

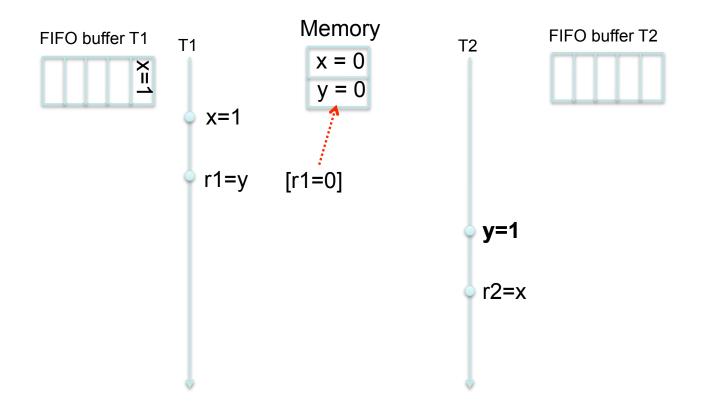
Total Store Ordering (TSO)

Memory Models

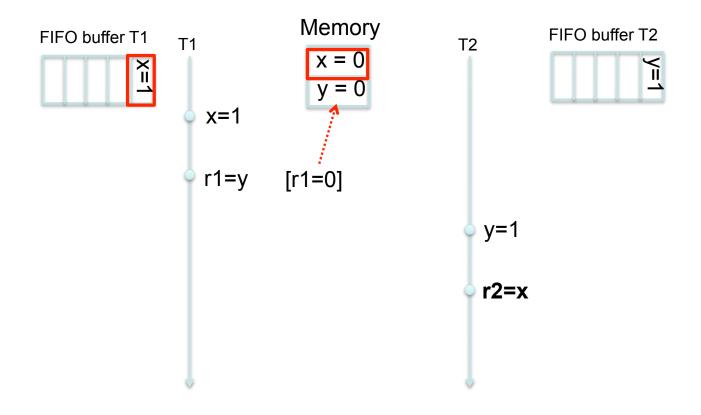

Total Store Ordering (TSO)

Memory Models

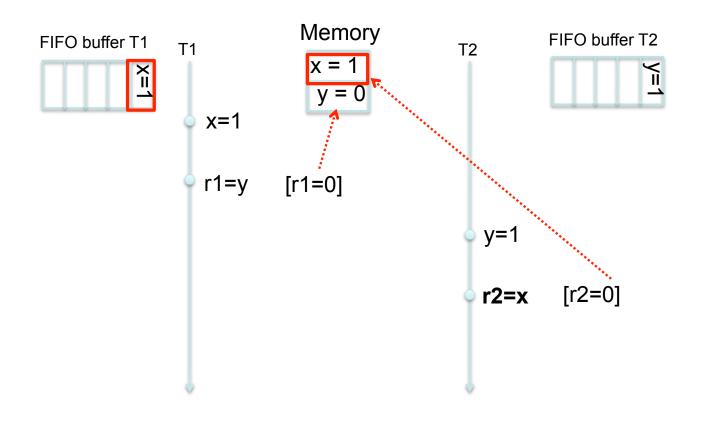
Total Store Ordering (TSO)



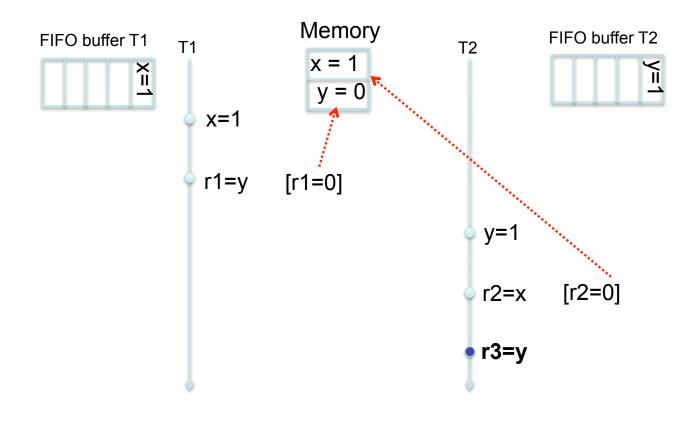
Memory Models

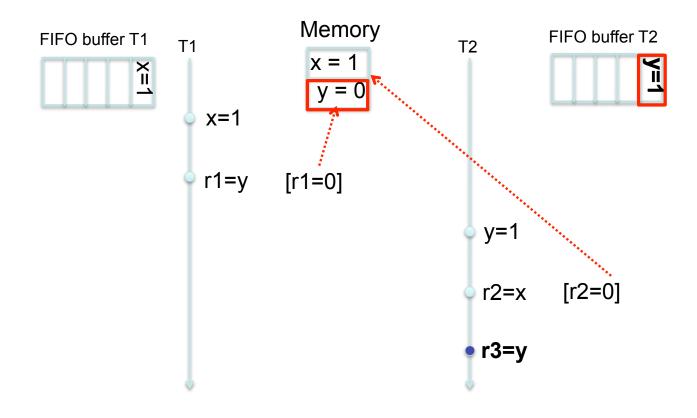

Memory Models

Memory Models

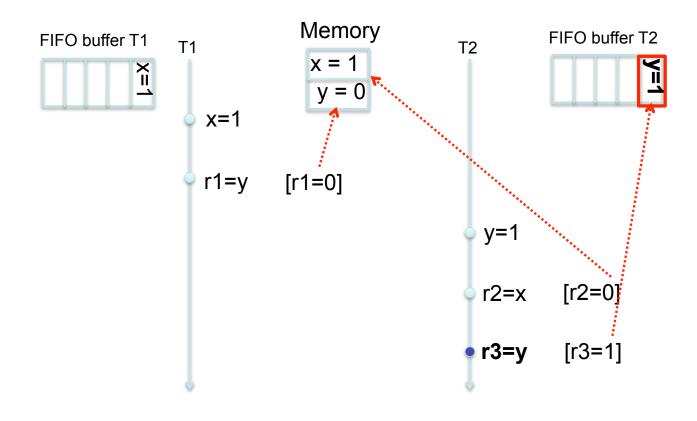

Total Store Ordering (TSO)

Memory Models


Total Store Ordering (TSO)


Concurrency Theory

Memory Models



Memory Models

Memory Models

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

Reactive Systems I

Thus: "classical" model for sequential systems

System : Input \rightarrow Output

(transformational systems) is not adequate

Missing: aspect of interaction

Reactive Systems I

Thus: "classical" model for sequential systems

System : *Input* → *Output*

(transformational systems) is not adequate

- Missing: aspect of interaction
- Rather: reactive systems which interact with environment and among themselves

Reactive Systems I

Thus: "classical" model for sequential systems

System : Input \rightarrow Output

(transformational systems) is not adequate

- Missing: aspect of interaction
- Rather: reactive systems which interact with environment and among themselves
- Main interest: not terminating computations but infinite behaviour (system maintains ongoing interaction with environment)
- Examples:
 - operating systems
 - embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
 - power plants, production lines, ...

Reactive Systems II

Observation: reactive systems often safety critical

- correct behaviour has to be ensured
- Safety properties: "Nothing bad is ever going to happen."
 E.g., "at most one process in the critical section"
- Liveness properties: "Eventually something good will happen." E.g., "every request will finally be answered by the server"
- Fairness properties: "No component will starve to death."

 E.g., "any process requiring entry to the critical section will eventually be admitted"

Overview of the Course

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

Overview of the Course

Overview of the Course

- 1. Introduction and Motivation
- 2. The "Interleaving" Approach
 - Syntax and semantics of CCS
 - Hennessy-Milner Logic
 - Case study: mutual exclusion
 - Extensions and alternative approaches (value passing, mobility, CSP, ACP, ...)
- 3. Equivalence, Refinement and Compositionality
 - Behavioural equivalences ((bi-)simulation)
 - Case study: mutual exclusion
 - (Pre-)congruences and compositional abstraction
 - HML and bisimilarity
- 4. The "True Concurrency" Approach
 - Petri nets: basic concepts
 - Case study: mutual exclusion
 - Branching processes and net unfoldings
 - Analyzing Petri nets
 - Alternative models (trace languages, event structures, ...)
- 5. Extensions (timed models, ...)

Overview of the Course

Literature

(also see the collection "Handapparat Softwaremodellierung und Verifikation" at the CS Library)

- Fundamental:
 - Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen and Jiří Srba: Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, 2007.
 - Wolfgang Reisig: Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies.
 Springer Verlag, 2012.
- Supplementary:
 - Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming. Elsevier, 2008.
 - Jan Bergstra, Alban Ponse and Scott Smolka (Eds.): Handbook of Process Algebra. Elsevier, 2001.

