Static Program Analysis

Lecture 6: Dataflow Analysis V
(MOP vs. Fixpoint Solution)

Winter Semester 2016/17

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/
Recap: The MOP Solution

The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B'
 - least upper bound over all paths leading to l
 - most precise information for l (“reference solution”)

Definition (Paths)

Let $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $l \in \text{Lab}$, the set of paths up to l is given by

$$\text{Path}(l) := \{[l_1, \ldots, l_{k-1}] \mid k \geq 1, l_1 \in E, (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i < k, l_k = l\}.$$

For a path $\pi = [l_1, \ldots, l_{k-1}] \in \text{Path}(l)$, we define the transfer function $\varphi_\pi : D \to D$ by

$$\varphi_\pi := \varphi_{l_{k-1}} \circ \ldots \circ \varphi_{l_1} \circ \text{id}_D$$

(so that $\varphi[] = \text{id}_D$).
Recap: The MOP Solution

The MOP Solution II

Definition (MOP solution)

Let $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $\text{Lab} = \{l_1, \ldots, l_n\}$. The MOP solution for S is determined by

$$\text{mop}(S) := (\text{mop}(l_1), \ldots, \text{mop}(l_n)) \in D^n$$

where, for every $l \in \text{Lab}$,

$$\text{mop}(l) := \bigsqcup \{ \varphi_{\pi}(l) \mid \pi \in \text{Path}(l) \}.$$

Remark:

- $\text{Path}(l)$ is generally infinite
- \Rightarrow not clear how to compute $\text{mop}(l)$
- In fact: MOP solution generally undecidable (later)
Recap: Constant Propagation

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions

Example (Constant Propagation Analysis)

\[
\begin{align*}
x & := 1^1;
y & := 1^2;
z & := 1^3;
\text{while } [z > 0]^4 \text{ do }
\quad [w := x+y]^5;
\quad \text{if } [w = 2]^6 \text{ then }
\quad \quad [x := y+2]^7
\quad \text{end}
\text{end}
\end{align*}
\]

- \(y = z = 1 \) at labels 4–7
- \(w, x \) not constant at labels 4–7
- possible optimisations:
 - \([\text{true}]^4\)
 - \([w := x+1]^5\)
 - \([x := 3]^7\)
Recap: Constant Propagation

Formalising Constant Propagation Analysis I

The dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $\text{Lab} := \text{Lab}_c$,
- extremal labels $E := \{\text{init}(c)\}$ (forward problem)
- flow relation $F := \text{flow}(c)$ (forward problem)
- complete lattice (D, \sqsubseteq) where
 - $D := \{\delta \mid \delta : \text{Var}_c \to \mathbb{Z} \cup \{\bot, \top\}\}$
 - $\delta(x) = z \in \mathbb{Z}$: x has constant value z (i.e., possible values in $\{z\}$)
 - $\delta(x) = \bot$: x undefined (i.e., possible values in \emptyset)
 - $\delta(x) = \top$: x overdefined (i.e., possible values in \mathbb{Z})
 - $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\bot \subseteq z \subseteq \top$ (for every $z \in \mathbb{Z}$)

Example

$\text{Var}_c = \{w, x, y, z\}$, $\delta_1 = (\bot, 1, 2, \top)$, $\delta_2 = (3, 1, 4, \top)$

$\implies \delta_1 \sqcup \delta_2 = (3, 1, \top, \top)$
Recap: Constant Propagation

Formalising Constant Propagation Analysis II

Dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ (continued):

- extremal value $\iota := \delta_{\top} \in D$ where $\delta_{\top}(x) := \top$ for every $x \in \text{Var}_c$ (i.e., every x has (unknown) default value)
- transfer functions $\{\varphi_l \mid l \in \text{Lab}\}$ defined by

$$\varphi_l(\delta) := \begin{cases}
\delta
& \text{if } B^l = \text{skip or } B^l \in \text{BExp} \\
\delta[x \mapsto \text{val}_\delta(a)]
& \text{if } B^l = (x := a)
\end{cases}$$

where

$$\text{val}_\delta(x) := \delta(x) \quad \text{val}_\delta(a_1 \text{ op } a_2) := \begin{cases}
z_1 \text{ op } z_2
& \text{if } z_1, z_2 \in \mathbb{Z} \\
\bot
& \text{if } z_1 = \bot \text{ or } z_2 = \bot \\
\top
& \text{otherwise}
\end{cases}$$

for $z_1 := \text{val}_\delta(a_1)$ and $z_2 := \text{val}_\delta(a_2)$
Recap: Constant Propagation

Formalising Constant Propagation Analysis III

Example

If \(\delta = (\perp, 1, 2, \top) \), then

\[
\varphi_l(\delta) = \begin{cases}
(0, 1, 2, \top) & \text{if } B^l = (w := 0) \\
(3, 1, 2, \top) & \text{if } B^l = (w := y+1) \\
(\perp, 1, 2, \top) & \text{if } B^l = (w := w+x) \\
(\top, 1, 2, \top) & \text{if } B^l = (w := z+2)
\end{cases}
\]
Example of Constant Propagation Analysis

An Example

Example 6.1

Constant Propagation Analysis for

\[c := [x := 1]; [y := 1]; [z := 1]; \]

while \[z > 0 \] do

\[w := x+y; \]

if \[w = 2 \] then

\[x := y+2; \]

end

end

\[\varphi_1(a, b, c, d) = (a, 1, c, d) \]

\[\varphi_2(a, b, c, d) = (a, b, 1, d) \]

\[\varphi_3(a, b, c, d) = (a, b, c, 1) \]

\[\varphi_4(a, b, c, d) = (a, b, c, d) \]

\[\varphi_5(a, b, c, d) = (b + c, b, c, d) \]

\[\varphi_6(a, b, c, d) = (a, b, c, d) \]

\[\varphi_7(a, b, c, d) = (a, c + 2, c, d) \]

(for \[\delta = (\delta(w), \delta(x), \delta(y), \delta(z)) \in D \])

1. Fixpoint solution (on the board)
2. MOP solution (on the board)
Example 6.2 (Constant Propagation)

\[c := \text{if } [z > 0] \text{ then} \]
\[x := 2; y := 3 \]
\[\text{else} \]
\[x := 3; y := 2 \]
\[\text{end}; \]
\[z := x+y \]

Transfer functions
(for \(\delta = (\delta(x), \delta(y), \delta(z)) \in D \)):

\[\varphi_1(a, b, c) = (a, b, c) \]
\[\varphi_2(a, b, c) = (2, b, c) \]
\[\varphi_3(a, b, c) = (a, 3, c) \]
\[\varphi_4(a, b, c) = (3, b, c) \]
\[\varphi_5(a, b, c) = (a, 2, c) \]
\[\varphi_6(a, b, c) = (a, b, a+b) \]

1. Fixpoint solution:

\[CP_1 = \iota \]
\[CP_2 = \varphi_1(CP_1) \]
\[CP_3 = \varphi_2(CP_2) \]
\[CP_4 = \varphi_1(CP_1) \]
\[CP_5 = \varphi_4(CP_4) \]
\[CP_6 = \varphi_3(CP_3) \sqcup \varphi_5(CP_5) \]
\[CP_7 = \varphi_6(CP_6) \]

\[= (2, 3, T) \sqcup (3, 2, T) = (T, T, T) \]

2. MOP solution:

\[\text{mop}(7) = \varphi_{[1,2,3,6]}(T, T, T) \sqcup \]
\[\varphi_{[1,4,5,6]}(T, T, T) \]
\[= (2, 3, 5) \sqcup (3, 2, 5) \]
\[= (T, T, 5) \]
Theorem 6.3 (MOP vs. Fixpoint Solution)

Let \(S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi) \) be a dataflow system. Then

\[
mop(S) \sqsubseteq \text{fix}(\Phi_S)
\]

Reminder: by Definition 4.9,

\[
\Phi_S : D^n \rightarrow D^n : (d_1, \ldots, d_n) \mapsto (d'_1, \ldots, d'_n)
\]

where \(\text{Lab} = \{1, \ldots, n\} \) and, for each \(l \in \text{Lab} \),

\[
d'_l := \begin{cases}
\iota & \text{if } l \in E \\
\bigcup \{ \varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise}
\end{cases}
\]

Proof.

on the board

Remark: as Example 6.2 shows, \(\text{mop}(S) \neq \text{fix}(\Phi_S) \) is possible
Coincidence of MOP and Fixpoint Solution

Distributivity of Transfer Functions I

A sufficient condition for the coincidence of MOP and Fixpoint Solution is the distributivity of the transfer functions.

Definition 6.4 (Distributivity)

- Let \((D, \sqsubseteq)\) and \((D', \sqsubseteq')\) be complete lattices. Function \(F : D \rightarrow D'\) is called distributive (w.r.t. \((D, \sqsubseteq)\) and \((D', \sqsubseteq')\)) if, for every \(d_1, d_2 \in D\),

\[
F(d_1 \sqcup_D d_2) = F(d_1) \sqcup_{D'} F(d_2).
\]

- A dataflow system \(S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)\) is called distributive if every \(\varphi_I : D \rightarrow D\) (\(I \in Lab\)) is so.
Coincidence of MOP and Fixpoint Solution

Distributivity of Transfer Functions II

Example 6.5

1. The Available Expressions dataflow system is **distributive**:

\[
\varphi_l(A_1 \sqcup A_2) = ((A_1 \cap A_2) \setminus \text{kill}_{AE}(B')) \cup \text{gen}_{AE}(B')
\]

\[
= ((A_1 \setminus \text{kill}_{AE}(B')) \cup \text{gen}_{AE}(B')) \cap ((A_2 \setminus \text{kill}_{AE}(B')) \cup \text{gen}_{AE}(B'))
\]

\[
= \varphi_l(A_1) \sqcup \varphi_l(A_2)
\]

2. The Live Variables dataflow system is **distributive**: similarly

3. The Constant Propagation dataflow system is **not distributive** (cf. Example 6.2):

\[
(\top, \top, \top) = \varphi_{z:=x+y}((2, 3, \top) \sqcup (3, 2, \top))
\]

\[
\neq \varphi_{z:=x+y}(2, 3, \top) \sqcup \varphi_{z:=x+y}(3, 2, \top)
\]

\[
= (\top, \top, 5)
\]
Coincidence of MOP and Fixpoint Solution

Theorem 6.6 (MOP vs. Fixpoint Solution)

Let $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a distributive dataflow system. Then

\[\text{mop}(S) = \text{fix}(\Phi_S) \]

Proof.

- $\text{mop}(S) \sqsubseteq \text{fix}(\Phi_S)$: Theorem 6.3
- $\text{fix}(\Phi_S) \sqsubseteq \text{mop}(S)$: as $\text{fix}(\Phi_S)$ is the least fixpoint of Φ_S, it suffices to show that $\Phi_S(\text{mop}(S)) = \text{mop}(S)$ (on the board)
Undecidability of the MOP Solution

Theorem 6.7 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Σ be some alphabet, \(n \in \mathbb{N} \), and \(u_1, \ldots, u_n, v_1, \ldots, v_n \in \Sigma^+ \).
Do there exist \(i_1, \ldots, i_m \in \{1, \ldots, n\} \) with \(m \geq 1 \) and \(i_1 = 1 \) such that
\[u_{i_1} u_{i_2} \ldots u_{i_m} = v_{i_1} v_{i_2} \ldots v_{i_m} \]
(on the board)