Static Program Analysis

Lecture 5: Dataflow Analysis IV (Worklist Algorithm & MOP Solution)

Winter Semester 2016/17

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/
Re-Scheduling of First Exam

New date: Tue 21 Feb, 15:00 - 17:00, AH 2/3
Recap: The Fixpoint Approach

Outline of Lecture 5

Recap: The Fixpoint Approach

Efficient Fixpoint Computation

The MOP Solution

Another Analysis: Constant Propagation
Recap: The Fixpoint Approach

The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let \((D, \sqsubseteq)\) be a complete lattice satisfying ACC and \(\Phi : D \rightarrow D\) monotonic. Then

\[
\text{fix}(\Phi) := \bigcup \{ \Phi^k(\bot) \mid k \in \mathbb{N} \}
\]

is the least fixpoint of \(\Phi\) where \(\Phi^0(d) := d\) and \(\Phi^{k+1}(d) := \Phi(\Phi^k(d))\).

Function requirements for dataflow analysis

All transfer functions must be a monotonic
Recap: The Fixpoint Approach

Dataflow Systems

Definition (Dataflow system)

A dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) labels Lab (here: Lab_c),
- a set of extremal labels $E \subseteq \text{Lab}$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a flow relation $F \subseteq \text{Lab} \times \text{Lab}$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a complete lattice (D, \sqsubseteq) satisfying ACC (with LUB operator \sqcup and least element \bot),
- an extremal value $\iota \in D$ (for the extremal labels), and
- a collection of monotonic transfer functions $\{\varphi_l \mid l \in \text{Lab}\}$ of type $\varphi_l : D \to D$.
Recap: The Fixpoint Approach

Dataflow Systems and Fixpoints

Definition (Dataflow equation system)

Given: dataflow system \(S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi) \), \(Lab = \{1, \ldots, n\} \) (w.l.o.g.)

- \(S \) determines the equation system (where \(l \in Lab \))
 \[
 AI_l = \begin{cases}
 \iota & \text{if } l \in E \\
 \bigcup \{ \varphi_{l'}(AI_{l'}) \mid (l', l) \in F \} & \text{otherwise}
 \end{cases}
 \]

- \((d_1, \ldots, d_n) \in D^n\) is called a solution if
 \[
 d_l = \begin{cases}
 \iota & \text{if } l \in E \\
 \bigcup \{ \varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise}
 \end{cases}
 \]

- \(S \) determines the transformation
 \[
 \Phi_S : D^n \rightarrow D^n : (d_1, \ldots, d_n) \mapsto (d'_1, \ldots, d'_n)
 \]
 where
 \[
 d'_l := \begin{cases}
 \iota & \text{if } l \in E \\
 \bigcup \{ \varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise}
 \end{cases}
 \]

Corollary

\((d_1, \ldots, d_n) \in D^n\) solves the equation system iff it is a fixpoint of \(\Phi_S \)
Recap: The Fixpoint Approach

Solving Dataflow Problems by Fixpoint Iteration

Remarks:
- \((D, \sqsubseteq)\) being a complete lattice ensures that \(\Phi_S\) is well defined
- Since \((D, \sqsubseteq)\) is a complete lattice satisfying ACC, so is \((D^n, \sqsubseteq^n)\) (where \((d_1, \ldots, d_n) \sqsubseteq^n (d'_1, \ldots, d'_n)\) iff \(d_i \sqsubseteq d'_i\) for every \(1 \leq i \leq n\))
- Monotonicity of transfer functions \(\varphi_I\) in \((D, \sqsubseteq)\) implies monotonicity of \(\Phi_S\) in \((D^n, \sqsubseteq^n)\) (since \(\sqcup\) also monotonic)
- Thus the (least) fixpoint is effectively computable by iteration:

\[
\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^k(\perp_D^n) \mid k \in \mathbb{N}\}
\]

where \(\perp_D^n = (\perp_D, \ldots, \perp_D)\) \(n\) times
- If height of \((D, \sqsubseteq)\) is \(m\)
 \[\Rightarrow\] height of \((D^n, \sqsubseteq^n)\) is \(m \cdot n\)
 \[\Rightarrow\] fixpoint iteration requires at most \(m \cdot n\) steps
Efficient Fixpoint Computation

Outline of Lecture 5

Recap: The Fixpoint Approach

Efficient Fixpoint Computation

The MOP Solution

Another Analysis: Constant Propagation
A Worklist Algorithm I

Observation: fixpoint iteration re-computes every A_i in every step
Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every A_l in every step

\implies redundant if $A_{l'}$ at no F-predecessor l' changed

Algorithm 5.1 (Worklist algorithm)

Input: dataflow system $S = (\mathcal{L}, \mathcal{E}, \mathcal{F}, (\mathcal{D}, \sqsubseteq), \iota, \phi)$

Variables: $W \in (\mathcal{L} \times \mathcal{L})^*$, $\{A_l | l \in \mathcal{L}\}$

Procedure:

$W := \varepsilon$; for (l, l') $\in \mathcal{F}$ do $W := W \cdot (l, l')$; % Initialise W for $l \in \mathcal{L}$ do if $l \in \mathcal{E}$ then $A_l := \iota$ else $A_l := \bot$; % Initialise A_l

while $W \neq \varepsilon$ do $(l, l') := \text{head}(W)$; $W := \text{tail}(W)$; % Next control-flow edge

if $\phi_l(A_l) \not\sqsubseteq A_{l'}$ then % Fixpoint not yet reached

$A_{l'} := A_{l'} \sqcup \phi_l(A_l)$; % Update analysis information

for (l', l'') $\in \mathcal{F}$ do if (l', l'') not in W then $W := (l', l'') \cdot W$; % Propagate modification

Output: $\{A_l | l \in \mathcal{L}\}$
Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AI_i in every step

\Rightarrow redundant if AI_i' at no F-predecessor l' changed

\Rightarrow optimisation by worklist over control-flow edges

Algorithm 5.1 (Worklist algorithm)

Input: dataflow system S = $(Lab, E, F, (D, \sqsubseteq), \iota, \phi)$

Variables: $W \in (Lab \times Lab)^*$, $\{AI_l \in D | l \in Lab\}$

Procedure:

1. $W := \varepsilon$; for $(l, l') \in F$ do $W := W \cdot (l, l')$; % Initialise W for $l \in Lab$

2. if $l \in E$ then $AI_l := \iota$ else $AI_l := \bot D$; % Initialise AI for $l \in Lab$

3. while $W \neq \varepsilon$ do $(l, l') := \text{head}(W)$; $W := \text{tail}(W)$; % Next control-flow edge

4. if $\phi(l)(AI_l) \not\sqsubseteq AI_l'$ then % Fixpoint not yet reached

5. $AI_l' := AI_l' \sqcup \phi(l)(AI_l)$; % Update analysis information

6. for $(l', l'' \in F$ do if (l', l'') not in W then $W := (l', l'') \cdot W$; % Propagate modification

Output: $\{AI_l | l \in Lab\}$
Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AI_l in every step

\implies redundant if $AI_{l'}$ at no F-predecessor l' changed

\implies optimisation by worklist over control-flow edges

Algorithm 5.1 (Worklist algorithm)

Input: dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$
Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AI_l in every step

\implies redundant if $AI_{l'}$ at no F-predecessor l' changed

\implies optimisation by worklist over control-flow edges

Algorithm 5.1 (Worklist algorithm)

Input: dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (Lab \times Lab)^*$, $\{AI_l \in D \mid l \in Lab\}$
Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every A_{l_i} in every step

\implies redundant if $A_{l'_i}$ at no F-predecessor l' changed

\implies optimisation by worklist over control-flow edges

Algorithm 5.1 (Worklist algorithm)

Input: dataflow system $S = (\text{Lab, } E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (\text{Lab} \times \text{Lab})^*$, $\{A_{l_i} \in D \mid l_i \in \text{Lab}\}$

Procedure:

$W := \varepsilon$; for $(l, l') \in F$ do $W := W \cdot (l, l')$; % Initialise W

for $l \in \text{Lab}$ do

if $l \in E$ then $A_{l_i} := \iota$ else $A_{l_i} := \perp_D$; % Initialise A_l
Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every A_l in every step

\implies redundant if $A_{l'}$ at no F-predecessor l' changed

\implies optimisation by worklist over control-flow edges

Algorithm 5.1 (Worklist algorithm)

Input: *dataflow system* $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (Lab \times Lab)^*$, \{ $A_l \in D \mid l \in Lab$ \}

Procedure:

\[
W := \varepsilon; \text{ for } (l, l') \in F \text{ do } W := W \cdot (l, l'); \\
\text{ for } l \in Lab \text{ do} \\
\text{ if } l \in E \text{ then } A_l := \iota \text{ else } A_l := \bot_D; \\
\text{ while } W \neq \varepsilon\text{ do} \\
(\text{head}(W); W := \text{tail}(W); \\
\text{ if } \varphi_l(A_l) \not\sqsubseteq A_{l'} \text{ then} \\
A_{l'} := A_{l'} \sqcup \varphi_l(A_l); \\
\text{ for } (l', l'') \in F \text{ do} \\
\text{ if } (l', l'') \text{ not in } W \text{ then } W := (l', l'') \cdot W; \\
\]
Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every A_l in every step

\Rightarrow redundant if $A_{l'}$ at no F-predecessor l' changed

\Rightarrow optimisation by worklist over control-flow edges

Algorithm 5.1 (Worklist algorithm)

Input: dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (\text{Lab} \times \text{Lab})^*, \{A_l \in D \mid l \in \text{Lab}\}$

Procedure: $W := \varepsilon$; for $(l, l') \in F$ do $W := W \cdot (l, l')$; % Initialise W

for $l \in \text{Lab}$ do

if $l \in E$ then $A_l := \iota$ else $A_l := \bot_D$; % Initialise A_l

while $W \neq \varepsilon$ do

$(l, l') := \text{head}(W)$; $W := \text{tail}(W)$; % Next control-flow edge

if $\varphi_l(A_l) \nsubseteq A_{l'}$ then

$A_{l'} := A_{l'} \sqcup \varphi_l(A_l)$; % Update analysis information

for $(l', l'') \in F$ do

if (l', l'') not in W then $W := (l', l'') \cdot W$; % Propagate modification

Output: $\{A_l \mid l \in \text{Lab}\}$
A Worklist Algorithm II

Example 5.2 (Worklist algorithm)

Available Expression analysis for

\[
\begin{align*}
c &= [x := a+b]^1; \\
 &\quad [y := a*b]^2; \\
 &\quad \text{while } [y > a+b]^3 \text{ do} \\
 &\quad \quad [a := a+1]^4; \\
 &\quad \quad [x := a+b]^5 \\
 &\quad \text{end}
\end{align*}
\]

(cf. Examples 2.9 and 4.11)

Transfer functions:

\[
\begin{align*}
\varphi_1(A) &= A \cup \{a+b\} \\
\varphi_2(A) &= A \cup \{a*b\} \\
\varphi_3(A) &= A \cup \{a+b\} \\
\varphi_4(A) &= A \setminus \{a+b, a*b, a+1\} \\
\varphi_5(A) &= A \cup \{a+b\}
\end{align*}
\]

Computation protocol: on the board
Efficient Fixpoint Computation

An “Optimisation”

Conjecture: it suffices to initialise worklist with *edges leaving extremal labels* (such that analysis information will propagate through CFG)
Efficient Fixpoint Computation

An “Optimisation”

Conjecture: it suffices to initialise worklist with edges leaving extremal labels (such that analysis information will propagate through CFG)

But ...

Example 5.3 (Counterexample)

Live Variables analysis for:

\[c = [x := 0] \]
\[[x := x + 1] \]
\[[x := 2] \]

Solution: \(LV_1 = \{x\} \), \(LV_2 = \emptyset \), \(LV_3 = \{x\} \)
Efficient Fixpoint Computation

An “Optimisation”

Conjecture: it suffices to initialise worklist with **edges leaving extremal labels** (such that analysis information will propagate through CFG)

But ...

Example 5.3 (Counterexample)

Live Variables analysis for \(c = [x := 0]^{1}; [x := x + 1]^{2}; [x := 2]^{3} \)

Solution: \(LV_1 = \{x\}, LV_2 = \emptyset, LV_3 = \{x\} \)

“Optimised” worklist algorithm:

\[
\begin{array}{cc|ccc}
W & LV_1 & LV_2 & LV_3 \\
(3, 2) & \emptyset & \emptyset & \{x\} \\
\end{array}
\]

⇒ wrong result!
Efficient Fixpoint Computation

An “Optimisation”

Conjecture: it suffices to initialise worklist with edges leaving extremal labels (such that analysis information will propagate through CFG)

But ...

Example 5.3 (Counterexample)

Live Variables analysis for $c = [x := 0]^1; [x := x + 1]^2; [x := 2]^3$

Solution: $LV_1 = \{x\}, LV_2 = \emptyset, LV_3 = \{x\}$

“Optimised” worklist algorithm:

<table>
<thead>
<tr>
<th>W</th>
<th>LV_1</th>
<th>LV_2</th>
<th>LV_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(3, 2)$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${x}$</td>
</tr>
<tr>
<td>ε</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${x}$</td>
</tr>
</tbody>
</table>

⇒ wrong result!
Correctness of Worklist Algorithm

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$, Algorithm 5.1 always terminates and computes $\text{fix}(\Phi_S)$.

Proof. see [Nielson/Nielson/Hankin 2005, p. 75 ff]
Correctness of Worklist Algorithm

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \phi)$, Algorithm 5.1 always terminates and computes $\text{fix}(\Phi_S)$.

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]
The MOP Solution

Outline of Lecture 5

Recap: The Fixpoint Approach

Efficient Fixpoint Computation

The MOP Solution

Another Analysis: Constant Propagation
The MOP Solution

The MOP Solution I

- Other solution method for dataflow systems
The MOP Solution

The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
The MOP Solution

The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B^l
 - least upper bound over all paths leading to l
 - most precise information for l (“reference solution”)
The MOP Solution

The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B'
 - least upper bound over all paths leading to l
 - most precise information for l (“reference solution”)

Definition 5.5 (Paths)

Let $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $l \in \text{Lab}$, the set of paths up to l is given by

$$\text{Path}(l) := \{[l_1, \ldots, l_{k-1}] \mid k \geq 1, l_1 \in E, (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i < k, l_k = l\}.$$
The MOP Solution

The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block \(B^l \)
 - least upper bound over all paths leading to \(l \)
 - most precise information for \(l \) ("reference solution")

Definition 5.5 (Paths)

Let \(S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi) \) be a dataflow system. For every \(l \in \text{Lab} \), the set of paths up to \(l \) is given by

\[
\text{Path}(l) := \{[l_1, \ldots, l_{k-1}] \mid k \geq 1, l_1 \in E, (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i < k, l_k = l\}.
\]

For a path \(\pi = [l_1, \ldots, l_{k-1}] \in \text{Path}(l) \), we define the transfer function \(\varphi_{\pi} : D \to D \) by

\[
\varphi_{\pi} := \varphi_{l_{k-1}} \circ \ldots \circ \varphi_{l_1} \circ \text{id}_D
\]

(so that \(\varphi_{[]} = \text{id}_D \)).
The MOP Solution

Definition 5.6 (MOP solution)

Let \(S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi) \) be a dataflow system where \(\text{Lab} = \{l_1, \ldots, l_n\} \).

The \textbf{MOP solution} for \(S \) is determined by

\[
mop(S) := (mop(l_1), \ldots, mop(l_n)) \in D^n
\]

where, for every \(l \in \text{Lab} \),

\[
mop(l) := \bigsqcup \{\varphi_\pi(l) \mid \pi \in \text{Path}(l)\}.
\]

Remark:

\(\bullet \) \(\text{Path}(l) \) is generally infinite \(\Rightarrow \) not clear how to compute \(\text{mop}(l) \)

\(\bullet \) In fact: \textbf{MOP solution} generally undecidable (later)
The MOP Solution

The MOP Solution II

Definition 5.6 (MOP solution)

Let $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $\text{Lab} = \{l_1, \ldots, l_n\}$. The MOP solution for S is determined by

$$\text{mop}(S) := (\text{mop}(l_1), \ldots, \text{mop}(l_n)) \in D^n$$

where, for every $l \in \text{Lab}$,

$$\text{mop}(l) := \bigsqcup \{ \varphi_{\pi}(l) \mid \pi \in \text{Path}(l) \}.$$

Remark:

- $\text{Path}(l)$ is generally infinite
- \Rightarrow not clear how to compute $\text{mop}(l)$
The MOP Solution

The MOP Solution II

Definition 5.6 (MOP solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $Lab = \{l_1, \ldots, l_n\}$. The MOP solution for S is determined by

$$mop(S) := (mop(l_1), \ldots, mop(l_n)) \in D^n$$

where, for every $l \in Lab$,

$$mop(l) := \bigsqcup \{\varphi_{\pi}(\iota) \mid \pi \in Path(l)\}.$$

Remark:

- $Path(l)$ is generally infinite

\Rightarrow not clear how to compute $mop(l)$

- In fact: MOP solution generally undecidable (later)
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

\[
c = \begin{align*}
&[x := 2]^1; \\
&[y := 4]^2; \\
&[x := 1]^3; \\
&\text{if } [y > 0]^4 \text{ then} \\
&\quad [z := x]^5 \\
&\text{else} \\
&\quad [z := y*y]^6; \\
&[x := z]^7
\end{align*}
\]
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

\[
c = [x := 2]^1; \\
y := 4]^2; \\
x := 1]^3; \\
\text{if } [y > 0]^4 \text{ then} \\
\quad [z := x]^5 \\
\text{else} \\
\quad [z := y*y]^6; \\
x := z]^7
\]

\[\implies \text{Path}(1) = \{[7, 5, 4, 3, 2], \\
\quad [7, 6, 4, 3, 2]\}\]
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

\(c = [x := 2] ; \\
 [y := 4] ; \\
 [x := 1] ; \\
 \text{if } [y > 0] \text{ then} \\
 \quad [z := x] ; \\
 \text{else} \\
 \quad [z := y * y] ; \\
 [x := z] ; \\
\)

\(\implies \text{mop}(1) = \varphi_{[7,5,4,3,2]}(l) \sqcup \varphi_{[7,6,4,3,2]}(l) \)

\(\implies \text{Path}(1) = \{ [7, 5, 4, 3, 2], [7, 6, 4, 3, 2] \} \)
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

\[
c = \begin{cases} x := 2 \\ y := 4 \\ x := 1 \\ \text{if } y > 0 \text{ then } \\ \quad z := x \\ \text{else} \\ \quad z := y \times y \\ \quad x := z \end{cases}
\]

\[\Rightarrow \text{Path}(1) = \{ [7, 5, 4, 3, 2], [7, 6, 4, 3, 2] \}\]

\[\Rightarrow \text{mop}(1) = \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota)\]
\[= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\}))))))\]
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

c = [x := 2]¹;
[y := 4]²;
[x := 1]³;
if [y > 0]⁴ then
 [z := x]⁵
else
 [z := y*y]⁶;
 [x := z]⁷

⇒ Path(1) = {[7, 5, 4, 3, 2],
 [7, 6, 4, 3, 2]}

mop(1) = \phi_{[7,5,4,3,2]}(l) \sqcup \phi_{[7,6,4,3,2]}(l)
= \phi_2(\phi_3(\phi_4(\phi_5(\phi_7(\{x, y, z\})))))) \sqcup
\phi_2(\phi_3(\phi_4(\phi_6(\phi_7(\{x, y, z\}))))))
= \phi_2(\phi_3(\phi_4(\phi_5(\{y, z\})))) \sqcup
\phi_2(\phi_3(\phi_4(\phi_6(\{y, z\}))))
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

\[
\begin{align*}
c &= \begin{cases}
[x := 2]^1; \\
[y := 4]^2; \\
[x := 1]^3; \\
\text{if } [y > 0]^4 \text{ then} \\
[z := x]^5 \\
\text{else} \\
[z := y*y]^6; \\
[x := z]^7
\end{cases}
\Rightarrow \text{Path}(1) = \{ [7, 5, 4, 3, 2], \\
[7, 6, 4, 3, 2] \}
\end{align*}
\]

\[
\begin{align*}
\text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
&= \varphi_2(\varphi_3(\varphi_4(\varphi_7(\varphi_{[x, y, z]})))) \\
&= \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_{[x, y, z]})))) \\
&= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \\
&= \varphi_2(\varphi_3(\varphi_4(\{x, y\}))) \\
&= \varphi_2(\varphi_3(\{y\})) \\
&= \varnothing \\
&= \varnothing
\end{align*}
\]
The MOP Solution

Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

\[c = [x := 2]; \]
\[[y := 4]; \]
\[[x := 1]; \]
\[\text{if } [y > 0] \text{ then } \]
\[[z := x]; \]
\[\text{else } \]
\[[z := y*y]; \]
\[[x := z]; \]

\[\implies \text{Path}(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\} \]

\[\implies \text{mop}(1) = \varphi_{[7,5,4,3,2]}(\ell) \sqcup \varphi_{[7,6,4,3,2]}(\ell) \]
\[= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \]
\[= \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{x, y, z\})))))) \sqcup \]
\[= \varphi_2(\varphi_3(\varphi_4(\{y\})))) \sqcup \varphi_2(\varphi_3(\{y\}))) \]
\[= \varphi_2(\varphi_3(\{x, y\}))) \sqcup \varphi_2(\varphi_3(\{y\}))) \]
\[= \varphi_2(\varphi_3(\{y\}))) \sqcup \varphi_2(\varphi_3(\{y\}))) \]
\[= \varphi_2(\varphi_3(\{y\}))) \]
\[= \emptyset \sqcup \emptyset = \emptyset \]

(same as fix(\Phi_S[1]) – Ex. 4.12)
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

\[c = [x := 2]^1; \]
\[[y := 4]^2; \]
\[[x := 1]^3; \]
\[\text{if } [y > 0]^4 \text{ then} \]
\[[z := x]^5 \]
\[\text{else} \]
\[[z := y*y]^6; \]
\[[x := z]^7 \]

\[\Rightarrow \text{Path}(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\} \]

\[\Rightarrow \text{mop}(1) = \varphi[7,5,4,3,2](l) \sqcup \varphi[7,6,4,3,2](l) \]
\[= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \]
\[\varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \]
\[= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\}))))) \sqcup \]
\[\varphi_2(\varphi_3(\varphi_4(\{y\}))) \]
\[= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \]
\[= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \]
\[= \emptyset \sqcup \emptyset \]
\[= \emptyset \]
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

\[c = [x := 2]_1; \]
\[[y := 4]_2; \]
\[[x := 1]_3; \]
\[\text{if } [y > 0]_4 \text{ then} \]
\[[z := x]_5 \]
\[\text{else} \]
\[[z := y*y]_6; \]
\[[x := z]_7 \]

\[\implies \text{Path}(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\} \]

\[\implies \text{mop}(1) = \varphi_{[7,5,4,3,2]}(l) \sqcup \varphi_{[7,6,4,3,2]}(l) \]
\[= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \]
\[\varphi_2(\varphi_3(\varphi_4(\varphi_6(\{x, y, z\})))))))) \]
\[= \varphi_2(\varphi_3(\varphi_4(\{y, z\})))) \sqcup \]
\[\varphi_2(\varphi_3(\varphi_4(\{y\})))) \]
\[= \varphi_2(\varphi_3(\{x, y\}))) \sqcup \varphi_2(\varphi_3(\{y\})) \]
\[= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \]
\[= \emptyset \sqcup \emptyset \]
Example 5.7 (Live Variables; cf. Examples 2.12 and 4.12)

c = \[
x := 2
\]
\[
y := 4
\]
\[
x := 1
\]
if \[y > 0\] then
\[
z := x
\]
else
\[
z := y*y
\]
x := z
\[
\implies \text{Path}(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}
\]

\[
mop(1) = \varphi[7,5,4,3,2](\iota) \sqcup \varphi[7,6,4,3,2](\iota)
\]
\[
= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})]))) \sqcup
\]
\[
\varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))
\]
\[
= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup
\]
\[
\varphi_2(\varphi_3(\varphi_4(\{y\}))
\]
\[
= \varphi_2(\varphi_3(\{x, y\})) \sqcup \varphi_2(\varphi_3(\{y\}))
\]
\[
= \varphi_2(\{y\}) \sqcup \varphi_2(\varphi_3(\{y\}))
\]
\[
= \varnothing \sqcup \varnothing
\]
\[
= \varnothing \quad (\text{same as fix}(\Phi_S)[1] – \text{Ex. 4.12})
Another Analysis: Constant Propagation

Outline of Lecture 5

Recap: The Fixpoint Approach

Efficient Fixpoint Computation

The MOP Solution

Another Analysis: Constant Propagation
Another Analysis: Constant Propagation

Goal of Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Example 5.8 (Constant Propagation Analysis)

\[
\begin{align*}
x &:= 1 \\
y &:= 1 \\
z &:= 1 \\
\text{while } z > 0 \\
w &:= x + y \\
\text{if } w = 2 \\
\text{then } x &:= y + 2 \\
\text{end}
\end{align*}
\]

- \(y = 1 \) at labels 4–7
- \(w, x \) not constant at labels 4–7
- possible optimisations:
 \[
 \begin{align*}
 w &:= x + 1 \\
x &:= 3
 \end{align*}
 \]
Goal of Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions.
Another Analysis: Constant Propagation

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

```
x := 1;[y := 1];[z := 1];
while [z > 0] do
  [w := x+y];
  if [w = 2] then
    [x := y+2]
  end
end
```
Another Analysis: Constant Propagation

Goal of Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

\[
x := 1^1; \quad y := 1^2; \quad z := 1^3;
\]

\[
\text{while } [z > 0]^4 \text{ do}
\]

\[
w := x+y^5;
\]

\[
\text{if } [w = 2]^6 \text{ then}
\]

\[
x := y+2^7
\]

\]

* y = z = 1 at labels 4–7*
Another Analysis: Constant Propagation

Goal of Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

\[
\begin{align*}
x & := 1 \\
y & := 1 \\
z & := 1 \\
\text{while } [z > 0] & \text{ do} \\
&w & := x+y \\
& \text{if } [w = 2] \text{ then} \\
& [x := y+2] \\
\text{end} \\
\text{end}
\end{align*}
\]

- \(y = z = 1 \) at labels 4–7
- \(w, x \) not constant at labels 4–7
Another Analysis: Constant Propagation

Goal of Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

\[
\begin{align*}
\text{while } [z > 0] &; [w := x+y] \\
\text{if } [w = 2] &; [x := y+2] \\
\end{align*}
\]

- **y = z = 1** at labels 4–7
- **w, x** not constant at labels 4–7
- **possible optimisations:**
 - \([\text{true}]\)
 - \([w := x+1]\)
 - \([x := 3]\)
Another Analysis: Constant Propagation

Formalising Constant Propagation Analysis I

The dataflow system \(S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi) \) is given by

- set of labels \(Lab := Lab_c \),
- extremal labels \(E := \{\text{init}(c)\} \) (forward problem)
- flow relation \(F := \text{flow}(c) \) (forward problem)
Another Analysis: Constant Propagation

Formalising Constant Propagation Analysis I

The dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $\text{Lab} := \text{Lab}_c$,
- extremal labels $E := \{\text{init}(c)\}$ (forward problem)
- flow relation $F := \text{flow}(c)$ (forward problem)
- complete lattice (D, \sqsubseteq) where
 - $D := \{\delta \mid \delta : \Var_c \to \mathbb{Z} \cup \{\bot, \top\}\}$
 - $\delta(x) = z \in \mathbb{Z}$: x has constant value z (i.e., possible values in $\{z\}$)
 - $\delta(x) = \bot$: x undefined (i.e., possible values in \emptyset)
 - $\delta(x) = \top$: x overdefined (i.e., possible values in \mathbb{Z})
 - $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\bot \sqsubseteq z \sqsubseteq \top$ (for every $z \in \mathbb{Z}$)
Another Analysis: Constant Propagation

Formalising Constant Propagation Analysis I

The dataflow system \(S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi) \) is given by

- set of labels \(\text{Lab} := \text{Lab}_c \),
- extremal labels \(E := \{\text{init}(c)\} \) (forward problem)
- flow relation \(F := \text{flow}(c) \) (forward problem)
- complete lattice \((D, \sqsubseteq) \) where
 - \(D := \{\delta \mid \delta : \text{Var}_c \to \mathbb{Z} \cup \{\bot, \top\}\} \)
 - \(\delta(x) = z \in \mathbb{Z} \): \(x \) has constant value \(z \) (i.e., possible values in \{\(z \)\})
 - \(\delta(x) = \bot \): \(x \) undefined (i.e., possible values in \(\emptyset \))
 - \(\delta(x) = \top \): \(x \) overdefined (i.e., possible values in \(\mathbb{Z} \))
 - \(\sqsubseteq \subseteq D \times D \) defined by pointwise extension of \(\bot \sqsubseteq z \sqsubseteq \top \) (for every \(z \in \mathbb{Z} \))

Example 5.9

\(\text{Var}_c = \{w, x, y, z\} \), \(\delta_1 = (\bot, 1, 2, \top) \), \(\delta_2 = (3, 1, 4, \top) \)

\[\Rightarrow \delta_1 \sqcup \delta_2 = (3, 1, \top, \top) \]
Another Analysis: Constant Propagation

Formalising Constant Propagation Analysis II

Dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ (continued):

- extremal value $\iota := \delta_\top \in D$ where $\delta_\top(x) := \top$ for every $x \in \text{Var}_c$
 (i.e., every x has (unknown) default value)
Another Analysis: Constant Propagation

Formalising Constant Propagation Analysis II

Dataflow system $S = (\text{Lab}, E, F, (D, \sqsubseteq), \iota, \varphi)$ (continued):

- extremal value $\iota := \delta_{\top} \in D$ where $\delta_{\top}(x) := \top$ for every $x \in \text{Var}_c$ (i.e., every x has (unknown) default value)
- transfer functions $\{\varphi_l \mid l \in \text{Lab}\}$ defined by

\[
\varphi_l(\delta) := \begin{cases}
\delta & \text{if } B^l = \text{skip} \text{ or } B^l \in \text{BExp} \\
\delta[x \mapsto \text{val}_\delta(a)] & \text{if } B^l = (x := a)
\end{cases}
\]

where

\[
\text{val}_\delta(x) := \delta(x) \\
\text{val}_\delta(z) := z \\
\text{val}_\delta(a_1 \text{ op } a_2) := \begin{cases}
z_1 \text{ op } z_2 & \text{if } z_1, z_2 \in \mathbb{Z} \\
\bot & \text{if } z_1 = \bot \text{ or } z_2 = \bot \\
\top & \text{otherwise}
\end{cases}
\]

for $z_1 := \text{val}_\delta(a_1)$ and $z_2 := \text{val}_\delta(a_2)$
Another Analysis: Constant Propagation

Formalising Constant Propagation Analysis III

Example 5.10

If \(\delta = (\perp_w, 1_x, 2_y, \top_z) \), then

\[
\varphi_l(\delta) = \begin{cases}
(0_w, 1_x, 2_y, \top_z) & \text{if } B_l = (w := 0) \\
(3_w, 1_x, 2_y, \top_z) & \text{if } B_l = (w := y+1) \\
(\perp_w, 1_x, 2_y, \top_z) & \text{if } B_l = (w := w+x) \\
(\top_w, 1_x, 2_y, \top_z) & \text{if } B_l = (w := z+2)
\end{cases}
\]