Static Program Analysis
Lecture 4: Dataflow Analysis III (The Framework)
Winter Semester 2016/17

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/
Organisational Matters

- Written exams
 - first: Tue 21 Feb, 15:00 - 17:00, AH 2/3
 - second: Thu 23 Mar, 10:00 – 12:30, AH 2

- Lecture Thu Nov 3 will take place!
Recap: Heading for a Dataflow Analysis Framework

Similarities Between Analysis Problems

- **Observation:** the analyses presented so far have some similarities
 ⇒ Look for underlying framework

- **Advantages:**
 - possibility for designing (efficient) generic algorithms for solving dataflow equations
 - enables generic correctness proofs of analyses and algorithms

- **Overall pattern:** for \(c \in \text{Cmd} \) and \(l \in \text{Lab}_c \), the analysis information \((\text{AI})\) is described by equations of the form

\[
\text{AI}_l = \begin{cases}
\iota & \text{if } l \in E \\
\bigcup \{ \phi_R(\text{AI}_{l'}) \mid (l', l) \in F \} & \text{otherwise}
\end{cases}
\]

where

- the set of extremal labels, \(E \), is \(\{ \text{init}(c) \} \) or \(\text{final}(c) \)
- \(\iota \) specifies the extremal analysis information
- the combination operator, \(\bigcup \), is \(\cap \) or \(\cup \)
- \(\phi_R \) denotes the transfer function of block \(B'' \)
- the flow relation \(F \) is \(\text{flow}(c) \) or \(\text{flow}^R(c) \) \((:= \{ (l', l) \mid (l, l') \in \text{flow}(c) \}) \)
Recap: Heading for a Dataflow Analysis Framework

Roadmap

Goal: solve dataflow equation system by **fixpoint iteration**

1. Characterise solution of equation system as **fixpoint** of a transformation
2. Introduce **partial order** for comparing analysis results
3. Establish **least upper bound** as combination operator
4. Ensure **monotonicity** of transfer functions
5. Guarantee termination of fixpoint iteration by **ascending chain condition**
6. Optimise fixpoint iteration by **worklist algorithm**
Recap: Heading for a Dataflow Analysis Framework

Partial Orders

The domain of analysis information usually forms a partial order where the ordering relation compares the “precision” of information.

Definition (Partial order)

A partial order \((D, \sqsubseteq)\) consists of a set \(D\), called domain, and of a relation \(\sqsubseteq \subseteq D \times D\) such that, for every \(d_1, d_2, d_3 \in D\),

- reflexivity: \(d_1 \sqsubseteq d_1\)
- transitivity: \(d_1 \sqsubseteq d_2\) and \(d_2 \sqsubseteq d_3\) \(\implies d_1 \sqsubseteq d_3\)
- antisymmetry: \(d_1 \sqsubseteq d_2\) and \(d_2 \sqsubseteq d_1\) \(\implies d_1 = d_2\)

It is called total if, in addition, always \(d_1 \sqsubseteq d_2\) or \(d_2 \sqsubseteq d_1\).

Example

1. \((\mathbb{N}, \leq)\) is a total partial order
2. \((\mathbb{N}, <)\) is not a partial order (since not reflexive)
3. (Live Variables) \((2^{\text{Var}_c}, \sqsubseteq)\) is a (non-total) partial order
4. (Available Expressions) \((2^{\text{CExp}_c}, \supseteq)\) is a (non-total) partial order
Recap: Heading for a Dataflow Analysis Framework

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let \((D, \sqsubseteq)\) be a partial order and \(S \subseteq D\).

1. An element \(d \in D\) is called an upper bound of \(S\) if \(s \sqsubseteq d\) for every \(s \in S\) (notation: \(S \sqsubseteq d\)).
2. An upper bound \(d\) of \(S\) is called least upper bound (LUB) or supremum of \(S\) if \(d \sqsubseteq d'\) for every upper bound \(d'\) of \(S\) (notation: \(d = \bigsqcup S\)).

Example

1. \(S \subseteq \mathbb{N}\) has a LUB in \((\mathbb{N}, \leq)\) iff it is finite
2. (Live Variables) \((D, \sqsubseteq) = (2^{\text{Var}_c}, \subseteq)\). Given \(V_1, \ldots, V_n \subseteq \text{Var}_c\),
 \[\bigsqcup\{V_1, \ldots, V_n\} = \bigcup\{V_1, \ldots, V_n\}\]
3. (Available Expressions) \((D, \sqsubseteq) = (2^{\text{CExp}_c}, \supseteq)\). Given \(A_1, \ldots, A_n \subseteq \text{CExp}_c\),
 \[\bigsqcup\{A_1, \ldots, A_n\} = \bigcap\{A_1, \ldots, A_n\}\]
Recap: Heading for a Dataflow Analysis Framework

Complete Lattices

Since \(\{ \varphi_{l'}(A_{l'}) \mid (l', l) \in F \} \) can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order \((D, \sqsubseteq)\) such that all subsets of \(D\) have least upper bounds. In this case,

\[
\bot := \bigcup \emptyset
\]

denotes the least element of \(D\).

Example

1. \((\mathbb{N}, \leq)\) is not a complete lattice as, e.g., \(\mathbb{N}\) does not have a LUB
2. (Live Variables) \((D, \sqsubseteq) = (2^{Var_c}, \subseteq)\) is a complete lattice with \(\bot = \emptyset\)
3. (Available Expressions) \((D, \sqsubseteq) = (2^{CExp_c}, \supseteq)\) is a complete lattice with \(\bot = CExp_c\)
Recap: Heading for a Dataflow Analysis Framework

Chains

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition (Chain)

Let \((D, \sqsubseteq)\) be a partial order.

- A subset \(S \subseteq D\) is called a chain in \(D\) if, for every \(d_1, d_2 \in S\),
 \(d_1 \sqsubseteq d_2\) or \(d_2 \sqsubseteq d_1\)
 (that is, \(S\) is a totally ordered subset of \(D\)).
- \((D, \sqsubseteq)\) has finite height if all chains are finite. In this case, its height is
 \(\max\{|S| \mid S \text{ chain in } D\} - 1\).

Example

1. Every \(S \subseteq \mathbb{N}\) is a chain in \((\mathbb{N}, \leq)\) (which is of infinite height)
2. \(\{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\}\) is a chain in \((2^{\mathbb{N}}, \subseteq)\)
3. \(\{\{0\}, \{1\}, \{2\}\}\) is not a chain in \((2^{\mathbb{N}}, \subseteq)\)
Recap: Heading for a Dataflow Analysis Framework

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the following condition.

Definition (Ascending Chain Condition)

- A sequence \((d_i)_{i \in \mathbb{N}}\) is called an ascending chain in \(D\) if \(d_i \sqsubseteq d_{i+1}\) for each \(i \in \mathbb{N}\).
- A partial order \((D, \sqsubseteq)\) satisfies the Ascending Chain Condition (ACC) if each ascending chain \(d_0 \sqsubseteq d_1 \sqsubseteq \ldots\) eventually stabilises, i.e., there exists \(n \in \mathbb{N}\) such that \(d_n = d_{n+1} = \ldots\)

Notes:

- The finite height property implies ACC, but not vice versa (as there might be non-stabilising descending chains – see next slide)
- The complete lattice and ACC properties are orthogonal (see next slide)
Order-Theoretic Foundations: The Function

Monotonicity of Functions

Monotonicity of transfer functions excludes “oscillating behaviour” in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let \((D, \sqsubseteq)\) and \((D', \sqsubseteq')\) be partial orders, and let \(\Phi : D \to D'\). \(\Phi\) is called **monotonic** (w.r.t. \((D, \sqsubseteq)\) and \((D', \sqsubseteq')\)) if, for every \(d_1, d_2 \in D\),

\[d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2).\]

Example 4.2

1. Let \(T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}\). Then \(\Phi_1 : T \to \mathbb{N} : S \mapsto \sum_{n \in S} n\) is monotonic w.r.t. \((2^\mathbb{N}, \subseteq)\) and \((\mathbb{N}, \leq)\).

2. \(\Phi_2 : 2^\mathbb{N} \to 2^\mathbb{N} : S \mapsto \mathbb{N} \setminus S\) is not monotonic w.r.t. \((2^\mathbb{N}, \subseteq)\)
 (since, e.g., \(\emptyset \subseteq \mathbb{N}\) but \(\Phi_2(\emptyset) = \mathbb{N} \not\subseteq \Phi_2(\mathbb{N}) = \emptyset\)).

3. (Live Variables) \((D, \sqsubseteq) = (D', \sqsubseteq') = (2^{\text{Var}_c}, \subseteq)\)
 Each transfer function \(\varphi'_l(V) := (V \setminus \text{kill}_{LV}(B'')) \cup \text{gen}_{LV}(B'')\) is obviously monotonic

4. (Available Expressions) \((D, \sqsubseteq) = (D', \sqsubseteq') = (2^{\text{Exp}_c}, \supseteq)\) ditto
Fixpoints

Definition 4.3 (Fixpoint)

Let D be some domain, $d \in D$, and $\Phi : D \rightarrow D$. If

$$\Phi(d) = d$$

then d is called a fixpoint of Φ.

Example 4.4

The (only) fixpoints of $\Phi : \mathbb{N} \rightarrow \mathbb{N} : n \mapsto n^2$ are 0 and 1.
Order-Theoretic Foundations: The Function

The Fixpoint Theorem I

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let \((D, \sqsubseteq)\) be a complete lattice satisfying ACC and \(\Phi : D \rightarrow D\) monotonic. Then

\[
\text{fix}(\Phi) := \bigcup \{ \Phi^k(\bot) \mid k \in \mathbb{N} \}
\]

is the least fixpoint of \(\Phi\) where \(\Phi^0(d) := d\) and \(\Phi^{k+1}(d) := \Phi(\Phi^k(d))\).

Function requirements for dataflow analysis

All transfer functions must be a monotonic
The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let \((D, \sqsubseteq)\) be a complete lattice satisfying ACC, \(S \subseteq D\) a chain, and \(\Phi : D \rightarrow D\) monotonic. Then

\[\Phi(\bigsqcup S) = \bigsqcup \Phi(S) \]

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Remark: \((\Phi^k(\bot))_{k \in \mathbb{N}}\) is obviously an ascending chain which (by ACC) stabilises at some \(k_0 \in \mathbb{N}\) with \(\text{fix}(\Phi) = \Phi^{k_0}(\bot)\) (where \(k_0\) bounded by height of \((D, \sqsubseteq)\)
Dataflow Systems I

Definition 4.7 (Dataflow system)

A dataflow system \(S = (\text{Lab}, \ E, \ F, \ (D, \sqsubseteq), \iota, \varphi) \) consists of

- a finite set of (program) labels \(\text{Lab} \) (here: \(\text{Lab}_c \)),
- a set of extremal labels \(E \subseteq \text{Lab} \) (here: \(\{\text{init}(c)\} \) or \(\text{final}(c) \)),
- a flow relation \(F \subseteq \text{Lab} \times \text{Lab} \) (here: \(\text{flow}(c) \) or \(\text{flow}^R(c) \)),
- a complete lattice \((D, \sqsubseteq) \) satisfying ACC (with LUB operator \(\sqcup \) and least element \(\bot \)),
- an extremal value \(\iota \in D \) (for the extremal labels), and
- a collection of monotonic transfer functions \(\{\varphi_I \mid I \in \text{Lab}\} \) of type \(\varphi_I : D \rightarrow D \).
Example 4.8

<table>
<thead>
<tr>
<th>Problem</th>
<th>Available Expressions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>({ \text{init}(c) })</td>
<td>(\text{final}(c))</td>
</tr>
<tr>
<td>(F)</td>
<td>(\text{flow}(c))</td>
<td>(\text{flow}^R(c))</td>
</tr>
<tr>
<td>(D)</td>
<td>(2^{\text{CExp}_c})</td>
<td>(2^{\text{Var}_c})</td>
</tr>
<tr>
<td>(\sqcup)</td>
<td>(\supseteq)</td>
<td>(\subseteq)</td>
</tr>
<tr>
<td>(\sqcap)</td>
<td>(\subseteq)</td>
<td>(\cup)</td>
</tr>
<tr>
<td>(\bot)</td>
<td>(\text{CExp}_c)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(l)</td>
<td>(\emptyset)</td>
<td>(\text{Var}_c)</td>
</tr>
<tr>
<td>(\varphi_1)</td>
<td>(\varphi_1(d) = (d \setminus \text{kill}(B')) \cup \text{gen}(B'))</td>
<td></td>
</tr>
</tbody>
</table>
Application to Dataflow Analysis

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (\text{Lab, } E, F, (D, \sqsubseteq), \iota, \varphi)$, $\text{Lab} = \{1, \ldots, n\}$ (w.l.o.g.)

- S determines the equation system (where $l \in \text{Lab}$)
 $$\text{AI}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigcup \{ \varphi_{l'}(\text{AI}_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

- $(d_1, \ldots, d_n) \in D^n$ is called a solution if
 $$d_l = \begin{cases} \iota & \text{if } l \in E \\ \bigcup \{ \varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

- S determines the transformation
 $$\Phi_S : D^n \rightarrow D^n : (d_1, \ldots, d_n) \mapsto (d'_1, \ldots, d'_n)$$

 where
 $$d'_l = \begin{cases} \iota & \text{if } l \in E \\ \bigcup \{ \varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

Corollary 4.10

$(d_1, \ldots, d_n) \in D^n$ solves the equation system iff it is a fixpoint of Φ_S
Application to Dataflow Analysis

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

- \((D, \sqsubseteq)\) being a complete lattice ensures that \(\Phi_S\) is well defined
- Since \((D, \sqsubseteq)\) is a complete lattice satisfying ACC, so is \((D^n, \sqsubseteq^n)\) (where \((d_1, \ldots, d_n) \sqsubseteq^n (d'_1, \ldots, d'_n)\) iff \(d_i \sqsubseteq d'_i\) for every \(1 \leq i \leq n\))
- Monotonicity of transfer functions \(\varphi_i\) in \((D, \sqsubseteq)\) implies monotonicity of \(\Phi_S\) in \((D^n, \sqsubseteq^n)\) (since \(\sqcup\) also monotonic)
- Thus the (least) fixpoint is effectively computable by iteration:
 \[
 \text{fix}(\Phi_S) = \bigsqcup \{ \Phi_S^k(\bot_{D^n}) \mid k \in \mathbb{N} \}
 \]
 where \(\bot_{D^n} = (\bot_D, \ldots, \bot_D)^n\)
- If height of \((D, \sqsubseteq)\) is \(m\)
 \[\implies\] height of \((D^n, \sqsubseteq^n)\) is \(m \cdot n\)
 \[\implies\] fixpoint iteration requires at most \(m \cdot n\) steps
Application to Dataflow Analysis

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:
\[
\begin{align*}
 c &= [x := a+b]^1; \\
 y &= a*b]^2; \\
 \text{while } [y > a+b]^3 \text{ do } \\
 &\quad [a := a+1]^4; \\
 &\quad [x := a+b]^5 \\
\end{align*}
\]

Equation system:
\[
\begin{align*}
 AE_1 &= \emptyset \\
 AE_2 &= AE_1 \cup \{a+b\} \\
 AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\
 AE_4 &= AE_3 \cup \{a+b\} \\
 AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}
\end{align*}
\]

Fixpoint iteration:

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(CExp_c)</td>
<td>(CExp_c)</td>
<td>(CExp_c)</td>
<td>(CExp_c)</td>
<td>(CExp_c)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>(CExp_c)</td>
<td>(CExp_c)</td>
<td>(CExp_c)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>({a+b})</td>
<td>({a+b})</td>
<td>(CExp_c)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset)</td>
<td>({a+b})</td>
<td>({a+b})</td>
<td>({a+b})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>4</td>
<td>(\emptyset)</td>
<td>({a+b})</td>
<td>({a+b})</td>
<td>({a+b})</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:
\[
\begin{align*}
\text{if } [y > 0] & \text{ then } \\
[z := x] & \\
\text{else } \\
[z := y \times y] & \\
[x := z]
\end{align*}
\]

Equation system:
\[
\begin{align*}
LV_1 &= LV_2 \setminus \{y\} \\
LV_2 &= LV_3 \setminus \{x\} \\
LV_3 &= LV_4 \cup \{y\} \\
LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\
LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\
LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\
LV_7 &= \{x, y, z\}
\end{align*}
\]

Fixpoint iteration:
\[
\begin{array}{c|cccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
0 & \emptyset \\
1 & \emptyset & \emptyset & \{y\} & \{x, y\} & \{z\} & \{z\} & \{x, y, z\} & \\
2 & \emptyset & \{y\} & \{x, y\} & \{x, y\} & \{y, z\} & \{y, z\} & \{x, y, z\} & \\
3 & \emptyset & \{y\} & \{x, y\} & \{x, y\} & \{y, z\} & \{y, z\} & \{x, y, z\} & \\
\end{array}
\]
Uniqueness of Solutions

Uniqueness of Solutions I

Observation: (non-minimal) solutions of dataflow equation systems are **not always unique.**

Example 4.13 (Available Expressions)

\[
\begin{align*}
 z & := x+y^1; \\
 \text{while } & [\text{true}]^2 \text{ do } \\
 & [\text{skip}]^3 \\
 \text{end}
\end{align*}
\]

\[
\begin{align*}
 \Rightarrow \quad & AE_1 = \emptyset \\
 & AE_2 = (AE_1 \cup \{x+y\}) \cap AE_3 \\
 & AE_3 = AE_2
\end{align*}
\]

\[
\begin{align*}
 \Rightarrow \quad & AE_1 = \emptyset \\
 & AE_2 = \{x+y\} \cap AE_3 \\
 & AE_3 = AE_2
\end{align*}
\]

Solutions: $AE_1 = AE_2 = AE_3 = \emptyset$ or $AE_1 = \emptyset$, $AE_2 = AE_3 = \{x+y\}$

Here: **greatest** solution $\{x+y\}$ (maximal potential for optimisation)
Uniqueness of Solutions

Uniqueness of Solutions II

Example 4.14 (Live Variables)

while \([x>1]\) do
 \([\text{skip}]\)
end;
\([x := x+1]\);
\([y := 0]\);

\(\Rightarrow \) Solutions: \(LV_1 = LV_2 = (\{x\} \text{ or } \{x, y\})\),
\(LV_3 = \{x\}, LV_4 = \{x, y\}\)

Here: least solution \(\{x\}\) (maximal potential for optimisation)