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Recap: Pointer Analysis

The Shape Analysis Approach

• Goal: determine the possible shapes of a dynamically allocated data structure at given

program point

• Interesting information:

– data types (to avoid type errors, such as dereferencing nil)

– aliasing (different pointer variables having same value)

– sharing (different heap pointers referencing same location)

– reachability of nodes (garbage collection)

– disjointness of heap regions (parallelisability)

– shapes (lists, trees, absence of cycles, ...)

• Concrete questions:

– Does x.next point to a shared element?

– Does a variable p point to an allocated element every time p is dereferenced?

– Does a variable point to an acyclic list?

– Does a variable point to a doubly-linked list?

– Can a loop or procedure cause a memory leak?

• Here: basic outline; details in [Nielson/Nielson/Hankin 2005, Sct. 2.6]
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Recap: Pointer Analysis

Extending the Syntax

Syntactic categories:

Category Domain Meta variable

Arithmetic expressions AExp a

Boolean expressions BExp b

Selector names Sel sel

Pointer expressions PExp p

Commands (statements) Cmd c

Context-free grammar:

a ::= z | x | a1+a2 | . . . | p | nil ∈ AExp

b ::= t | a1=a2 | b1∧b2 | . . . | is-nil(p) ∈ BExp

p ::= x | x.sel

c ::= [skip]l | [p := a]l | c1;c2 | if [b]
l then c1 else c2 end |

while [b]l do c end | [malloc p]l ∈ Cmd
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Recap: Pointer Analysis

Shape Graphs I

Approach: representation of (infinitely many) concrete heap states by (finitely many)
abstract shape graphs

• abstract nodes X = sets of variables

• interpretation: x ∈ X iff x points to concrete node represented by X

• ∅ represents all concrete nodes that are not directly addressed by pointer variables

• x , y ∈ X (with x 6= y) indicate aliasing (as x and y point to the same concrete node)

• if x .sel and y refer to the same heap address and if X ,Y are abstract nodes with x ∈ X and

y ∈ Y , this yields abstract edge X
sel
=⇒ Y (similarly for X = ∅ or Y = ∅)

• transfer functions transform (sets of) shape graphs
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Recap: Pointer Analysis

Shape Graphs II

Definition (Shape graph)

A shape graph

G = (Abs,=⇒)

consists of

• a set Abs ⊆ 2Var of abstract locations and

• an abstract heap =⇒ ⊆ Abs × Sel × Abs

– notation: X
sel
=⇒ Y for (X , sel, Y ) ∈ =⇒

with the following properties:

Disjointness: X ,Y ∈ Abs =⇒ X = Y or X ∩ Y = ∅
(a variable can refer to at most one heap location)

Determinacy: X 6= ∅ and X
sel
=⇒ Y and X

sel
=⇒ Z =⇒ Y = Z

(target location is unique if source node is unique)

SG denotes the set of all shape graphs.
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Recap: Pointer Analysis

From Heap Configurations to Shape Graphs

Definition

Given a heap configuration H = (Nod ,Sel,Var , σ,−→), the corresponding shape

graph G = (Abs,=⇒) is defined by

• Abs := {σ−1(n) | n ∈ Nod}
= {{x ∈ Var | σ(x) = n} | n ∈ Nod}

• For all X ,Y ∈ Abs and sel ∈ Sel:

X
sel
=⇒ Y ⇐⇒ ∃nX , ny ∈ Nod : σ−1(nX ) = X , σ−1(nY ) = Y , nX

sel
−→ nY

Remark: yields Galois connection between sets of heap configurations and sets of

shape graphs, both ordered by ⊆
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Recap: Pointer Analysis

Shape Graphs and Concrete Heap Properties

Example

Let G = (Abs,=⇒) be a shape graph. Then the following concrete heap properties
can be expressed as conditions on G:

• x 6= nil

⇐⇒ ∃X ∈ Abs : x ∈ X

• x = y 6= nil (aliasing)

⇐⇒ ∃Z ∈ Abs : x, y ∈ Z

• x.sel1 = y.sel2 6= nil (sharing)

=⇒ ∃X ,Y ,Z ∈ Abs : x ∈ X , y ∈ Y ,X
sel1
=⇒ Z

sel2
⇐= Y

(“⇐=” only valid if Z 6= ∅)
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Shape Analysis

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set of shape

graphs that together represent all concrete heap configurations which can occur

during program execution at that point.
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Shape Analysis

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set of shape

graphs that together represent all concrete heap configurations which can occur
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Shape Analysis
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Shape Analysis

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set of shape

graphs that together represent all concrete heap configurations which can occur

during program execution at that point.

• Forward analysis

• Domain: (D,⊑) := (2SG,⊆) (Var ,Sel finite =⇒ SG finite =⇒ 2SG finite =⇒ ACC)

• Extremal value: ι := {shape graphs for possible initial values of Var}

Example 21.1 (List reversal; cf. Example 20.5)

• Variables: Var = {x, y, z}
• Assumption: x points to any (finite, non-cyclic) list, y = z = nil

⇒ ι =







(∅, ∅)
︸ ︷︷ ︸
empty

, {x}
︸︷︷︸

1 elem.

, {x}
next
=⇒ ∅

︸ ︷︷ ︸

2 elem.

, {x}
next
=⇒

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.






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Shape Analysis

The Transfer Functions

Transform each single shape graph into a set of shape graphs: for each l ∈ Lab,

ϕl : 2SG → 2SG : {G1, . . . ,Gn}) 7→
n⋃

i=1

ϕl(Gi)

Definition 21.2 (Transfer functions for shape analysis)

ϕl(G) ⊆ SG is determined by B l (where G = (Abs,=⇒)):

• [skip]l : ϕl(G) := {G}

• [b]l : ϕl(G) := {G}

• [p := a]l : case-by-case

analysis w.r.t. p and a

– [Nielson/Nielson/Hankin 2005,

Sct. 2.6.3]: 12 cases on 11 p.

– may involve (high degree of)

non-determinism

– see example on following slide

• [malloc x ]l : ϕl(G) := {(Abs′ ∪ {{x}},=⇒′)} with

– Abs′ := {X \ {x} | X ∈ Abs}
– ∀X , Y ∈ Abs, sel ∈ Sel :

X \ {x}
sel
=⇒′ Y \ {x} iff X

sel
=⇒ Y

• [malloc x .sel]l : equivalent to

[malloc t]l1;[x.sel := t]l2;[t := nil]l3

(with fresh t ∈ Var and l1, l2, l3 ∈ Lab)

• Fixpoint solution yields SGl ⊆ SG for each l ∈ Lab
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Shape Analysis

An Example

Example 21.3 (Transfer function for pointer assignment)

{y} ∅ {z}
sel

sel1
sel2 (justification:

on the board)

↓ϕx := y.sel

(a)

{y} {x} {z}
sel

sel1
sel2

(b) ∅

{y} {x} {z}
sel sel2

sel1

(c) ∅

{y} {x} {z}
sel sel2

sel1

sel1

(d) ∅

{y} {x} {z}
sel

sel1
sel2 (e) ∅

{y} {x} {z}
sel

sel1

sel1

sel2
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Shape Analysis

Soundness of Abstraction

Theorem 21.4 (Safety of approximation)

Let H be a heap configuration with corresponding shape graph G (according to

Definition 20.7), and let l ∈ Lab. If B l maps H to heap configuration H ′, then there

exists a shape graph G′ ∈ ϕl(G) that corresponds to H ′.

Proof.

omitted
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Shape Analysis

Application to List Reversal

Example 21.5 (List reversal; cf. Example 20.5)

Shape analysis of list reversal program yields final result






(∅, ∅)
︸ ︷︷ ︸
empty

, {y}
︸︷︷︸
1 elem.

, {y}
next
=⇒ ∅

︸ ︷︷ ︸
2 elem.

, {y}
next
=⇒

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.






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Shape Analysis

Application to List Reversal

Example 21.5 (List reversal; cf. Example 20.5)

Shape analysis of list reversal program yields final result






(∅, ∅)
︸ ︷︷ ︸
empty

, {y}
︸︷︷︸
1 elem.

, {y}
next
=⇒ ∅

︸ ︷︷ ︸
2 elem.

, {y}
next
=⇒

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.







Interpretation:

+ Result again a finite list

− but potentially cyclic (may be a “lasso”, but not a ring)

− also “reversal” property not guaranteed

– result could be in wrong order or have more/less entries
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Further Topic in Program Analysis

Dedicated Algorithms for Pointer Analysis

• nil Pointer Analysis: checks whether dereferencing operations possibly involve nil
pointers

– with shape analysis: x = nil possible for x ∈ Var at l ∈ Lab if there exists

G = (Abs,=⇒) ∈ SGl such that x /∈
⋃

X∈Abs X

• Points-To Analysis: yields function pt that for each x ∈ Var returns set pt(x) ⊆ Nod of
possible pointer targets

– x and y may be aliases if pt(x) ∩ pt(y) 6= ∅
– with shape analysis: there exists G = (Abs,=⇒) ∈ SGl and Z ∈ Abs such that x, y ∈ Z

• Usually faster and sometimes more precise than shape analysis, but less general (only

“shallow” properties)

• Fastest algorithms are flow-insensitive (points-to edges only added but never removed)
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Further Topic in Program Analysis

Graph Grammar Approaches to Pointer Analysis

• E.g., J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer Programs using Graph

Grammars. Science of Computer Programming 97, 157–162, 2015

• Idea: specify data structures by graph production rules

• Concretisation by forward application

• Abstraction by backward application

• All pointer operations remain concrete

⇒ Avoids involved definition of transfer functions
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L
1 2

p

n
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L
1 2

1 L 2L →

n

p
1 2
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Further Topic in Program Analysis
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Further Topic in Program Analysis

Abstract Execution Using Graph Grammars

Example 21.7 (tmp := pos.next;)

L

n

p

p

1 2

pos

p

tmp
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Further Topic in Program Analysis

Abstract Execution Using Graph Grammars

L → 1 2

n

p

1 L 2

n

p
1 2

Example 21.7 (tmp := pos.next;)

L

n

p

p

1 2

pos

p

tmp concr.

concr.

L

n

p

p

n

p

1 2

pos

p

tmp

n

p

p

n

p

pos

p

tmp
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Further Topic in Program Analysis

Abstract Execution Using Graph Grammars

L → 1 2

n

p

1 L 2

n

p
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Example 21.7 (tmp := pos.next;)

L

n

p

p

1 2

pos

p

tmp concr.

concr.

L

n

p

p

n

p

1 2

pos

p

tmp

n

p

p

n

p

pos

p

tmp

abstr.

abstr.

L L
p

p

n

p

1 212

pos tmp

L
p

p

n

p

pos tmp

12

pos
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Further Topic in Program Analysis
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L → 1 2

n

p

1 L 2

n

p
1 2

Example 21.7 (tmp := pos.next;)
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p

p

n
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p
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n

p

p

n

p
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Principle

Concretise whenever necessary; abstract whenever possible.
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Further Topic in Program Analysis

Correctness of Dataflow Analyses

• So far: semantics and dataflow analysis of programs considered independently (formal

soundness proofs only for abstract interpretation; cf. Lecture 12/13)
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Further Topic in Program Analysis

Correctness of Dataflow Analyses

• So far: semantics and dataflow analysis of programs considered independently (formal

soundness proofs only for abstract interpretation; cf. Lecture 12/13)

• Of course both are (and should be) related!

• To this aim: compare results of concrete semantics (Definition 11.9) with outcome of

analysis

• See [Nielson/Nielson/Hankin 2005, Sct. 2.2] for details

Example 21.8 (Correctness of Constant Propagation)

Let c ∈ Cmd , l ∈ Labc, x ∈ Var , and z ∈ Z such that CPl(x) = z.

Then for all σ0, σ ∈ Σ such that 〈init(c), σ0〉 →
∗ 〈l, σ〉, σ(x) = z.
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Final Remarks

Written Exam

• Dates:

– Tue 21 Feb, 15:00–17:00, AH 2/3

– Thu 23 Mar, 10:00–12:00, AH 2

• Q&A session on Wed 08 Feb (12:00, AH 3)

– please submit questions beforehand to Christina Jansen or Christoph Matheja
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Final Remarks

Forthcoming Course in SS 2017

Compiler Construction [Noll; V3 Ü2]

1. Lexical analysis of programs (Scanner)

2. Syntactic analysis of programs (Parser)

3. Semantic analysis of programs

4. Code generation

5. Tools for compiler construction
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