
Static Program Analysis
Lecture 21: Shape Analysis & Final Remarks

Winter Semester 2016/17

Thomas Noll

Software Modeling and Verification Group

RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

Recap: Pointer Analysis

Outline of Lecture 21

Recap: Pointer Analysis

Shape Analysis

Further Topic in Program Analysis

Final Remarks

2 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Recap: Pointer Analysis

The Shape Analysis Approach

• Goal: determine the possible shapes of a dynamically allocated data structure at given

program point

• Interesting information:

– data types (to avoid type errors, such as dereferencing nil)

– aliasing (different pointer variables having same value)

– sharing (different heap pointers referencing same location)

– reachability of nodes (garbage collection)

– disjointness of heap regions (parallelisability)

– shapes (lists, trees, absence of cycles, ...)

• Concrete questions:

– Does x.next point to a shared element?

– Does a variable p point to an allocated element every time p is dereferenced?

– Does a variable point to an acyclic list?

– Does a variable point to a doubly-linked list?

– Can a loop or procedure cause a memory leak?

• Here: basic outline; details in [Nielson/Nielson/Hankin 2005, Sct. 2.6]

3 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Recap: Pointer Analysis

Extending the Syntax

Syntactic categories:

Category Domain Meta variable

Arithmetic expressions AExp a

Boolean expressions BExp b

Selector names Sel sel

Pointer expressions PExp p

Commands (statements) Cmd c

Context-free grammar:

a ::= z | x | a1+a2 | . . . | p | nil ∈ AExp

b ::= t | a1=a2 | b1∧b2 | . . . | is-nil(p) ∈ BExp

p ::= x | x.sel

c ::= [skip]l | [p := a]l | c1;c2 | if [b]
l then c1 else c2 end |

while [b]l do c end | [malloc p]l ∈ Cmd

4 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Recap: Pointer Analysis

Shape Graphs I

Approach: representation of (infinitely many) concrete heap states by (finitely many)
abstract shape graphs

• abstract nodes X = sets of variables

• interpretation: x ∈ X iff x points to concrete node represented by X

• ∅ represents all concrete nodes that are not directly addressed by pointer variables

• x , y ∈ X (with x 6= y) indicate aliasing (as x and y point to the same concrete node)

• if x .sel and y refer to the same heap address and if X ,Y are abstract nodes with x ∈ X and

y ∈ Y , this yields abstract edge X
sel
=⇒ Y (similarly for X = ∅ or Y = ∅)

• transfer functions transform (sets of) shape graphs

5 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Recap: Pointer Analysis

Shape Graphs II

Definition (Shape graph)

A shape graph

G = (Abs,=⇒)

consists of

• a set Abs ⊆ 2Var of abstract locations and

• an abstract heap =⇒ ⊆ Abs × Sel × Abs

– notation: X
sel
=⇒ Y for (X , sel, Y) ∈ =⇒

with the following properties:

Disjointness: X ,Y ∈ Abs =⇒ X = Y or X ∩ Y = ∅
(a variable can refer to at most one heap location)

Determinacy: X 6= ∅ and X
sel
=⇒ Y and X

sel
=⇒ Z =⇒ Y = Z

(target location is unique if source node is unique)

SG denotes the set of all shape graphs.

6 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Recap: Pointer Analysis

From Heap Configurations to Shape Graphs

Definition

Given a heap configuration H = (Nod ,Sel,Var , σ,−→), the corresponding shape

graph G = (Abs,=⇒) is defined by

• Abs := {σ−1(n) | n ∈ Nod}
= {{x ∈ Var | σ(x) = n} | n ∈ Nod}

• For all X ,Y ∈ Abs and sel ∈ Sel:

X
sel
=⇒ Y ⇐⇒ ∃nX , ny ∈ Nod : σ−1(nX) = X , σ−1(nY) = Y , nX

sel
−→ nY

Remark: yields Galois connection between sets of heap configurations and sets of

shape graphs, both ordered by ⊆

7 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Recap: Pointer Analysis

Shape Graphs and Concrete Heap Properties

Example

Let G = (Abs,=⇒) be a shape graph. Then the following concrete heap properties
can be expressed as conditions on G:

• x 6= nil

⇐⇒ ∃X ∈ Abs : x ∈ X

• x = y 6= nil (aliasing)

⇐⇒ ∃Z ∈ Abs : x, y ∈ Z

• x.sel1 = y.sel2 6= nil (sharing)

=⇒ ∃X ,Y ,Z ∈ Abs : x ∈ X , y ∈ Y ,X
sel1
=⇒ Z

sel2
⇐= Y

(“⇐=” only valid if Z 6= ∅)

8 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

Outline of Lecture 21

Recap: Pointer Analysis

Shape Analysis

Further Topic in Program Analysis

Final Remarks

9 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set of shape

graphs that together represent all concrete heap configurations which can occur

during program execution at that point.

10 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set of shape

graphs that together represent all concrete heap configurations which can occur

during program execution at that point.

• Forward analysis

10 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set of shape

graphs that together represent all concrete heap configurations which can occur

during program execution at that point.

• Forward analysis

• Domain: (D,⊑) := (2SG,⊆) (Var ,Sel finite =⇒ SG finite =⇒ 2SG finite =⇒ ACC)

10 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set of shape

graphs that together represent all concrete heap configurations which can occur

during program execution at that point.

• Forward analysis

• Domain: (D,⊑) := (2SG,⊆) (Var ,Sel finite =⇒ SG finite =⇒ 2SG finite =⇒ ACC)

• Extremal value: ι := {shape graphs for possible initial values of Var}

10 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set of shape

graphs that together represent all concrete heap configurations which can occur

during program execution at that point.

• Forward analysis

• Domain: (D,⊑) := (2SG,⊆) (Var ,Sel finite =⇒ SG finite =⇒ 2SG finite =⇒ ACC)

• Extremal value: ι := {shape graphs for possible initial values of Var}

Example 21.1 (List reversal; cf. Example 20.5)

• Variables: Var = {x, y, z}
• Assumption: x points to any (finite, non-cyclic) list, y = z = nil

⇒ ι =







(∅, ∅)
︸ ︷︷ ︸
empty

, {x}
︸︷︷︸

1 elem.

, {x}
next
=⇒ ∅

︸ ︷︷ ︸

2 elem.

, {x}
next
=⇒

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.







10 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

The Transfer Functions

Transform each single shape graph into a set of shape graphs: for each l ∈ Lab,

ϕl : 2SG → 2SG : {G1, . . . ,Gn}) 7→
n⋃

i=1

ϕl(Gi)

Definition 21.2 (Transfer functions for shape analysis)

ϕl(G) ⊆ SG is determined by B l (where G = (Abs,=⇒)):

• [skip]l : ϕl(G) := {G}

• [b]l : ϕl(G) := {G}

• [p := a]l : case-by-case

analysis w.r.t. p and a

– [Nielson/Nielson/Hankin 2005,

Sct. 2.6.3]: 12 cases on 11 p.

– may involve (high degree of)

non-determinism

– see example on following slide

• [malloc x]l : ϕl(G) := {(Abs′ ∪ {{x}},=⇒′)} with

– Abs′ := {X \ {x} | X ∈ Abs}
– ∀X , Y ∈ Abs, sel ∈ Sel :

X \ {x}
sel
=⇒′ Y \ {x} iff X

sel
=⇒ Y

• [malloc x .sel]l : equivalent to

[malloc t]l1;[x.sel := t]l2;[t := nil]l3

(with fresh t ∈ Var and l1, l2, l3 ∈ Lab)

• Fixpoint solution yields SGl ⊆ SG for each l ∈ Lab

11 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

An Example

Example 21.3 (Transfer function for pointer assignment)

{y} ∅ {z}
sel

sel1
sel2 (justification:

on the board)

↓ϕx := y.sel

(a)

{y} {x} {z}
sel

sel1
sel2

(b) ∅

{y} {x} {z}
sel sel2

sel1

(c) ∅

{y} {x} {z}
sel sel2

sel1

sel1

(d) ∅

{y} {x} {z}
sel

sel1
sel2 (e) ∅

{y} {x} {z}
sel

sel1

sel1

sel2

12 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

Soundness of Abstraction

Theorem 21.4 (Safety of approximation)

Let H be a heap configuration with corresponding shape graph G (according to

Definition 20.7), and let l ∈ Lab. If B l maps H to heap configuration H ′, then there

exists a shape graph G′ ∈ ϕl(G) that corresponds to H ′.

Proof.

omitted

13 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

Application to List Reversal

Example 21.5 (List reversal; cf. Example 20.5)

Shape analysis of list reversal program yields final result






(∅, ∅)
︸ ︷︷ ︸
empty

, {y}
︸︷︷︸
1 elem.

, {y}
next
=⇒ ∅

︸ ︷︷ ︸
2 elem.

, {y}
next
=⇒

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.







14 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Shape Analysis

Application to List Reversal

Example 21.5 (List reversal; cf. Example 20.5)

Shape analysis of list reversal program yields final result






(∅, ∅)
︸ ︷︷ ︸
empty

, {y}
︸︷︷︸
1 elem.

, {y}
next
=⇒ ∅

︸ ︷︷ ︸
2 elem.

, {y}
next
=⇒

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.







Interpretation:

+ Result again a finite list

− but potentially cyclic (may be a “lasso”, but not a ring)

− also “reversal” property not guaranteed

– result could be in wrong order or have more/less entries

14 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Outline of Lecture 21

Recap: Pointer Analysis

Shape Analysis

Further Topic in Program Analysis

Final Remarks

15 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Dedicated Algorithms for Pointer Analysis

• nil Pointer Analysis: checks whether dereferencing operations possibly involve nil
pointers

– with shape analysis: x = nil possible for x ∈ Var at l ∈ Lab if there exists

G = (Abs,=⇒) ∈ SGl such that x /∈
⋃

X∈Abs X

• Points-To Analysis: yields function pt that for each x ∈ Var returns set pt(x) ⊆ Nod of
possible pointer targets

– x and y may be aliases if pt(x) ∩ pt(y) 6= ∅
– with shape analysis: there exists G = (Abs,=⇒) ∈ SGl and Z ∈ Abs such that x, y ∈ Z

• Usually faster and sometimes more precise than shape analysis, but less general (only

“shallow” properties)

• Fastest algorithms are flow-insensitive (points-to edges only added but never removed)

16 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Graph Grammar Approaches to Pointer Analysis

• E.g., J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer Programs using Graph

Grammars. Science of Computer Programming 97, 157–162, 2015

• Idea: specify data structures by graph production rules

• Concretisation by forward application

• Abstraction by backward application

• All pointer operations remain concrete

⇒ Avoids involved definition of transfer functions

17 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Graph Grammar Approaches to Pointer Analysis

• E.g., J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer Programs using Graph

Grammars. Science of Computer Programming 97, 157–162, 2015

• Idea: specify data structures by graph production rules

• Concretisation by forward application

• Abstraction by backward application

• All pointer operations remain concrete

⇒ Avoids involved definition of transfer functions

Example 21.6 (Doubly-linked lists)

L
1 2

p

n

17 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Graph Grammar Approaches to Pointer Analysis

• E.g., J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer Programs using Graph

Grammars. Science of Computer Programming 97, 157–162, 2015

• Idea: specify data structures by graph production rules

• Concretisation by forward application

• Abstraction by backward application

• All pointer operations remain concrete

⇒ Avoids involved definition of transfer functions

Example 21.6 (Doubly-linked lists)

L
1 2

1 L 2L →

n

p
1 2

p

n

17 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Graph Grammar Approaches to Pointer Analysis

• E.g., J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer Programs using Graph

Grammars. Science of Computer Programming 97, 157–162, 2015

• Idea: specify data structures by graph production rules

• Concretisation by forward application

• Abstraction by backward application

• All pointer operations remain concrete

⇒ Avoids involved definition of transfer functions

Example 21.6 (Doubly-linked lists)

L

n

p
1 2

p

n

17 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Graph Grammar Approaches to Pointer Analysis

• E.g., J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer Programs using Graph

Grammars. Science of Computer Programming 97, 157–162, 2015

• Idea: specify data structures by graph production rules

• Concretisation by forward application

• Abstraction by backward application

• All pointer operations remain concrete

⇒ Avoids involved definition of transfer functions

Example 21.6 (Doubly-linked lists)

1 2

n

p

L →

L

n

p
1 2

p

n

17 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Graph Grammar Approaches to Pointer Analysis

• E.g., J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer Programs using Graph

Grammars. Science of Computer Programming 97, 157–162, 2015

• Idea: specify data structures by graph production rules

• Concretisation by forward application

• Abstraction by backward application

• All pointer operations remain concrete

⇒ Avoids involved definition of transfer functions

Example 21.6 (Doubly-linked lists)

n

p

n

p p

n

17 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Abstract Execution Using Graph Grammars

Example 21.7 (tmp := pos.next;)

L

n

p

p

1 2

pos

p

tmp

18 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Abstract Execution Using Graph Grammars

L → 1 2

n

p

1 L 2

n

p
1 2

Example 21.7 (tmp := pos.next;)

L

n

p

p

1 2

pos

p

tmp concr.

concr.

L

n

p

p

n

p

1 2

pos

p

tmp

n

p

p

n

p

pos

p

tmp

18 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Abstract Execution Using Graph Grammars

L → 1 2

n

p

1 L 2

n

p
1 2

Example 21.7 (tmp := pos.next;)

L

n

p

p

1 2

pos

p

tmp concr.

concr.

L

n

p

p

n

p

1 2

pos

p

tmp

n

p

p

n

p

pos

p

tmp

18 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Abstract Execution Using Graph Grammars

L → 1 2

n

p

1 L 2

n

p
1 2

Example 21.7 (tmp := pos.next;)

L

n

p

p

1 2

pos

p

tmp concr.

concr.

L

n

p

p

n

p

1 2

pos

p

tmp

n

p

p

n

p

pos

p

tmp

abstr.

abstr.

L L
p

p

n

p

1 212

pos tmp

L
p

p

n

p

pos tmp

12

pos

18 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Abstract Execution Using Graph Grammars

L → 1 2

n

p

1 L 2

n

p
1 2

Example 21.7 (tmp := pos.next;)

L

n

p

p

1 2

pos

p

tmp concr.

concr.

L

n

p

p

n

p

1 2

pos

p

tmp

n

p

p

n

p

pos

p

tmp

abstr.

abstr.

L L
p

p

n

p

1 212

pos tmp

L
p

p

n

p

pos tmp

12

pos

Principle

Concretise whenever necessary; abstract whenever possible.

18 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Correctness of Dataflow Analyses

• So far: semantics and dataflow analysis of programs considered independently (formal

soundness proofs only for abstract interpretation; cf. Lecture 12/13)

19 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Correctness of Dataflow Analyses

• So far: semantics and dataflow analysis of programs considered independently (formal

soundness proofs only for abstract interpretation; cf. Lecture 12/13)

• Of course both are (and should be) related!

19 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Correctness of Dataflow Analyses

• So far: semantics and dataflow analysis of programs considered independently (formal

soundness proofs only for abstract interpretation; cf. Lecture 12/13)

• Of course both are (and should be) related!

• To this aim: compare results of concrete semantics (Definition 11.9) with outcome of

analysis

19 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Further Topic in Program Analysis

Correctness of Dataflow Analyses

• So far: semantics and dataflow analysis of programs considered independently (formal

soundness proofs only for abstract interpretation; cf. Lecture 12/13)

• Of course both are (and should be) related!

• To this aim: compare results of concrete semantics (Definition 11.9) with outcome of

analysis

• See [Nielson/Nielson/Hankin 2005, Sct. 2.2] for details

Example 21.8 (Correctness of Constant Propagation)

Let c ∈ Cmd , l ∈ Labc, x ∈ Var , and z ∈ Z such that CPl(x) = z.

Then for all σ0, σ ∈ Σ such that 〈init(c), σ0〉 →
∗ 〈l, σ〉, σ(x) = z.

19 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Final Remarks

Outline of Lecture 21

Recap: Pointer Analysis

Shape Analysis

Further Topic in Program Analysis

Final Remarks

20 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Final Remarks

Written Exam

• Dates:

– Tue 21 Feb, 15:00–17:00, AH 2/3

– Thu 23 Mar, 10:00–12:00, AH 2

• Q&A session on Wed 08 Feb (12:00, AH 3)

– please submit questions beforehand to Christina Jansen or Christoph Matheja

21 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

Final Remarks

Forthcoming Course in SS 2017

Compiler Construction [Noll; V3 Ü2]

1. Lexical analysis of programs (Scanner)

2. Syntactic analysis of programs (Parser)

3. Semantic analysis of programs

4. Code generation

5. Tools for compiler construction

22 of 22 Static Program Analysis

Winter Semester 2016/17

Lecture 21: Shape Analysis & Final Remarks

	Recap: Pointer Analysis
	Shape Analysis
	Further Topic in Program Analysis
	Final Remarks

