

Static Program Analysis

Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

Winter Semester 2016/17

Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

Outline of Lecture 20

Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

Effectiveness and Correctness

Context-Sensitive Interprocedural Dataflow Analysis

Pointer Analysis

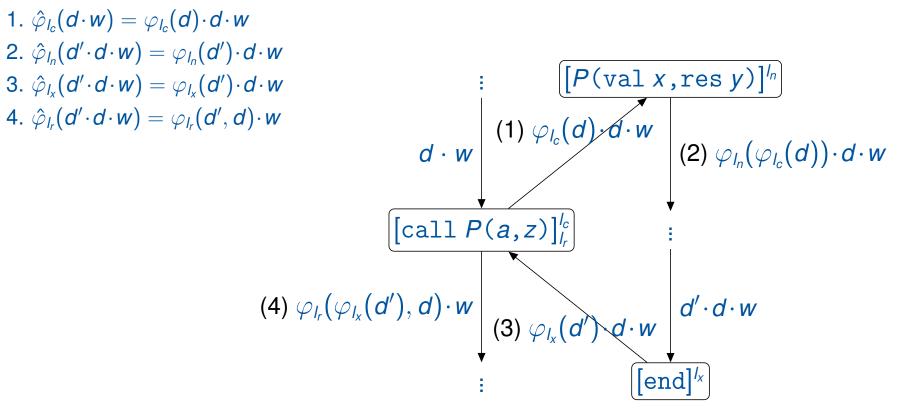
Introducing Pointers

Shape Graphs

Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

The Interprocedural Extension

Flow of information:



3 of 24 Static Program Analysis Winter Semester 2016/17 Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

Types of Equations

For an interprocedural dataflow system $\hat{S} := (Lab, E, F, (\hat{D}, \subseteq), \hat{\iota}, \hat{\varphi})$, the intraprocedural equation system (cf. Definition 4.9)

$$\mathsf{AI}_{l} = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{ \varphi_{l'}(\mathsf{AI}_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

is extended to a system with three kinds of equations (for every $I \in Lab$):

- for actual dataflow information: $AI_I \in \hat{D}$
 - counterpart of intraprocedural AI
- for transfer functions of single nodes: $f_l : \hat{D} \rightarrow \hat{D}$
 - extension of intraprocedural transfer functions by special handling of procedure calls
- for transfer functions of complete procedures: $F_l : \hat{D} \rightarrow \hat{D}$
 - $-F_{I}(w)$ yields information at I if corresponding procedure is called with information w
 - thus complete procedure represented by F_{l_x} ("procedure summary")

Formal Definition of Equation System

Dataflow equations:

$$\mathsf{AI}_{l} = \begin{cases} \iota & \text{if } l \in E \\ \mathsf{AI}_{l_{c}} & \text{if } l = l_{r} \text{ for some } (l_{c}, l_{n}, l_{x}, l_{r}) \in \text{iflow} \\ \bigsqcup \{ \mathbf{f}_{l'}(\mathsf{AI}_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

Node transfer functions (if / not an exit label):

 $f_{l}(w) = \begin{cases} \hat{\varphi}_{l_{r}}(\hat{\varphi}_{l_{x}}(F_{l_{x}}(\hat{\varphi}_{l_{c}}(w)))) & \text{if } l = l_{r} \text{ for some } (l_{c}, l_{n}, l_{x}, l_{r}) \in \text{iflow} \\ \hat{\varphi}_{l}(w) & \text{otherwise} \end{cases}$

Procedure transfer functions (if / occurs in some procedure):

 $\mathbf{F}_{l}(w) = \begin{cases} w & \text{if } l = l_{n} \text{ for some } (l_{c}, l_{n}, l_{x}, l_{r}) \in \text{iflow} \\ \bigsqcup \{ \mathbf{f}_{l'}(\mathbf{F}_{l'}(w)) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$

As before: induces monotonic functional on lattice with ACC \implies least fixpoint effectively computable

Outline of Lecture 20

Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

Effectiveness and Correctness

Context-Sensitive Interprocedural Dataflow Analysis

Pointer Analysis

Introducing Pointers

Shape Graphs

Effectiveness of Fixpoint Iteration

For the fixpoint iteration it is important that the auxiliary functions only operate (at most) on the two topmost elements of the stack:

Lemma 20.1

For every $I \in Lab$, $d \in D$, and $w \in D^*$,

$$f_l(d' \cdot d \cdot w) = f_l(d' \cdot d) \cdot w$$
 and $F_l(d' \cdot d \cdot w) = F_l(d' \cdot d) w$

Proof.

see J. Knoop, B. Steffen: *The Interprocedural Coincidence Theorem*, Proc. CC '92, LNCS 641, Springer, 1992, 125–140

It therefore suffices to consider stacks with at most two entries, and so the fixpoint iteration ranges over "finitary objects".

Soundness and Completeness

The following results carry over from the intraprocedural case:

Theorem 20.2 Let $\hat{S} := (Lab, E, F, (\hat{D}, \subseteq), \hat{\iota}, \hat{\varphi})$ be an interprocedural dataflow system. 1. (cf. Theorem 6.3) $mvp(\hat{S}) \subseteq fix(\Phi_{\hat{S}})$

2. (cf. Theorem 6.6)

 $mvp(\hat{S}) = fix(\Phi_{\hat{S}})$ if all $\hat{\varphi}_l$ are distributive

Proof.

see J. Knoop, B. Steffen: *The Interprocedural Coincidence Theorem*, Proc. CC '92, LNCS 641, Springer, 1992, 125–140

8 of 24 Static Program Analysis Winter Semester 2016/17 Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

Outline of Lecture 20

Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

Effectiveness and Correctness

Context-Sensitive Interprocedural Dataflow Analysis

Pointer Analysis

Introducing Pointers

Shape Graphs

Context-Sensitive Interprocedural Dataflow Analysis

Context-Sensitive Interprocedural DFA

• **Observation:** MVP and fixpoint solution maintain proper relationship between procedure calls and returns

Context-Sensitive Interprocedural Dataflow Analysis

Context-Sensitive Interprocedural DFA

- **Observation:** MVP and fixpoint solution maintain proper relationship between procedure calls and returns
- But: do not distinguish between different procedure calls
 - information about calling states combined for all call sites
 - procedure body only analysed once using combined information
 - resulting information used at all return points
 - ⇒ "context-insensitive"

Context-Sensitive Interprocedural Dataflow Analysis

Context-Sensitive Interprocedural DFA

- **Observation:** MVP and fixpoint solution maintain proper relationship between procedure calls and returns
- But: do not distinguish between different procedure calls
 - information about calling states combined for all call sites
 - procedure body only analysed once using combined information
 - resulting information used at all return points
 - \implies "context-insensitive"
- Alternative: context-sensitive analysis
 - separate information for different call sites
 - implementation by "procedure cloning" (one copy for each call site)
 - more precise
 - more costly

Outline of Lecture 20

Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

Effectiveness and Correctness

Context-Sensitive Interprocedural Dataflow Analysis

Pointer Analysis

Introducing Pointers

Shape Graphs

11 of 24 Static Program Analysis Winter Semester 2016/17 Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

• So far: only static data structures (variables)

- So far: only static data structures (variables)
- Now: pointer (variables) and dynamic memory allocation using heaps

- So far: only static data structures (variables)
- Now: pointer (variables) and dynamic memory allocation using heaps
- Problem:
 - Programs with pointers and dynamically allocated data structures are error prone
 - Identify subtle bugs at compile time
 - Automatically prove correctness

- So far: only static data structures (variables)
- Now: pointer (variables) and dynamic memory allocation using heaps
- Problem:
 - Programs with pointers and dynamically allocated data structures are error prone
 - Identify subtle bugs at compile time
 - Automatically prove correctness
- Interesting properties of heap-manipulating programs:
 - No null pointer dereference
 - No memory leaks
 - Preservation of data structures
 - Partial/total correctness

• **Goal:** determine the possible shapes of a dynamically allocated data structure at given program point

- **Goal:** determine the possible shapes of a dynamically allocated data structure at given program point
- Interesting information:
 - data types (to avoid type errors, such as dereferencing nil)
 - aliasing (different pointer variables having same value)
 - sharing (different heap pointers referencing same location)
 - reachability of nodes (garbage collection)
 - disjointness of heap regions (parallelisability)
 - shapes (lists, trees, absence of cycles, ...)

- **Goal:** determine the possible shapes of a dynamically allocated data structure at given program point
- Interesting information:
 - data types (to avoid type errors, such as dereferencing nil)
 - aliasing (different pointer variables having same value)
 - sharing (different heap pointers referencing same location)
 - reachability of nodes (garbage collection)
 - disjointness of heap regions (parallelisability)
 - shapes (lists, trees, absence of cycles, ...)

Concrete questions:

- Does x.next point to a shared element?
- Does a variable p point to an allocated element every time p is dereferenced?
- Does a variable point to an acyclic list?
- Does a variable point to a doubly-linked list?
- Can a loop or procedure cause a memory leak?

- **Goal:** determine the possible shapes of a dynamically allocated data structure at given program point
- Interesting information:
 - data types (to avoid type errors, such as dereferencing nil)
 - aliasing (different pointer variables having same value)
 - sharing (different heap pointers referencing same location)
 - reachability of nodes (garbage collection)
 - disjointness of heap regions (parallelisability)
 - shapes (lists, trees, absence of cycles, ...)

Concrete questions:

- Does x.next point to a shared element?
- Does a variable p point to an allocated element every time p is dereferenced?
- Does a variable point to an acyclic list?
- Does a variable point to a doubly-linked list?
- Can a loop or procedure cause a memory leak?
- Here: basic outline; details in [Nielson/Nielson/Hankin 2005, Sct. 2.6]

Outline of Lecture 20

Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

Effectiveness and Correctness

Context-Sensitive Interprocedural Dataflow Analysis

Pointer Analysis

Introducing Pointers

Shape Graphs

14 of 24 Static Program Analysis Winter Semester 2016/17 Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

Extending the Syntax

Syntactic categories:

Category	Domain	Meta variable
Arithmetic expressions	AExp	а
Boolean expressions	BExp	b
Selector names	Sel	sel
Pointer expressions	PExp	p
Commands (statements)	Cmd	С

Extending the Syntax

Syntactic categories:

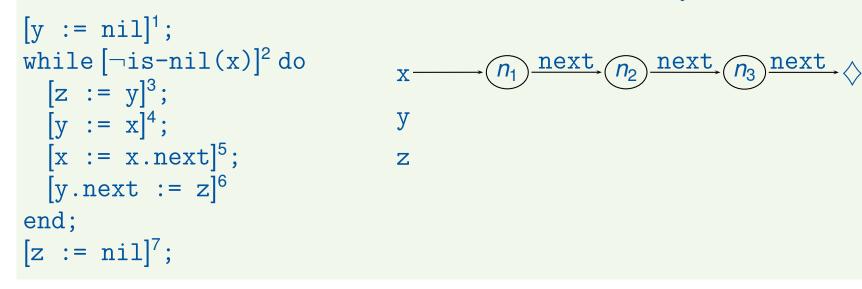
Category	Domain	Meta variable
Arithmetic expressions	AExp	а
Boolean expressions	BExp	b
Selector names	Sel	sel
Pointer expressions	PExp	p
Commands (statements)	Cmd	С

Context-free grammar:

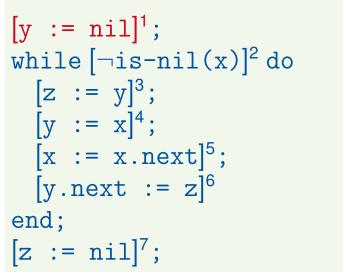
$$\begin{array}{l} a ::= z \mid x \mid a_1 + a_2 \mid \dots \mid p \mid \text{nil} \in AExp \\ b ::= t \mid a_1 = a_2 \mid b_1 \land b_2 \mid \dots \mid \text{is-nil}(p) \in BExp \\ p ::= x \mid x \cdot sel \\ c ::= [skip]' \mid [p := a]' \mid c_1; c_2 \mid \text{if} [b]' \text{ then } c_1 \text{ else } c_2 \text{ end} \mid \\ & \text{while } [b]' \text{ do } c \text{ end} \mid [\text{malloc } p]' \in Cmd \end{array}$$

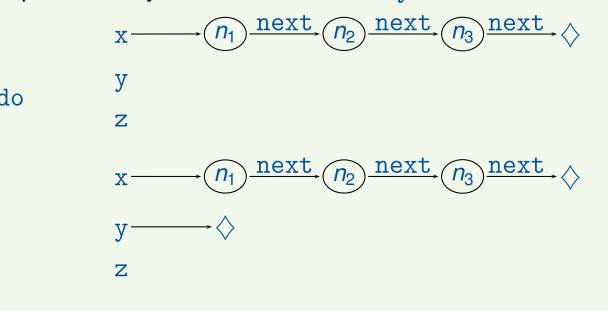
15 of 24 Static Program Analysis Winter Semester 2016/17 Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

Example 20.3 (List reversal)



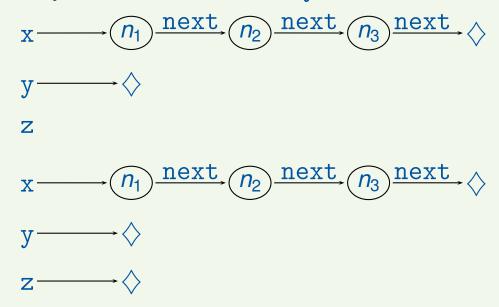
Example 20.3 (List reversal)





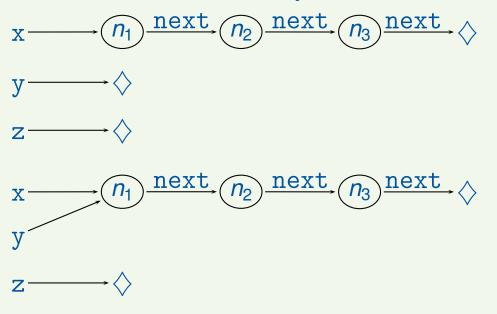
Example 20.3 (List reversal)

```
[y := nil]^{1};
while [¬is-nil(x)]<sup>2</sup> do
[z := y]^{3};
[y := x]^{4};
[x := x.next]^{5};
[y.next := z]^{6}
end;
[z := nil]^{7};
```



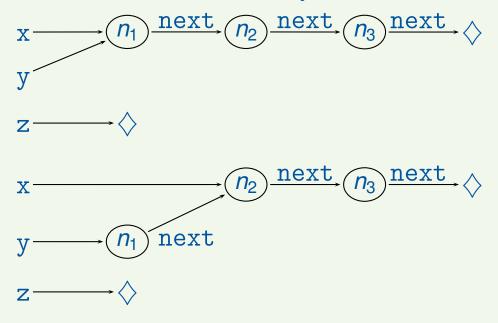
Example 20.3 (List reversal)

```
[y := nil]<sup>1</sup>;
while [¬is-nil(x)]<sup>2</sup> do
  [z := y]<sup>3</sup>;
  [y := x]<sup>4</sup>;
  [x := x.next]<sup>5</sup>;
  [y.next := z]<sup>6</sup>
end;
[z := nil]<sup>7</sup>;
```



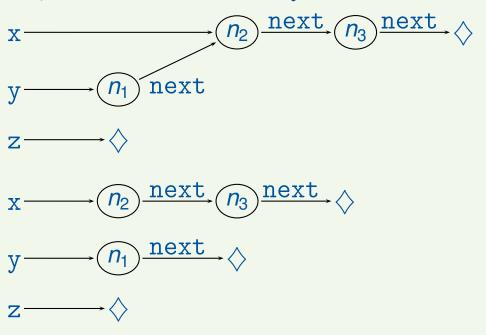
Example 20.3 (List reversal)

```
[y := nil]<sup>1</sup>;
while [¬is-nil(x)]<sup>2</sup> do
  [z := y]<sup>3</sup>;
  [y := x]<sup>4</sup>;
  [x := x.next]<sup>5</sup>;
  [y.next := z]<sup>6</sup>
end;
[z := nil]<sup>7</sup>;
```



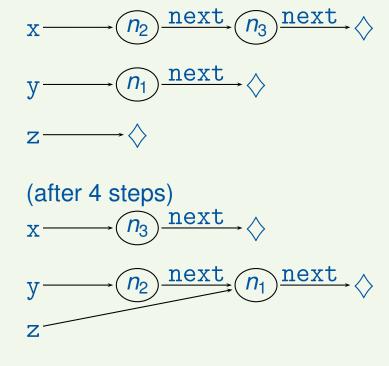
Example 20.3 (List reversal)

```
[y := nil]<sup>1</sup>;
while [¬is-nil(x)]<sup>2</sup> do
  [z := y]<sup>3</sup>;
  [y := x]<sup>4</sup>;
  [x := x.next]<sup>5</sup>;
  [y.next := z]<sup>6</sup>
end;
  [z := nil]<sup>7</sup>;
```



Example 20.3 (List reversal)

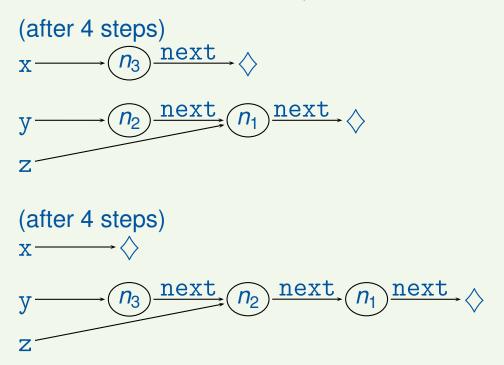
```
[y := nil]^{1};
while [\negis-nil(x)]<sup>2</sup> do
[z := y]^{3};
[y := x]^{4};
[x := x.next]^{5};
[y.next := z]^{6}
end;
[z := nil]^{7};
```



Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

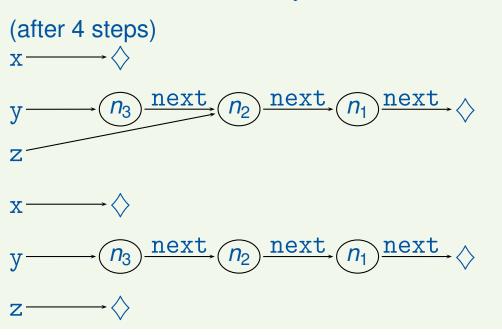
```
[y := nil]^{1};
while [\negis-nil(x)]<sup>2</sup> do
[z := y]^{3};
[y := x]^{4};
[x := x.next]^{5};
[y.next := z]^{6}
end;
[z := nil]^{7};
```



16 of 24 Static Program Analysis Winter Semester 2016/17 Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

Example 20.3 (List reversal)

```
[y := nil]^{1};
while [\negis-nil(x)]<sup>2</sup> do
[z := y]^{3};
[y := x]^{4};
[x := x.next]^{5};
[y.next := z]^{6}
end;
[z := nil]^{7};
```



Heap Configurations

Definition 20.4 (Heap configuration)

A (concrete) heap configuration is given by

$$H = (Nod, Sel, Var, \sigma, \longrightarrow)$$

where

- Nod is a finite set of (concrete) nodes
- Sel is a finite set of selector names
- Var is a finite set of program variables
- $\sigma: Var \to \mathbb{Z} \cup Nod_{\Diamond}$ is a variable valuation (with $Nod_{\Diamond} := Nod \cup \{\diamondsuit\}$)
- \longrightarrow : Nod \times Sel \rightarrow Nod $_{\Diamond}$ is a (concrete) heap
 - notation: $n_1 \stackrel{sel}{\longrightarrow} n_2$ for $((n_1, sel), n_2) \in \longrightarrow$

Outline of Lecture 20

Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

Effectiveness and Correctness

Context-Sensitive Interprocedural Dataflow Analysis

Pointer Analysis

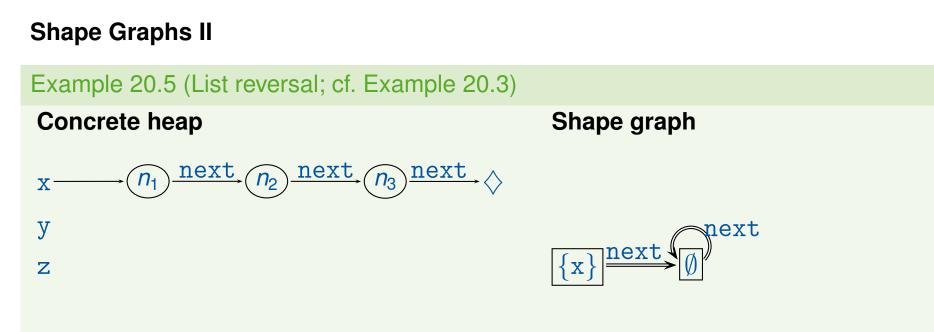
Introducing Pointers

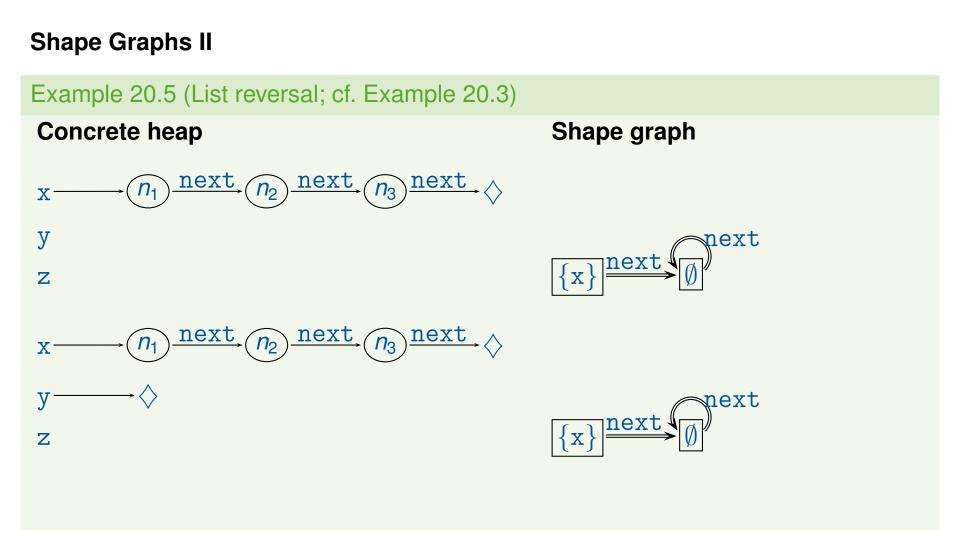
Shape Graphs

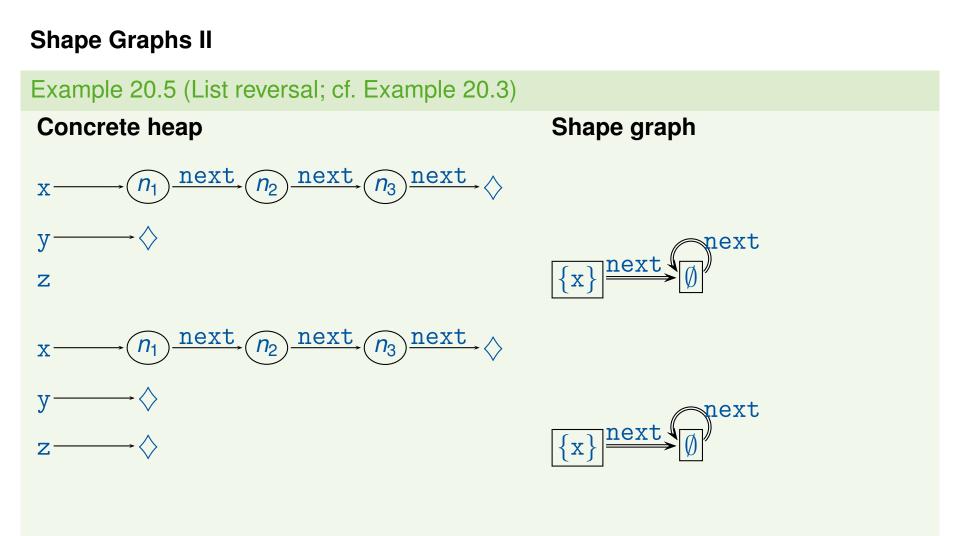
Shape Graphs I

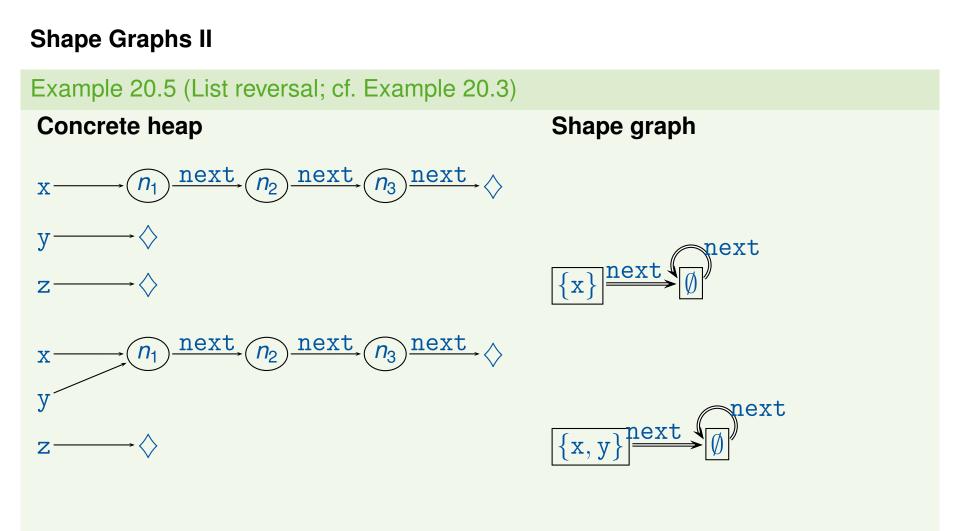
Approach: representation of (infinitely many) concrete heap states by (finitely many) abstract shape graphs

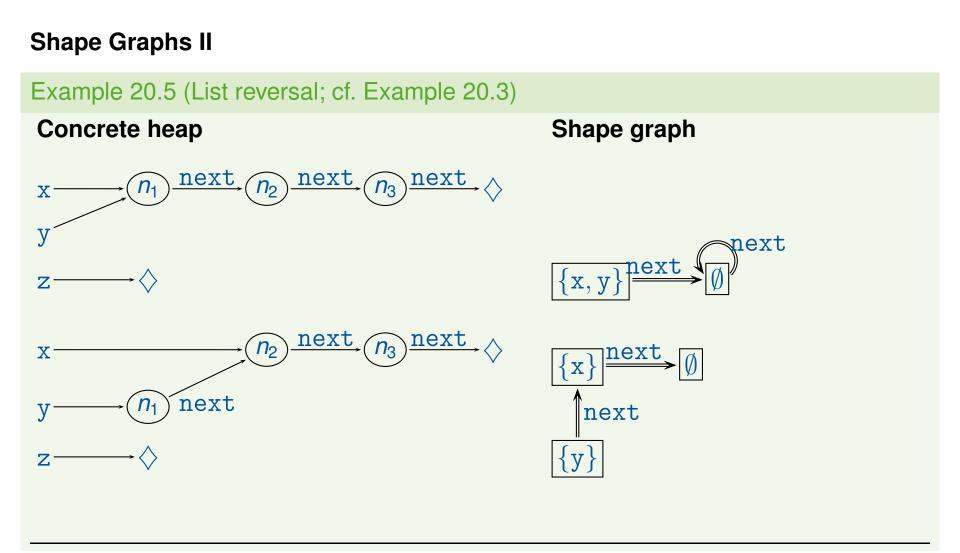
- abstract nodes X = sets of variables
- interpretation: $x \in X$ iff x points to concrete node represented by X
- Ø represents all concrete nodes that are not directly addressed by pointer variables
- $x, y \in X$ (with $x \neq y$) indicate aliasing (as x and y point to the same concrete node)
- if *x*.*sel* and *y* refer to the same heap address and if *X*, *Y* are abstract nodes with $x \in X$ and $y \in Y$, this yields abstract edge $X \stackrel{sel}{\Longrightarrow} Y$ (similarly for $X = \emptyset$ or $Y = \emptyset$)
- transfer functions transform (sets of) shape graphs







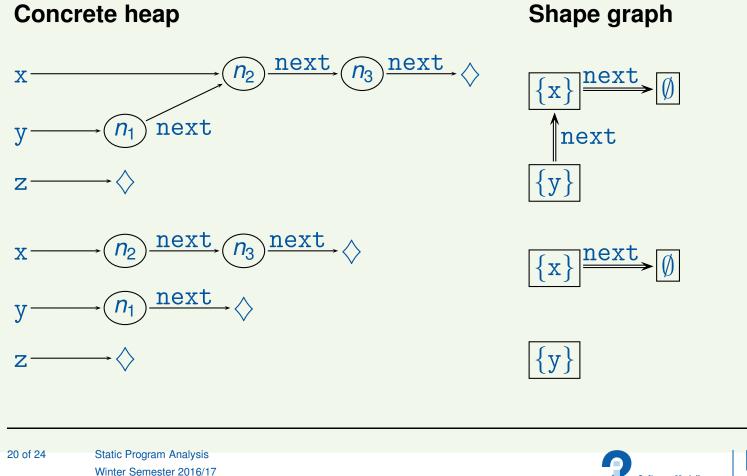




Shape Graphs

Shape Graphs II

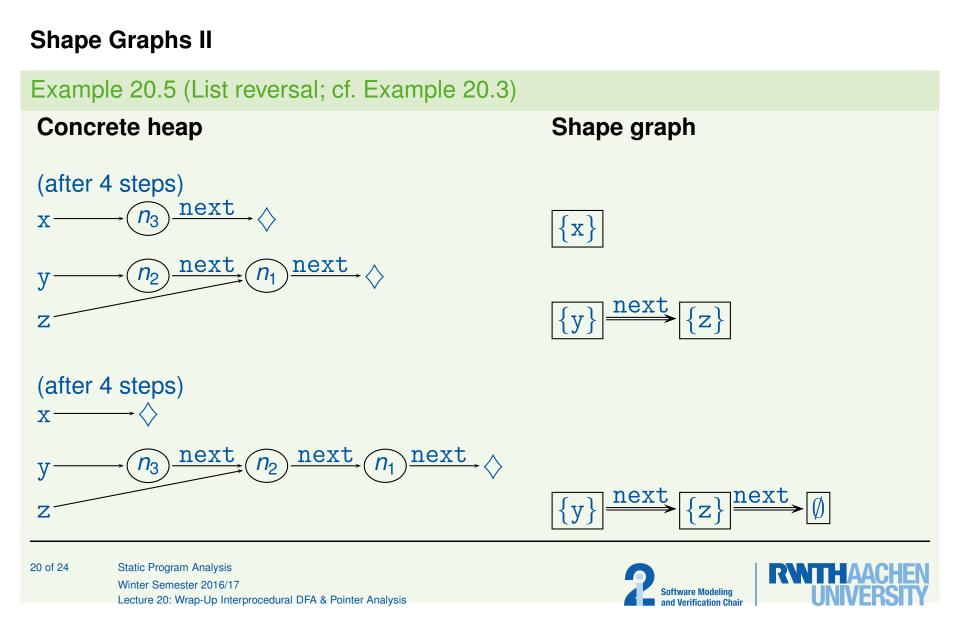
Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

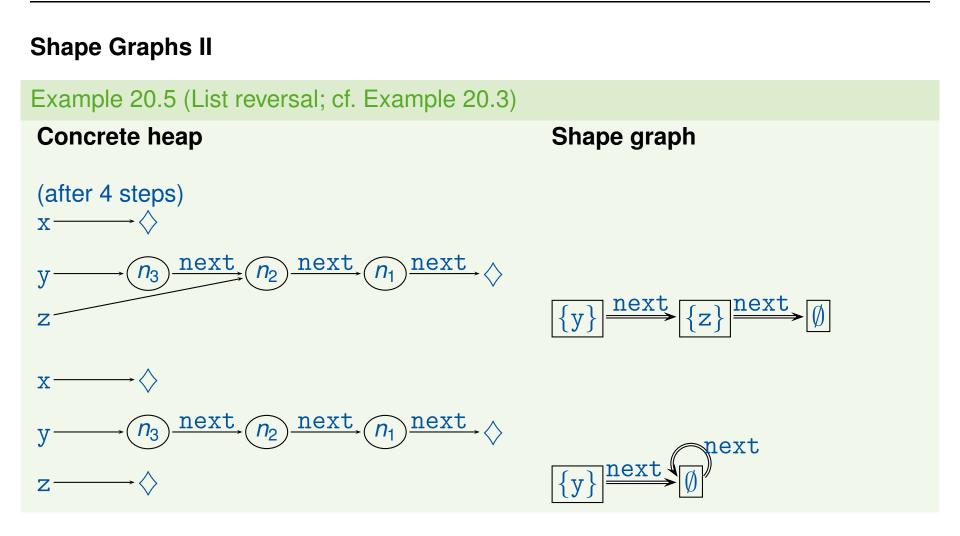


Shape Graphs II

Concrete heap Shape graph next next n_3 n_2 Χ next Ø $\{x\}$ next → △ {y} 7. (after 4 steps) next X { x } $\underline{\mathsf{next}}$ next **n**₂ n_1 nex 7.

20 of 24 Static Program Analysis Winter Semester 2016/17 Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis





20 of 24 Static Program Analysis Winter Semester 2016/17 Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis

Shape Graphs III

Definition 20.6 (Shape graph)

A shape graph

$$G = (Abs, \Longrightarrow)$$

consists of

- a set $Abs \subseteq 2^{Var}$ of abstract locations and
- an abstract heap $\Longrightarrow \subseteq Abs \times Sel \times Abs$
 - notation: $X \stackrel{sel}{\Longrightarrow} Y$ for $(X, sel, Y) \in \Longrightarrow$

with the following properties:

Disjointness: $X, Y \in Abs \implies X = Y \text{ or } X \cap Y = \emptyset$

(a variable can refer to at most one heap location)

Determinacy: $X \neq \emptyset$ and $X \stackrel{sel}{\Longrightarrow} Y$ and $X \stackrel{sel}{\Longrightarrow} Z \implies Y = Z$

(target location is unique if source node is unique)

SG denotes the set of all shape graphs.

From Heap Configurations to Shape Graphs I

Definition 20.7

Given a heap configuration $H = (Nod, Sel, Var, \sigma, \rightarrow)$, the corresponding shape graph $G = (Abs, \Longrightarrow)$ is defined by

- Abs := $\{\sigma^{-1}(n) \mid n \in Nod\}$ = $\{\{x \in Var \mid \sigma(x) = n\} \mid n \in Nod\}$
- For all $X, Y \in Abs$ and $sel \in Sel$:

$$X \stackrel{sel}{\Longrightarrow} Y \quad \Longleftrightarrow \quad \exists n_X, n_y \in Nod : \sigma^{-1}(n_X) = X, \sigma^{-1}(n_Y) = Y, n_X \stackrel{sel}{\longrightarrow} n_Y$$

Remark: yields Galois connection between sets of heap configurations and sets of shape graphs, both ordered by \subseteq

From Heap Configurations to Shape Graphs II

Remark: the following example shows that determinacy can only be postulated if $X \neq \emptyset$:

• Concrete:



Abstract:

$$Y = \{y\} \stackrel{sel}{\longleftarrow} X = \emptyset \stackrel{sel}{\Longrightarrow} Z = \{z\}$$

Shape Graphs and Concrete Heap Properties

Example 20.8

Let $G = (Abs, \Longrightarrow)$ be a shape graph. Then the following concrete heap properties can be expressed as conditions on *G*:

•
$$x \neq nil$$

 $\iff \exists X \in Abs : x \in X$
• $x = y \neq nil$ (aliasing)
 $\iff \exists Z \in Abs : x, y \in Z$
• $x . sel1 = y . sel2 \neq nil$ (sharing)
 $\implies \exists X, Y, Z \in Abs : x \in X, y \in Y, X \stackrel{sel1}{\Longrightarrow} Z \stackrel{sel2}{\iff} Y$
(" \Leftarrow " only valid if $Z \neq \emptyset$)

