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Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

The Interprocedural Extension

Flow of information:

1. ϕ̂lc(d ·w) = ϕlc(d)·d ·w

2. ϕ̂ln(d
′·d ·w) = ϕln(d

′)·d ·w

3. ϕ̂lx(d
′ ·d ·w) = ϕlx(d

′)·d ·w

4. ϕ̂lr(d
′ ·d ·w) = ϕlr(d

′
, d)·w

...

[call P(a,z)]lclr

...

[P(val x,res y)]ln

...

[end]lx

d · w
(1) ϕlc(d)·d ·w

(2) ϕln(ϕlc(d))·d ·w

d ′·d ·w
(3) ϕlx(d

′)·d ·w
(4) ϕlr(ϕlx(d

′), d)·w
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Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

Types of Equations

For an interprocedural dataflow system Ŝ := (Lab,E , F , (D̂, ⊑̂), ι̂, ϕ̂), the

intraprocedural equation system (cf. Definition 4.9)

AIl =

{

ι if l ∈ E
⊔

{ϕl ′(AIl ′) | (l
′
, l) ∈ F} otherwise

is extended to a system with three kinds of equations (for every l ∈ Lab):

• for actual dataflow information: AIl ∈ D̂

– counterpart of intraprocedural AI

• for transfer functions of single nodes: fl : D̂ → D̂

– extension of intraprocedural transfer functions by special handling of procedure calls

• for transfer functions of complete procedures: Fl : D̂ → D̂

– Fl(w) yields information at l if corresponding procedure is called with information w

– thus complete procedure represented by Flx (“procedure summary”)
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Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

Formal Definition of Equation System

Dataflow equations:

AIl =







ι if l ∈ E

AIlc if l = lr for some (lc, ln, lx, lr) ∈ iflow
⊔

{fl ′(AIl ′) | (l
′
, l) ∈ F} otherwise

Node transfer functions (if l not an exit label):

fl(w) =

{

ϕ̂lr(ϕ̂lx(Flx(ϕ̂lc(w)))) if l = lr for some (lc, ln, lx, lr) ∈ iflow

ϕ̂l(w) otherwise

Procedure transfer functions (if l occurs in some procedure):

Fl(w) =

{

w if l = ln for some (lc, ln, lx, lr) ∈ iflow
⊔

{fl ′(Fl ′(w)) | (l ′, l) ∈ F} otherwise

As before: induces monotonic functional on lattice with ACC

=⇒ least fixpoint effectively computable
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Effectiveness and Correctness
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Effectiveness and Correctness

Effectiveness of Fixpoint Iteration

For the fixpoint iteration it is important that the auxiliary functions only operate (at

most) on the two topmost elements of the stack:

Lemma 20.1

For every l ∈ Lab, d ∈ D, and w ∈ D∗,

fl(d
′ · d · w) = fl(d

′ · d) · w and Fl(d
′ · d · w) = Fl(d

′ · d)w

Proof.

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc. CC ’92,

LNCS 641, Springer, 1992, 125–140

It therefore suffices to consider stacks with at most two entries, and so the fixpoint

iteration ranges over “finitary objects”.
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Effectiveness and Correctness

Soundness and Completeness

The following results carry over from the intraprocedural case:

Theorem 20.2

Let Ŝ := (Lab,E , F , (D̂, ⊑̂), ι̂, ϕ̂) be an interprocedural dataflow system.

1. (cf. Theorem 6.3)

mvp(Ŝ) ⊑̂ fix(ΦŜ)

2. (cf. Theorem 6.6)

mvp(Ŝ) = fix(ΦŜ) if all ϕ̂l are distributive

Proof.

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc. CC ’92,

LNCS 641, Springer, 1992, 125–140
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Context-Sensitive Interprocedural Dataflow Analysis
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Context-Sensitive Interprocedural Dataflow Analysis

Context-Sensitive Interprocedural DFA

• Observation: MVP and fixpoint solution maintain proper relationship between procedure

calls and returns
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Context-Sensitive Interprocedural Dataflow Analysis

Context-Sensitive Interprocedural DFA

• Observation: MVP and fixpoint solution maintain proper relationship between procedure

calls and returns

• But: do not distinguish between different procedure calls

– information about calling states combined for all call sites

– procedure body only analysed once using combined information

– resulting information used at all return points

=⇒ “context-insensitive”
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Context-Sensitive Interprocedural Dataflow Analysis

Context-Sensitive Interprocedural DFA

• Observation: MVP and fixpoint solution maintain proper relationship between procedure

calls and returns

• But: do not distinguish between different procedure calls

– information about calling states combined for all call sites

– procedure body only analysed once using combined information

– resulting information used at all return points

=⇒ “context-insensitive”

• Alternative: context-sensitive analysis

– separate information for different call sites

– implementation by “procedure cloning” (one copy for each call site)

– more precise

– more costly
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Pointer Analysis

Pointer Analysis

• So far: only static data structures (variables)
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Pointer Analysis

Pointer Analysis

• So far: only static data structures (variables)

• Now: pointer (variables) and dynamic memory allocation using heaps
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Pointer Analysis

Pointer Analysis

• So far: only static data structures (variables)

• Now: pointer (variables) and dynamic memory allocation using heaps

• Problem:

– Programs with pointers and dynamically allocated data structures are error prone

– Identify subtle bugs at compile time

– Automatically prove correctness
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Pointer Analysis

Pointer Analysis

• So far: only static data structures (variables)

• Now: pointer (variables) and dynamic memory allocation using heaps

• Problem:

– Programs with pointers and dynamically allocated data structures are error prone

– Identify subtle bugs at compile time

– Automatically prove correctness

• Interesting properties of heap-manipulating programs:

– No null pointer dereference

– No memory leaks

– Preservation of data structures

– Partial/total correctness
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Pointer Analysis

The Shape Analysis Approach

• Goal: determine the possible shapes of a dynamically allocated data structure at given

program point
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Pointer Analysis

The Shape Analysis Approach

• Goal: determine the possible shapes of a dynamically allocated data structure at given

program point

• Interesting information:

– data types (to avoid type errors, such as dereferencing nil)

– aliasing (different pointer variables having same value)

– sharing (different heap pointers referencing same location)

– reachability of nodes (garbage collection)

– disjointness of heap regions (parallelisability)

– shapes (lists, trees, absence of cycles, ...)
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Pointer Analysis

The Shape Analysis Approach

• Goal: determine the possible shapes of a dynamically allocated data structure at given

program point

• Interesting information:

– data types (to avoid type errors, such as dereferencing nil)

– aliasing (different pointer variables having same value)

– sharing (different heap pointers referencing same location)

– reachability of nodes (garbage collection)

– disjointness of heap regions (parallelisability)

– shapes (lists, trees, absence of cycles, ...)

• Concrete questions:

– Does x.next point to a shared element?

– Does a variable p point to an allocated element every time p is dereferenced?

– Does a variable point to an acyclic list?

– Does a variable point to a doubly-linked list?

– Can a loop or procedure cause a memory leak?
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Pointer Analysis

The Shape Analysis Approach

• Goal: determine the possible shapes of a dynamically allocated data structure at given

program point

• Interesting information:

– data types (to avoid type errors, such as dereferencing nil)

– aliasing (different pointer variables having same value)

– sharing (different heap pointers referencing same location)

– reachability of nodes (garbage collection)

– disjointness of heap regions (parallelisability)

– shapes (lists, trees, absence of cycles, ...)

• Concrete questions:

– Does x.next point to a shared element?

– Does a variable p point to an allocated element every time p is dereferenced?

– Does a variable point to an acyclic list?

– Does a variable point to a doubly-linked list?

– Can a loop or procedure cause a memory leak?

• Here: basic outline; details in [Nielson/Nielson/Hankin 2005, Sct. 2.6]
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Introducing Pointers
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Introducing Pointers

Extending the Syntax

Syntactic categories:

Category Domain Meta variable

Arithmetic expressions AExp a

Boolean expressions BExp b

Selector names Sel sel

Pointer expressions PExp p

Commands (statements) Cmd c
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Introducing Pointers

Extending the Syntax

Syntactic categories:

Category Domain Meta variable

Arithmetic expressions AExp a

Boolean expressions BExp b

Selector names Sel sel

Pointer expressions PExp p

Commands (statements) Cmd c

Context-free grammar:

a ::= z | x | a1+a2 | . . . | p | nil ∈ AExp

b ::= t | a1=a2 | b1∧b2 | . . . | is-nil(p) ∈ BExp

p ::= x | x.sel

c ::= [skip]l | [p := a]l | c1;c2 | if [b]
l then c1 else c2 end |

while [b]l do c end | [malloc p]l ∈ Cmd
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Introducing Pointers

An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6

end;

[z := nil]7;

x n1 n2 n3 ♦

y

z

next next next
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Introducing Pointers
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Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
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[x := x.next]5;
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Introducing Pointers

An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6

end;

[z := nil]7;

x n1 n2 n3 ♦

y ♦

z

next next next

x n1 n2 n3 ♦

y ♦

z ♦

next next next

16 of 24 Static Program Analysis

Winter Semester 2016/17

Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis



Introducing Pointers

An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6

end;

[z := nil]7;

x n1 n2 n3 ♦

y ♦

z ♦

next next next

x n1 n2 n3 ♦

y

z ♦

next next next
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Introducing Pointers

An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6

end;

[z := nil]7;

x n1 n2 n3 ♦

y

z ♦

next next next

x n2 n3 ♦

y n1

z ♦

next next

next
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Introducing Pointers

An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6

end;

[z := nil]7;

x n2 n3 ♦

y n1

z ♦

next next

next

x n2 n3 ♦

y n1 ♦

z ♦

next next

next
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Introducing Pointers

An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6

end;

[z := nil]7;

x n2 n3 ♦

y n1 ♦

z ♦

next next

next

(after 4 steps)

x n3 ♦

y n2 n1 ♦

z

next

next next
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Introducing Pointers

An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6

end;

[z := nil]7;

(after 4 steps)

x n3 ♦

y n2 n1 ♦

z

next

next next

(after 4 steps)

x ♦

y n3 n2 n1 ♦

z

next next next
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Introducing Pointers

An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do
[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6

end;

[z := nil]7;

(after 4 steps)

x ♦

y n3 n2 n1 ♦

z

next next next

x ♦

y n3 n2 n1 ♦

z ♦

next next next

16 of 24 Static Program Analysis

Winter Semester 2016/17

Lecture 20: Wrap-Up Interprocedural DFA & Pointer Analysis



Introducing Pointers

Heap Configurations

Definition 20.4 (Heap configuration)

A (concrete) heap configuration is given by

H = (Nod ,Sel,Var , σ,−→)

where

• Nod is a finite set of (concrete) nodes

• Sel is a finite set of selector names

• Var is a finite set of program variables

• σ : Var → Z ∪ Nod♦ is a variable valuation (with Nod♦ := Nod ∪ {♦})

• −→: Nod × Sel → Nod♦ is a (concrete) heap

– notation: n1

sel
−→ n2 for ((n1, sel), n2) ∈ −→
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Shape Graphs
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Shape Graphs

Shape Graphs I

Approach: representation of (infinitely many) concrete heap states by (finitely many)
abstract shape graphs

• abstract nodes X = sets of variables

• interpretation: x ∈ X iff x points to concrete node represented by X

• ∅ represents all concrete nodes that are not directly addressed by pointer variables

• x , y ∈ X (with x 6= y) indicate aliasing (as x and y point to the same concrete node)

• if x .sel and y refer to the same heap address and if X ,Y are abstract nodes with x ∈ X and

y ∈ Y , this yields abstract edge X
sel
=⇒ Y (similarly for X = ∅ or Y = ∅)

• transfer functions transform (sets of) shape graphs
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x n1 n2 n3 ♦

y

z

next next next

{x} ∅
next

next
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x n1 n2 n3 ♦

y

z

next next next

{x} ∅
next

next

x n1 n2 n3 ♦

y ♦

z

next next next

{x} ∅
next

next
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x n1 n2 n3 ♦

y ♦

z

next next next

{x} ∅
next

next

x n1 n2 n3 ♦

y ♦

z ♦

next next next

{x} ∅
next

next
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x n1 n2 n3 ♦

y ♦

z ♦

next next next

{x} ∅
next

next

x n1 n2 n3 ♦

y

z ♦

next next next

{x, y} ∅
next

next
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x n1 n2 n3 ♦

y

z ♦

next next next

{x, y} ∅
next

next

x n2 n3 ♦

y n1

z ♦

next next

next

{x} ∅

{y}

next

next
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x n2 n3 ♦

y n1

z ♦

next next

next

{x} ∅

{y}

next

next

x n2 n3 ♦

y n1 ♦

z ♦

next next

next
{x} ∅

{y}

next
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x n2 n3 ♦

y n1 ♦

z ♦

next next

next
{x} ∅

{y}

next

(after 4 steps)

x n3 ♦

y n2 n1 ♦

z

next

next next

{x}

{y} {z}
next
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

(after 4 steps)

x n3 ♦

y n2 n1 ♦

z

next

next next

{x}

{y} {z}
next

(after 4 steps)
x ♦

y n3 n2 n1 ♦

z

next next next

{y} {z} ∅
next next
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Shape Graphs

Shape Graphs II

Example 20.5 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

(after 4 steps)
x ♦

y n3 n2 n1 ♦

z

next next next

{y} {z} ∅
next next

x ♦

y n3 n2 n1 ♦

z ♦

next next next

{y} ∅
next

next
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Shape Graphs

Shape Graphs III

Definition 20.6 (Shape graph)

A shape graph

G = (Abs,=⇒)

consists of

• a set Abs ⊆ 2Var of abstract locations and

• an abstract heap =⇒ ⊆ Abs × Sel × Abs

– notation: X
sel
=⇒ Y for (X , sel, Y ) ∈ =⇒

with the following properties:

Disjointness: X ,Y ∈ Abs =⇒ X = Y or X ∩ Y = ∅
(a variable can refer to at most one heap location)

Determinacy: X 6= ∅ and X
sel
=⇒ Y and X

sel
=⇒ Z =⇒ Y = Z

(target location is unique if source node is unique)

SG denotes the set of all shape graphs.
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Shape Graphs

From Heap Configurations to Shape Graphs I

Definition 20.7

Given a heap configuration H = (Nod ,Sel,Var , σ,−→), the corresponding shape

graph G = (Abs,=⇒) is defined by

• Abs := {σ−1(n) | n ∈ Nod}
= {{x ∈ Var | σ(x) = n} | n ∈ Nod}

• For all X ,Y ∈ Abs and sel ∈ Sel:

X
sel
=⇒ Y ⇐⇒ ∃nX , ny ∈ Nod : σ−1(nX ) = X , σ

−1(nY ) = Y , nX
sel
−→ nY

Remark: yields Galois connection between sets of heap configurations and sets of

shape graphs, both ordered by ⊆
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Shape Graphs

From Heap Configurations to Shape Graphs II

Remark: the following example shows that determinacy can only be postulated if

X 6= ∅:
• Concrete:

y −→ •
sel
←− •

z −→ •
sel
←− •

• Abstract:

Y = {y}
sel
⇐= X = ∅

sel
=⇒ Z = {z}
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Shape Graphs

Shape Graphs and Concrete Heap Properties

Example 20.8

Let G = (Abs,=⇒) be a shape graph. Then the following concrete heap properties
can be expressed as conditions on G:

• x 6= nil

⇐⇒ ∃X ∈ Abs : x ∈ X

• x = y 6= nil (aliasing)

⇐⇒ ∃Z ∈ Abs : x, y ∈ Z

• x.sel1 = y.sel2 6= nil (sharing)

=⇒ ∃X ,Y ,Z ∈ Abs : x ∈ X , y ∈ Y ,X
sel1
=⇒ Z

sel2
⇐= Y

(“⇐=” only valid if Z 6= ∅)
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