'1':"-*_

i -
- k)

Static Program Analysis
Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution)

Winter Semester 2016/17

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

FACH INFORMATIK R\WNTHAACHEN
oot UNIVERSITY

Online Registration for
Seminars and Practical Courses (Praktika)
in Summer Term 2017

Who?
Students of: = Master Courses
= Bachelor Informatik (PraSeminar!)
Where?
www.graphics.rwth-aachen.de/apse
When?

13.01.2017 — 29.01.2017

Seminar Verification and Static Analysis of Software (SS 2017)

Topics
e Pointer and shape analysis
WEIRD — MY CODES CRASHING e Advanced model checking techniques
WHEN GIVEN PRE=I970 DATES e Analysis of probabilistic programs
EPOCH FAIL! ° ...

/
More information
] https://moves.rwth-aachen.de/teaching/ss-17/vsas/

Registration

https://xkcd.com/376

between January 13 and 29 via
https://www.graphics.rwth-aachen.de/apse/

RWTH

30f 18 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) ‘ Bl and Verification Chair

https://moves.rwth-aachen.de/teaching/ss-17/vsas/
https://www.graphics.rwth-aachen.de/apse/

Interprocedural Dataflow Analysis

Overview

e So far: only intraprocedural analyses (i.e., without user-defined functions or procedures or
just within their bodies)

e Now: interprocedural dataflow analysis
e Complications:
— correct matching between calls and returns
— parameter passing (aliasing effects)
e Here: simple setting
— only top-level declarations, no blocks or nested declarations
— mutual recursion
— one call-by-value and one call-by-result parameter
(extension to multiple and call-by-value-result parameters straightforward)

—»[main(head, tail)} _______________ ﬁw[reverse(cur, tail)}

i (cur 1= tail)] [if (cur = tail))

f

(reverse (hgad, tall)]

tmp := cur.prev
tmp := head [)
N (cur.prev := cur.next)
head := tailj“] p
. . (cur.mext := tmp] .~
tail := tmp I
{re\verse(cur.prev, tail)}
Texit],
50f 18 Static Program Analysis o Rm
Winter Semester 2016/17 . . ‘ Software Modeling
Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) B and Verification Chair

Interprocedural Dataflow Analysis

Extending the Syntax
Syntactic categories:

Category Domain Meta variable
Procedure identifiers pPid ={P,Q,...} P

Procedure declarations PDec p
Commands (statements) Cmd C

Context-free grammar:
p ::=proc [P(val x,res y)]" is c [end]*;p | € € PDec
c::=[skip|' | [x := 4] | ¢1;¢c2 | if [b] then ¢; else ¢, end |
while [b]' do c end | [call P(a,x)]f € Cmd

e All labels and procedure names in program p c distinct

e Inproc [P(val x,res y)|" is ¢ [end]*, I,/ I, refers to the entry / exit of P
e In[call P(a,x)]ff, I/l refers to the call of / return from P

e First parameter call-by-value (input), second call-by-result (output)

RWTH

6 of 18 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) ‘ Bl and Verification Chair

Interprocedural Dataflow Analysis

An Example

Example 18.1 (Fibonacci numbers)

(with extension by multiple call-by-value parameters)

proc [Fib(val x, y, res z)|' is
if [x < 2]° then
z =y + 1P
else
call Fib(x-1, y, z)]z;
call Fib(x-2, z, 2)]$
end
[end]®;
[call Fib(5, 0,)],

RWTH

70of 18 Static Program Analysis
Winter Semester 2016/17

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution)

Software Modeling
Il and Verification Chair

Interprocedural Dataflow Analysis

Procedure Flow Graphs |

Definition 18.2 (Procedure flow graphs; extends Def. 2.3 and 2.4)

The auxiliary functions init, final, and flow are extended as follows:
init(proc [P(val x,res y)|" is ¢ [end]*) := I,
final(proc [P(val x,res y)]" is ¢ [end]*) := {/}
flow(proc [P(val x,res y)|" is ¢ [end]*) := {(/,, init(c))} U flow(c)
U {(/, 1) | I € final(c)}
init([call P(a,x)];
final([call P(a,x)]") := {1}
flow([call P(a,x)]%) == {(Is; h), (ki)}

Moreover the interprocedural flow of a program p c is defined by

iflow := {(Is, In, Iy, I;) | p contains proc [P(val x,res y)|" is ¢ [end]* and
c contains [call P(a,x)]ff}

C Lab*

8of 18 Static Program Analysis Rm
Winter Semester 2016/17 "
. X Software Modeling

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) B and Verification Chair

Interprocedural Dataflow Analysis

Procedure Flow Graphs Il

Example 18.3 (Fibonacci numbers)
Flow graph of

proc [Fib(val x, y, res z)|' is
if [x < 2]° then
z -y + 1P
else
call Fib(x-1, y, z)]s;
call Fib(x-2, z, z)]$
end
[end]?;
[call Fib(5, 0, v)]3,

(on the board)
Here iflow = {(9,1,8,10), (4,1,8,5),(6,1,8,7)}

RWTH

90of 18 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution)

Il and Verification Chair

Intraprocedural vs. Interprocedural Analysis

Naive Formulation |

e Attempt: directly transfer techniques from intraprocedural analysis
— treat (I;;) like (I, 1) and (I; I;) like (I, /)

e Given: dataflow system S = (Lab, E, F,(D,C), ¢, ¢)

o For each procedure call [call P(a,x)]}:
transfer functions ¢, ¢, : D — D (definition later)

e For each procedure declaration proc [P(val x,res y)]" is ¢ [end]*:
transfer functions ¢, , ¢, : D — D (definition later)

e Induces equation system

L ifl € E
"ZYLHer(A) | (1) € For (1) € F} otherwise

e Problem: procedure calls (/;; I,) and procedure returns (/y; /) treated like goto’s
—> nesting of calls and returns ignored
—> too many paths considered
—> analysis information possibly imprecise (but still correct)

11 0of 18 Static Program Analysis
Winter Semester 2016/17

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) ‘

RWTH

Software Modeling
Il and Verification Chair

Intraprocedural vs. Interprocedural Analysis

Naive Formulation Il

Example 18.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)|' is e “Valid” path: [9, 1,2, 3,8, 10]

if [x < 2]° then e “Invalid” path: [9,1,2,4,1,2,3,8,10]
z =y + 1}
else

call Fib(x-1, y, 2)]z;

call Fib(x-2, z, 2)]$
end

[end]®;

[call Fib(5, 0, W]

RWTH

12 0f 18 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) ‘ Bl and Verification Chair

Intraprocedural vs. Interprocedural Analysis

Naive Formulation Il

Example 18.5 (Impreciseness of constant propagation analysis)

proc [P(val x, res y)|'is Two “valid” and two “invalid” paths:
[y := x[? e Valid: [4,5,1,2,3,6,7,11]

lend]?; — y =0 at label 11

if [y = 0]* then e Valid: [4,8,1,2,3,9,10, 11]
call P(1, yJ3; — y =0 atlabel 11
y =y - 1] e Invalid: [4,5,1,2,3,9,10, 11]

else — y = —1 at label 11
call P(2, P e Invalid: [4,8,1,2,3,6,7,11]
:Y =y - 2]10 —> y = 1 at label 11

end;

[skip]"

— actually always y = 0 at 11, but naive method yields y = T

RWTH

13 0f 18 Static Program Analysis
Winter Semester 2016/17

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) ‘

Software Modeling
Il and Verification Chair

The MVP Solution

Valid Paths |

e Consider only paths with correct nesting of procedure calls and returns
e Will yield MVP solution (Meet over all Valid Paths)

Definition 18.6 (Valid path fragments)

Given a dataflow system S = (Lab, E, F,(D,C), ¢,) and /s, b € Lab, the set of
valid paths from /; to & is generated by the nonterminal symbol P/,] according to
the following context-free grammar:

P[/-|, /2] — 14 whenever I} = b

P[/1, /3] — /17 P[/27 /3] whenever (/1, /2) cF

Plls, [] = Is, P[ln, k], P[l;, 1] whenever (I, I, I, I;) € iflow

RWTH

150f 18 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) Bl and Verification Chair

The MVP Solution

Valid Paths I

Example 18.7 (Fibonacci numbers; cf. Example 18.4)

proc [Fib(val x, y, res z)| is

if [X < 2] then

z =y + 1]

else

call Fib(x-1, y, 2z)]s;

call Fib(x-2, z, z)[5
end

[end]®;

[call Fib(5, 0, v)]3,

Reminder:
:D[/-|7 /2] — | for L =b
P[/1, /3] — L, P[/g, /3] for (/1, /2) c
Pll, 1] — 1o, Plin,], Pl I
for (I, b, Iy, ;) € iflow

~n

Valid paths from 9 to 10

| —9,P[1,8], P[10, 10]
| —1,pP
| —2,pP
—2,P
—3,P
— 4P
—5,P
—~6,P
—~7,P
— 8

P[10,10] — 10

Thus [9, 1,2, 3,8, 10] € L(P[9, 10]),
9,1,2,4,1,2,3,8,10] ¢ L(P[9, 10])

9
CO
—_
O

) P[57 8]

) P[77 8]

.um . .\.—‘ . ;03 . .\._L ..um . ;—P . '\.OO . .\!\) . .\.—‘

W U U U UUTUTU ‘U
ONO O AWNN =

—_l NS N < NS < Ny N

16 of 18 Static Program Analysis

Winter Semester 2016/17
Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution)

. ... |RWH

Il and Verification Chair

The MVP Solution

The MVP Solution |
Definition 18.8 (Complete valid paths)

Let S = (Lab, E, F,(D,C), , p) be a dataflow system. For every | € Lab, the set of
valid paths up to / is given by

VPath(l) := {[h, ... k1] | k > 1, € E, b =1, [h, ..., k] valid path from £ to /}.
Form = [k, ..., lk_1] € VPath(/), we define the transfer function o, : D — D by

907'(' = Splk_1 ©0...0 90/1 O |dD
(so that ¢ = idp).

RWTH

17 of 18 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) Bl and Verification Chair

The MVP Solution

The MVP Solution |l
Definition 18.9 (MVP solution)

Let S = (Lab, E, F,(D,C), , p) be a dataflow system where Lab = {/;, ..., I,}.
The MVP solution for S is determined by
mvp(S) := (mvp(h), ..., mvp(l,)) € D"
where, for every | € Lab,
mvp(/) := | |{ex(e) | 7 € VPath(l)}.

Corollary 18.10

1. mvp(S) C mop(S)
2. The MVP solution is undecidable.
Proof.

1. since VPath(l) C Path(/) for every | € Lab
2. as mvp(S) = mop(S) in intraprocedural case and MOP solution undecidable (Thm. 7.1) [

18 of 18 Static Program Analysis o Rm
Winter Semester 2016/17 Software Modeling

Lecture 18: Interprocedural Dataflow Analysis | (MVP Solution) Bl and Verification Chair

	Interprocedural Dataflow Analysis
	Intraprocedural vs. Interprocedural Analysis
	The MVP Solution

