'1':"-*_

i -
- k)

Static Program Analysis
Lecture 12: Abstract Interpretation Il (Safe Approximation)

Winter Semester 2016/17

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

Recap: Galois Connections

Galois Connections

Definition (Galois connection)

Let (L,C,) and (M, =) be complete lattices. A pair (v,) of
monotonic functions

a:L—-M and v: M — L
is called a Galois connection if
VieL:1C,v(a(l)) and Vme M: a(y(m)) Ey m

Evariste Galois

Interpretation: (1811-1832)
e [= {sets of concrete values}, M = {sets of abstract values}
e o = abstraction function, v = concretisation function
o | C; v(a(l)): v yields over-approximation
e a(~v(m)) Ty m: no loss of precision by abstraction after concretisation
e Usually: / # y(a(/)), a(v(m)) = m

RWTH

3 of 20 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Recap: Galois Connections

Properties of Galois Connections

Lemma

Let («v,) be a Galois connection with v : L — M and~ : M — L, andlet| € L,
meM, L' CLMCM.

1.a()Cym <= IC;v(m)

2. 7y Iis uniquely determined by « as follows: v(m) = | |{l € L | a(l) Ty m}

« is uniquely determined by ~y as follows: o(l) = [|[{me M | I T, v(m)}

« is completely distributive: forevery L' C L, of| |L') = | [{a(!) | I € L'}

v is completely multiplicative: for every M' C M, ([|M') =[{~v(m) | m e M’}

SN

Proof.
on the board

RWTH

4 of 20 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Recap: Concrete Semantics of WHILE Programs

Execution of Statements |
Definition (Execution relation for statements)

If c € Cmdand o € ¥, then (c, o) is called a configuration. The execution relation
— C (Cmd x X)) x ((CmdU{{}) x X)

is defined by the following rules:

(skip)

(skip, o) — ({,0)

(asgn)

(x :=a,0) — (|,0[x — val,(a)])
(o) = (e o) & #1
<C1 ; Co, O'> — <Cq ; Co, O'/>

<C1) O> — <\L7 OJ>

<C~| ; Co, O'> — <C2, O'/>

(seqt)

(seq?2)

Winter Semester 2016/17
Lecture 12: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

6 of 20 Static Program Analysis o Rm
Software Modeling

Recap: Concrete Semantics of WHILE Programs

Execution of Statements Il

Definition (Execution relation for statements; continued)

val,(b) = true
(if b then ¢y else ¢, end, o) — (cy,0)

(if1)

val,(b) = false
(if b then ¢y else ¢, end, o) — (2, 0)

(if2)

val,(b) = true
(while bdo c end,o) — (c;while bdo cend, o)

(wh1)

val,(b) = false
(while bdo cend,o) — ({,0)

(wh2)

Remark: | indicates successful termination of the program

RWTH

7 of 20 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Recap: Concrete Semantics of WHILE Programs

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever c € Cmd,
o €Y andrky, ke € (CmdU{l}) X X suchthat (c,c) — Ky and (c,0) — kg, then
K1 — Ko.

Proof.
omitted L
8 of 20 Static Program Analysis o Rm

Winter Semester 2016/17 . o ‘ Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions |

Definition 12.1 (Safe approximation)

Let («v,) be a Galois connection with o : L — Mand~ : M — L,andletf: L" — L
and f* : M" — M be functions of rank n € N. Then 7 is called a safe approximation
of f if, whenever my, ... , m, € M,

a(f(v(m), ..., v(my)) Tw FF(my, ..., mp).
Moreover, f is called most precise if the reverse inclusion is also true.

Abstract Concrete
— (m)

N Lf

(M) 3 a(f(y(m))) «— f(y(m))

—

e Interpretation: the abstraction covers all concrete f-results
e Note: monotonicity of f and/or f* is not required (but usually given; see Lemma 12.3)

10 of 20 Static Program Analysis o Rm
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions Il

Example 12.2 (Safeness: a(f(y(my),...,v(my))) Ty 7 (my, ..., mp))

1. Parity abstraction (cf. Example 11.2): L = (27, C), M = (2{even-cdd} ()
—n=0:forf=one C2%: () — {1},
m one” () = {odd} is most precise: «({1}) = {odd} = one™()
m one”() = {even, odd} is (only) safe: «({1}) = {odd} C {even, odd} = one”()
m one”() = {even} is unsafe: a({1}) = {odd} Z {even} = one™()
~n=1:forf=dec:2* -2 .z {z—1]|z€ z},
m dec”({even}) = {odd} is most precise: o(dec(y({even}))) = {odd} = dec”({even})
m dec”({even}) = {odd, even} is (only) safe:
a(dec(v({even}))) = {odd} C {odd, even} = dec”({even})
m dec”({even}) = () is unsafe: a(dec(y({even}))) = {odd} & () = dec’({even})
—n=2:forf=+:22x2% = 2% : (z1,2) > z; + 2,
m {even} +7 {odd} = {odd} is m.p.: a(y({even}) + v({odd})) = {odd} = {even} +* {odd}
m {even} +7 {odd} = {even, odd} is (only) safe:
a(y({even}) + v({odd})) = {odd} C {even,odd} = {even} +* {odd}
m {even} +7 {odd} = {even} is unsafe:

a(y({even}) + v({odd})) = {odd} Z {even} = {even} +7 {odd}

11 of 20 Static Program Analysis
Winter Semester 2016/17 i
Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation)

RWTH

Il and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions lli
Reminder: o(f(v(my),...,v(m,))) Ey 7 (my, ..., m,)
Example 12.2 (continued)

Most precise approximations (with L = (2%, C)):
2. Sign abstraction (cf. Example 11.3): M = (2{+~9 Q)

—n=0:o0ne”() = {+}

- n=1:dec”({+}) = {+,0}, —"({+})={-}

—n=2{+}+*{+}={+}, {(+}F{+}={+ -0}, {+}#{-}={-}
3. Interval abstraction (cf. Example 11.4): M = ((Z U {—o0}) x (Z U {+oo}) U {0}, C)

—n=0: one”() = [1,1]

—-n=1:dec”([z,z]) = [zs — 1,z — 1], —7([z1, 2]) = [~ 2, —z]

—n=2: [y, yo| +7 [z1, 2] = [+ 21, Y2 + 2]

[Yh}’z] —7 [21722] = [}’1 — 22,)2 — Z1]
[}/1;}/2] A [21722] — [|—|{}/1Z17}/1227Y2Z17}/222}7 U{Y1Z17Y1227YQZ1;Y222}]
(thus, +7/—7/-7 = ©/S/® from Slide 7.20)

RWTH

12 of 20 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions IV

Lemma 12.3

Iff: L" — L and " : M" — M are monotonic, then ™ is a safe approximation of f
iff forall ly, ... I, € L,

af(h, ..., 1) Cu f(alh),. .., a(l)).

Proof.

on the board

RWTH

13 of 20 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions |

e Reminder: concrete semantics of WHILE

— statements skip | x :=a| ¢;;¢ | if bthen ¢y else ¢; end | while bdo c end € Cmd
— states ¥ := {0 | 0 : Var — Z} (Definition 11.6)
— execution relation — C (Cmd x ¥) x ((Cmd U {]}) x ¥) (Definition 11.9)

e Yields concrete domain L := (2%, C) and concrete transition function:

Definition 12.4 (Concrete transition function)

The concrete transition function of WHILE is defined by the family of functions
nexte ¢ : o _y o
where ¢ € Cmd, ¢’ € Cmd U {|} and, forevery S C ¥,
next.«(S) :={o' €L |Jo € S:{(c,0) — (¢, o)}

RWTH

15 of 20 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions Il

Remarks: next satisfies the following properties
e “Determinism” (cf. Theorem 11.11):
—forallc € Cmd,c € Cmd U {]}ando € ¥, |next.o({c})| <1
—forallc € Cmd and o € ¥ there exists exactly one ¢ € Cmd U {|} such that next, »({c}) # ()
e When is next, »(S) = ()? Possible reasons:
1.85=10
2. ¢’ is not a possible successor statement of ¢, e.g.,
mc=(x :=0)
m ¢ = skip
3. ¢’ is unreachable for all 0 € S, e.g.,
mc=(if x = 0 then x := 1 else skip end)
m ¢ = skip
mo(x)=0foreacho € S

RWTH

16 of 20 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Safe Approximation of Execution Relations

Safe Approximation of Execution Relations

Reminder: abstraction determined by Galois connection (v, v) with v : L — M,
v :M—= L

e here: L := 2>, M not fixed

e usually M = Var — ... (more efficient) or M = 2"~ (more precise)

e write Abs in place of M

o thus o : 2- — Abs and ~y : Abs — 2%

Definition 12.5 (Abstract semantics of WHILE)

Given o : 2> — Abs, an abstract semantics is defined by a family of functions
nextfc, . Abs — Abs

where ¢ € Cmd, ¢’ € Cmd U {] }, and each nextfc, is a safe approximation of
next; ¢, i.e., ’

a(nexte.c(7(abs))) Caps next?,(abs)

for every abs € Abs (notation: (c, abs) = (c’, abs’) for nextfc,(abs) — abs’).

RWTH

17 of 20 Static Program Analysis o
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Examples

Example: Parity Abstraction
Example 12.6 (Parity abstraction (cf. Example 11.2))

e Var = {n}
e Abs = 2Var—>{even,odd}

e Notation: [n — p| € abs € Abs for p € {even, odd}
e Some abstract transitions:

(n :=3*n+ 1 {[n—oddl})= (|,{[n+— even]})
(n := 2 *n + 1, {[n~ even],[n+— odd]}) = (|,{[n — odd]})
(while —(n=1) do ¢ end, {[n+— odd]}) = (|, {[n — odd]})
(while —(n=1) do c¢ end, {[n+> odd]}) = (c; while —(n=1) do c end,{[n — odd]})
(while —(n=1) do ¢ end,{[n+ even|}) = (], 0)
(while —(n=1) do c¢ end, {[n+ even|}) = (c; while —(n=1) do c¢ end, {[n > even|})

Examples

Example: Hailstone Sequences

Example 12.7 (Hailstone Sequences)

[skip|';
while [-(n = 1)]?do
if [even(n)]® then e skip statements only for labels
6 — 4., Sk o
1[n = 2l) e abstract transition system for o(n) € Zogq:
else
[n := 3 x n + 1]%;[skip|’ oA s bogrd _
end e formal derivation later
end

e Collatz Conjecture: given any n > 0, the program finally returns 1
(that is, every Hailstone Sequence terminates)

e see http://en.wikipedia.org/wiki/Collatz_conjecture

e aka 3n + 1 Conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites’ Conjecture,
Hasse’s Algorithm, or Syracuse Problem

e Latest proof attempt by Gerhard Opfer from Hamburg University
(http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf)

20 of 20 Static Program Analysis o Rm
Winter Semester 2016/17 Software Modeling

Lecture 12: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

http://en.wikipedia.org/wiki/Collatz_conjecture
http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf

	Recap: Galois Connections
	Recap: Concrete Semantics of WHILE Programs
	Safe Approximation of Functions
	Safe Approximation of Execution Relations
	Examples

