Recap: Galois Connections

Galois Connections

Definition (Galois connection)

Let \((L, \sqsubseteq_L)\) and \((M, \sqsubseteq_M)\) be complete lattices. A pair \((\alpha, \gamma)\) of monotonic functions

\[
\alpha : L \to M \quad \text{and} \quad \gamma : M \to L
\]

is called a Galois connection if

\[
\forall l \in L : l \sqsubseteq_L \gamma(\alpha(l)) \quad \text{and} \quad \forall m \in M : \alpha(\gamma(m)) \sqsubseteq_M m
\]

Interpretation:

- \(L = \{\text{sets of concrete values}\}\), \(M = \{\text{sets of abstract values}\}\)
- \(\alpha = \text{abstraction function}, \gamma = \text{concretisation function}\)
- \(l \sqsubseteq_L \gamma(\alpha(l))\): \(\alpha\) yields over-approximation
- \(\alpha(\gamma(m)) \sqsubseteq_M m\): no loss of precision by abstraction after concretisation
- Usually: \(l \neq \gamma(\alpha(l)), \alpha(\gamma(m)) = m\)
Recap: Galois Connections

Properties of Galois Connections

Lemma

Let (α, γ) be a Galois connection with $\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$, and let $l \in L$, $m \in M$, $L' \subseteq L$, $M' \subseteq M$.

1. $\alpha(l) \sqsubseteq_M m \iff l \sqsubseteq_L \gamma(m)$
2. γ is uniquely determined by α as follows: $\gamma(m) = \bigcup \{l \in L \mid \alpha(l) \sqsubseteq_M m\}$
3. α is uniquely determined by γ as follows: $\alpha(l) = \bigcap \{m \in M \mid l \sqsubseteq_L \gamma(m)\}$
4. α is completely distributive: for every $L' \subseteq L$, $\alpha(\bigcup L') = \bigcup \{\alpha(l) \mid l \in L'\}$
5. γ is completely multiplicative: for every $M' \subseteq M$, $\gamma(\bigcap M') = \bigcap \{\gamma(m) \mid m \in M'\}$

Proof.

on the board
Recap: Concrete Semantics of WHILE Programs

Execution of Statements I

Definition (Execution relation for statements)

If $c \in \text{Cmd}$ and $\sigma \in \Sigma$, then $\langle c, \sigma \rangle$ is called a configuration. The execution relation

$$\rightarrow \subseteq (\text{Cmd} \times \Sigma) \times ((\text{Cmd} \cup \{\downarrow\}) \times \Sigma)$$

is defined by the following rules:

\[
\begin{align*}
\text{(skip)} & : \langle \text{skip}, \sigma \rangle \rightarrow \langle \downarrow, \sigma \rangle \\
\text{(asgn)} & : \langle x := a, \sigma \rangle \rightarrow \langle \downarrow, \sigma[x \mapsto \text{val}_\sigma(a)] \rangle \\
\text{(seq1)} & : \langle c_1, \sigma \rangle \rightarrow \langle c_1', \sigma' \rangle \quad c_1' \neq \downarrow \\
\text{(seq2)} & : \langle c_1; c_2, \sigma \rangle \rightarrow \langle c_1'; c_2, \sigma' \rangle \\
\end{align*}
\]
Recap: Concrete Semantics of WHILE Programs

Execution of Statements II

Definition (Execution relation for statements; continued)

\[
\begin{align*}
\text{(if1)} & \quad \text{val}_\sigma(b) = \text{true} \\
& \quad \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end}, \sigma \rangle \rightarrow \langle c_1, \sigma \rangle \\
\text{(if2)} & \quad \text{val}_\sigma(b) = \text{false} \\
& \quad \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end}, \sigma \rangle \rightarrow \langle c_2, \sigma \rangle \\
\text{(wh1)} & \quad \text{val}_\sigma(b) = \text{true} \\
& \quad \langle \text{while } b \text{ do } c \text{ end}, \sigma \rangle \rightarrow \langle c; \text{while } b \text{ do } c \text{ end}, \sigma \rangle \\
\text{(wh2)} & \quad \text{val}_\sigma(b) = \text{false} \\
& \quad \langle \text{while } b \text{ do } c \text{ end}, \sigma \rangle \rightarrow \langle \downarrow, \sigma \rangle
\end{align*}
\]

Remark: \downarrow indicates successful termination of the program
Recap: Concrete Semantics of WHILE Programs

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever $c \in \text{Cmd}$, $\sigma \in \Sigma$ and $\kappa_1, \kappa_2 \in (\text{Cmd} \cup \{\downarrow\}) \times \Sigma$ such that $\langle c, \sigma \rangle \rightarrow \kappa_1$ and $\langle c, \sigma \rangle \rightarrow \kappa_2$, then $\kappa_1 = \kappa_2$.

Proof.

omitted
Safe Approximation of Functions

Safe Approximation of Functions I

Definition 12.1 (Safe approximation)

Let \((\alpha, \gamma)\) be a Galois connection with \(\alpha : L \to M\) and \(\gamma : M \to L\), and let \(f : L^n \to L\) and \(f^\# : M^n \to M\) be functions of rank \(n \in \mathbb{N}\). Then \(f^\#\) is called a safe approximation of \(f\) if, whenever \(m_1, \ldots, m_n \in M\),

\[
\alpha(f(\gamma(m_1), \ldots, \gamma(m_n))) \subseteq M f^\#(m_1, \ldots, m_n).
\]

Moreover, \(f^\#\) is called most precise if the reverse inclusion is also true.

Abstract

\[
\begin{array}{c}
\vec{m} \\
\downarrow f^\# \\
f^\#(\vec{m}) \sqsubseteq \alpha(f(\gamma(\vec{m})))
\end{array}
\]

Concrete

\[
\begin{array}{c}
\gamma(\vec{m}) \\
\downarrow f \\
f(\gamma(\vec{m}))
\end{array}
\]

- **Interpretation:** the abstraction \(f^\#\) covers all concrete \(f\)-results
- **Note:** monotonicity of \(f\) and/or \(f^\#\) is *not* required (but usually given; see Lemma 12.3)
Safe Approximation of Functions

Safe Approximation of Functions II

Example 12.2 (Safeness: \(\alpha(f(\gamma(m_1), \ldots, \gamma(m_n))) \subseteq_M f^\#(m_1, \ldots, m_n)\))

1. Parity abstraction (cf. Example 11.2): \(L = (2^\mathbb{Z}, \subseteq), M = (2^{\{\text{even, odd}\}}, \subseteq)\)
 - \(n = 0\): for \(f = \text{one} \subseteq 2^\mathbb{Z} : () \mapsto \{1\}\),
 - \(\text{one}^\#() = \{\text{odd}\}\) is most precise: \(\alpha(\{1\}) = \{\text{odd}\} = \text{one}^\#()\)
 - \(\text{one}^\#() = \{\text{even, odd}\}\) is (only) safe: \(\alpha(\{1\}) = \{\text{odd}\} \subset \{\text{even, odd}\} = \text{one}^\#()\)
 - \(\text{one}^\#() = \{\text{even}\}\) is unsafe: \(\alpha(\{1\}) = \{\text{odd}\} \not\subset \{\text{even}\} = \text{one}^\#()\)
 - \(n = 1\): for \(f = \text{dec} : 2^\mathbb{Z} \rightarrow 2^\mathbb{Z} : Z \mapsto \{z - 1 \mid z \in \mathbb{Z}\}\),
 - \(\text{dec}^\#(\{\text{even}\}) = \{\text{odd}\}\) is most precise: \(\alpha(\text{dec}^\gamma(\{\text{even}\})) = \{\text{odd}\} = \text{dec}^\#(\{\text{even}\})\)
 - \(\text{dec}^\#(\{\text{even}\}) = \{\text{odd, even}\}\) is (only) safe:
 - \(\alpha(\text{dec}^\gamma(\{\text{even}\})) = \{\text{odd}\} \subset \{\text{odd, even}\} = \text{dec}^\#(\{\text{even}\})\)
 - \(\text{dec}^\#(\{\text{even}\}) = \emptyset\) is unsafe: \(\alpha(\text{dec}^\gamma(\{\text{even}\})) = \{\text{odd}\} \not\subset \emptyset = \text{dec}^\#(\{\text{even}\})\)
 - \(n = 2\): for \(f = + : 2^\mathbb{Z} \times 2^\mathbb{Z} \rightarrow 2^\mathbb{Z} : (z_1, z_2) \mapsto z_1 + z_2\),
 - \(\{\text{even}\} +^\# \{\text{odd}\} = \{\text{odd}\}\) is m.p.: \(\alpha(\gamma(\{\text{even}\}) + \gamma(\{\text{odd}\})) = \{\text{odd}\} = \{\text{even\} +^\# \{\text{odd}\}\)
 - \(\{\text{even}\} +^\# \{\text{odd\}} = \{\text{even, odd\}}\) is (only) safe:
 - \(\alpha(\gamma(\{\text{even\}) + \gamma(\{\text{odd}\})) = \{\text{odd\} \subset \{\text{even, odd\}} = \{\text{even\} +^\# \{\text{odd\}}\)
 - \(\{\text{even\} +^\# \{\text{odd\}} = \{\text{even\}}\) is unsafe:
 - \(\alpha(\gamma(\{\text{even\}) + \gamma(\{\text{odd\})) = \{\text{odd\} \not\subset \{\text{even\}} = \{\text{even\} +^\# \{\text{odd\}}\)
Safe Approximation of Functions

Safe Approximation of Functions III

Reminder: \(\alpha(f(\gamma(m_1), \ldots, \gamma(m_n))) \sqsubseteq_M f^\#(m_1, \ldots, m_n) \)

Example 12.2 (continued)

Most precise approximations (with \(L = (2^\mathbb{Z}, \sqsubseteq) \)):

2. Sign abstraction (cf. Example 11.3): \(M = (2^{\{+,-,0\}}, \subseteq) \)
 - \(n = 0 \): one\(^\#() = \{+\}\)
 - \(n = 1 \): dec\(^\#(\{+\}) = \{+, 0\}, \quad -\#(\{+\}) = \{-\}\)
 - \(n = 2 \): \{+\} +\# \{+\} = \{+\}, \quad \{+\} -\# \{+\} = \{+,-,0\}, \quad \{+\} \cdot\# \{-\} = \{-\}\)

3. Interval abstraction (cf. Example 11.4): \(M = ((\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \cup \{\emptyset\}, \subseteq) \)
 - \(n = 0 \): one\(^\#() = [1, 1]\)
 - \(n = 1 \): dec\(^\#([z_1, z_2]) = [z_1 - 1, z_2 - 1], \quad -\#([z_1, z_2]) = [-z_2, -z_1]\)
 - \(n = 2 \): \([y_1, y_2] +\# [z_1, z_2] = [y_1 + z_1, y_2 + z_2]\)
 \([y_1, y_2] -\# [z_1, z_2] = [y_1 - z_2, y_2 - z_1]\)
 \([y_1, y_2] \cdot\# [z_1, z_2] = \bigcap \{y_1 z_1, y_1 z_2, y_2 z_1, y_2 z_2\}, \bigcup \{y_1 z_1, y_1 z_2, y_2 z_1, y_2 z_2\}\)

(Thus, \(+\#/-\#/\cdot\# = \oplus/\ominus/\odot\) from Slide 7.20)
Safe Approximation of Functions

Safe Approximation of Functions IV

Lemma 12.3

If \(f : L^n \to L \) and \(f'^\# : M^n \to M \) are monotonic, then \(f'^\# \) is a safe approximation of \(f \) iff, for all \(l_1, \ldots, l_n \in L \),

\[
\alpha(f(l_1, \ldots, l_n)) \sqsubseteq_M f'^\#(\alpha(l_1), \ldots, \alpha(l_n)).
\]

Proof.

on the board
Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions I

• **Reminder:** concrete semantics of WHILE
 - statements $\text{skip} \mid x := a \mid c_1 ; c_2 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end} \mid \text{while } b \text{ do } c \text{ end} \in \text{Cmd}$
 - states $\Sigma := \{ \sigma \mid \sigma : \text{Var} \rightarrow \mathbb{Z} \}$ (Definition 11.6)
 - execution relation $\rightarrow \subseteq (\text{Cmd} \times \Sigma) \times ((\text{Cmd} \cup \{\downarrow\}) \times \Sigma)$ (Definition 11.9)

• Yields concrete domain $L := (2^\Sigma, \subseteq)$ and concrete transition function:

Definition 12.4 (Concrete transition function)

The concrete transition function of WHILE is defined by the family of functions
\[
\text{next}_{c,c'} : 2^\Sigma \rightarrow 2^\Sigma
\]
where $c \in \text{Cmd}$, $c' \in \text{Cmd} \cup \{\downarrow\}$ and, for every $S \subseteq \Sigma$,
\[
\text{next}_{c,c'}(S) := \{ \sigma' \in \Sigma \mid \exists \sigma \in S : \langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle \}.
\]
Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions II

Remarks: next satisfies the following properties

- **“Determinism”** (cf. Theorem 11.11):
 - for all $c \in \text{Cmd}$, $c' \in \text{Cmd} \cup \{\downarrow\}$ and $\sigma \in \Sigma$, $|\text{next}_{c,c'}(\{\sigma\})| \leq 1$
 - for all $c \in \text{Cmd}$ and $\sigma \in \Sigma$ there exists exactly one $c' \in \text{Cmd} \cup \{\downarrow\}$ such that $\text{next}_{c,c'}(\{\sigma\}) \neq \emptyset$

- When is $\text{next}_{c,c'}(S) = \emptyset$? Possible reasons:
 1. $S = \emptyset$
 2. c' is not a possible successor statement of c, e.g.,
 - $c = (x := 0)$
 - $c' = \text{skip}$
 3. c' is unreachable for all $\sigma \in S$, e.g.,
 - $c = (\text{if } x = 0 \text{ then } x := 1 \text{ else } \text{skip end})$
 - $c' = \text{skip}$
 - $\sigma(x) = 0$ for each $\sigma \in S$
Safe Approximation of Execution Relations

Reminder: abstraction determined by Galois connection \((\alpha, \gamma)\) with \(\alpha : L \to M\), \(\gamma : M \to L\)
- here: \(L := 2^\Sigma\), \(M\) not fixed
- usually \(M = Var \to \ldots\) (more efficient) or \(M = 2^{Var \to \ldots}\) (more precise)
- write \(Abs\) in place of \(M\)
- thus \(\alpha : 2^\Sigma \to Abs\) and \(\gamma : Abs \to 2^\Sigma\)

Definition 12.5 (Abstract semantics of WHILE)

Given \(\alpha : 2^\Sigma \to Abs\), an abstract semantics is defined by a family of functions

\[
next^\#_{c,c'} : Abs \to Abs
\]

where \(c \in Cmd\), \(c' \in Cmd \cup \{\downarrow\}\), and each \(next^\#_{c,c'}\) is a safe approximation of \(next_{c,c'}\), i.e.,

\[
\alpha\left(next_{c,c'}\left(\gamma\left(abs\right)\right)\right) \subseteq_{Abs} next^\#_{c,c'}\left(abs\right)
\]

for every \(abs \in Abs\) (notation: \(\langle c, abs \rangle \Rightarrow \langle c', abs' \rangle\) for \(next^\#_{c,c'}(abs) = abs'\)).
Example 12.6 (Parity abstraction (cf. Example 11.2))

- \(Var = \{n\} \)
- \(Abs = 2^{Var \rightarrow \{\text{even, odd}\}} \)
- Notation: \([n \mapsto p] \in abs \in Abs\) for \(p \in \{\text{even, odd}\}\)
- Some abstract transitions:

 \[
 \langle n := 3 \ast n + 1, \{[n \mapsto \text{odd}]\} \rangle \Rightarrow \downarrow, \{[n \mapsto \text{even}]\}\]

 \[
 \langle n := 2 \ast n + 1, \{[n \mapsto \text{even}], [n \mapsto \text{odd}]\} \rangle \Rightarrow \downarrow, \{[n \mapsto \text{odd}]\}\]

 \[
 \langle \text{while } \neg (n=1) \text{ do } c \text{ end}, \{[n \mapsto \text{odd}]\} \rangle \Rightarrow \downarrow, \{[n \mapsto \text{odd}]\}\]

 \[
 \langle \text{while } \neg (n=1) \text{ do } c \text{ end}, \{[n \mapsto \text{odd}]\} \rangle \Rightarrow \langle c; \text{ while } \neg (n=1) \text{ do } c \text{ end}, \{[n \mapsto \text{odd}]\} \rangle\]

 \[
 \langle \text{while } \neg (n=1) \text{ do } c \text{ end}, \{[n \mapsto \text{even}]\} \rangle \Rightarrow \downarrow, \emptyset\]

 \[
 \langle \text{while } \neg (n=1) \text{ do } c \text{ end}, \{[n \mapsto \text{even}]\} \rangle \Rightarrow \langle c; \text{ while } \neg (n=1) \text{ do } c \text{ end}, \{[n \mapsto \text{even}]\} \rangle\]
Example: Hailstone Sequences

Example 12.7 (Hailstone Sequences)

```
[skip];
while [¬(n = 1)] do
  if [even(n)] then
    [n := n / 2];[skip]
  else
    [n := 3 * n + 1];[skip]
end
```

-
- `skip` statements only for labels
- abstract transition system for \(\sigma(n) \in \mathbb{Z}_{\text{odd}} \): on the board
- formal derivation later

- **Collatz Conjecture**: given any \(n > 0 \), the program finally returns 1 (that is, every Hailstone Sequence terminates)
- aka 3\(n + 1 \) Conjecture, Ulam Conjecture, Kakutani's Problem, Thwaites' Conjecture, Hasse's Algorithm, or Syracuse Problem