
Static Program Analysis
Lecture 12: Abstract Interpretation II (Safe Approximation)

Winter Semester 2016/17

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

https://moves.rwth-aachen.de/teaching/ws-1617/spa/

Recap: Galois Connections

Galois Connections

Definition (Galois connection)

Let (L,vL) and (M,vM) be complete lattices. A pair (α, γ) of
monotonic functions

α : L→ M and γ : M → L

is called a Galois connection if

∀l ∈ L : l vL γ(α(l)) and ∀m ∈ M : α(γ(m)) vM m

Interpretation:
• L = {sets of concrete values}, M = {sets of abstract values}
• α = abstraction function, γ = concretisation function
• l vL γ(α(l)): α yields over-approximation
• α(γ(m)) vM m: no loss of precision by abstraction after concretisation
• Usually: l 6= γ(α(l)), α(γ(m)) = m

Evariste Galois
(1811–1832)

3 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Recap: Galois Connections

Properties of Galois Connections

Lemma

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let l ∈ L,
m ∈ M, L′ ⊆ L, M ′ ⊆ M.
1. α(l) vM m ⇐⇒ l vL γ(m)

2. γ is uniquely determined by α as follows: γ(m) =
⊔
{l ∈ L | α(l) vM m}

3. α is uniquely determined by γ as follows: α(l) =
d
{m ∈ M | l vL γ(m)}

4. α is completely distributive: for every L′ ⊆ L, α(
⊔

L′) =
⊔
{α(l) | l ∈ L′}

5. γ is completely multiplicative: for every M ′ ⊆ M, γ(
d

M ′) =
d
{γ(m) | m ∈ M ′}

Proof.

on the board

4 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Recap: Concrete Semantics of WHILE Programs

Execution of Statements I

Definition (Execution relation for statements)

If c ∈ Cmd and σ ∈ Σ, then 〈c, σ〉 is called a configuration. The execution relation

→⊆ (Cmd × Σ)× ((Cmd ∪ {↓})× Σ)

is defined by the following rules:

(skip)

〈skip, σ〉 → 〈↓, σ〉

(asgn)

〈x := a, σ〉 → 〈↓, σ[x 7→ valσ(a)]〉

(seq1)

〈c1, σ〉 → 〈c′1, σ′〉 c′1 6= ↓
〈c1;c2, σ〉 → 〈c′1;c2, σ

′〉

(seq2)

〈c1, σ〉 → 〈↓, σ′〉
〈c1;c2, σ〉 → 〈c2, σ

′〉

6 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Recap: Concrete Semantics of WHILE Programs

Execution of Statements II

Definition (Execution relation for statements; continued)

(if1)

valσ(b) = true

〈if b then c1 else c2 end, σ〉 → 〈c1, σ〉

(if2)

valσ(b) = false

〈if b then c1 else c2 end, σ〉 → 〈c2, σ〉

(wh1)

valσ(b) = true

〈while b do c end, σ〉 → 〈c;while b do c end, σ〉

(wh2)

valσ(b) = false

〈while b do c end, σ〉 → 〈↓, σ〉

Remark: ↓ indicates successful termination of the program

7 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Recap: Concrete Semantics of WHILE Programs

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever c ∈ Cmd,
σ ∈ Σ and κ1, κ2 ∈ (Cmd ∪ {↓})× Σ such that 〈c, σ〉 → κ1 and 〈c, σ〉 → κ2, then
κ1 = κ2.

Proof.

omitted

8 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Functions

Safe Approximation of Functions I

Definition 12.1 (Safe approximation)

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let f : Ln → L
and f # : Mn → M be functions of rank n ∈ N. Then f # is called a safe approximation
of f if, whenever m1, . . . ,mn ∈ M,

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn).

Moreover, f # is called most precise if the reverse inclusion is also true.

Abstract Concrete
~m

γ−→ γ(~m)
↓ f # ↓ f
f #(~m) w α(f (γ(~m)))

α←− f (γ(~m))

• Interpretation: the abstraction f # covers all concrete f -results
• Note: monotonicity of f and/or f # is not required (but usually given; see Lemma 12.3)

10 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Functions

Safe Approximation of Functions II

Example 12.2 (Safeness: α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn))

1. Parity abstraction (cf. Example 11.2): L = (2Z,⊆), M = (2{even,odd},⊆)
– n = 0: for f = one ⊆ 2Z : () 7→ {1},

� one#() = {odd} is most precise: α({1}) = {odd} = one#()
� one#() = {even, odd} is (only) safe: α({1}) = {odd} ({even, odd} = one#()
� one#() = {even} is unsafe: α({1}) = {odd} 6⊆ {even} = one#()

– n = 1: for f = dec : 2Z → 2Z : Z 7→ {z − 1 | z ∈ Z},
� dec#({even}) = {odd} is most precise: α(dec(γ({even}))) = {odd} = dec#({even})
� dec#({even}) = {odd, even} is (only) safe:
α(dec(γ({even}))) = {odd} ({odd, even} = dec#({even})

� dec#({even}) = ∅ is unsafe: α(dec(γ({even}))) = {odd} 6⊆ ∅ = dec#({even})
– n = 2: for f = + : 2Z × 2Z → 2Z : (z1, z2) 7→ z1 + z2,

� {even} +# {odd} = {odd} is m.p.: α(γ({even}) + γ({odd})) = {odd} = {even} +# {odd}
� {even} +# {odd} = {even, odd} is (only) safe:
α(γ({even}) + γ({odd})) = {odd} ({even, odd} = {even} +# {odd}

� {even} +# {odd} = {even} is unsafe:
α(γ({even}) + γ({odd})) = {odd} 6⊆ {even} = {even} +# {odd}

11 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Functions

Safe Approximation of Functions III

Reminder: α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn)

Example 12.2 (continued)

Most precise approximations (with L = (2Z,⊆)):
2. Sign abstraction (cf. Example 11.3): M = (2{+,−,0},⊆)

– n = 0: one#() = {+}
– n = 1: dec#({+}) = {+, 0}, −#({+}) = {−}
– n = 2: {+} +# {+} = {+}, {+} −# {+} = {+,−, 0}, {+} ·# {−} = {−}

3. Interval abstraction (cf. Example 11.4): M = ((Z ∪ {−∞})× (Z ∪ {+∞}) ∪ {∅},⊆)
– n = 0: one#() = [1, 1]
– n = 1: dec#([z1, z2]) = [z1 − 1, z2 − 1], −#([z1, z2]) = [−z2,−z1]
– n = 2: [y1, y2] +# [z1, z2] = [y1 + z1, y2 + z2]

[y1, y2]−# [z1, z2] = [y1 − z2, y2 − z1]
[y1, y2] ·# [z1, z2] = [

d
{y1z1, y1z2, y2z1, y2z2},

⊔
{y1z1, y1z2, y2z1, y2z2}]

(thus, +#/−#/·# =⊕/	/� from Slide 7.20)

12 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Functions

Safe Approximation of Functions IV

Lemma 12.3

If f : Ln → L and f # : Mn → M are monotonic, then f # is a safe approximation of f
iff, for all l1, . . . , ln ∈ L,

α(f (l1, . . . , ln)) vM f #(α(l1), . . . , α(ln)).

Proof.

on the board

13 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions I

• Reminder: concrete semantics of WHILE
– statements skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd
– states Σ := {σ | σ : Var → Z} (Definition 11.6)
– execution relation→⊆ (Cmd × Σ)× ((Cmd ∪ {↓})× Σ) (Definition 11.9)

• Yields concrete domain L := (2Σ,⊆) and concrete transition function:

Definition 12.4 (Concrete transition function)

The concrete transition function of WHILE is defined by the family of functions

nextc,c′ : 2Σ → 2Σ

where c ∈ Cmd , c′ ∈ Cmd ∪ {↓} and, for every S ⊆ Σ,

nextc,c′(S) := {σ′ ∈ Σ | ∃σ ∈ S : 〈c, σ〉 → 〈c′, σ′〉}.

15 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions II

Remarks: next satisfies the following properties
• “Determinism” (cf. Theorem 11.11):

– for all c ∈ Cmd , c′ ∈ Cmd ∪ {↓} and σ ∈ Σ, |nextc,c′({σ})| ≤ 1
– for all c ∈ Cmd and σ ∈ Σ there exists exactly one c′ ∈ Cmd ∪ {↓} such that nextc,c′({σ}) 6= ∅

• When is nextc,c′(S) = ∅? Possible reasons:
1. S = ∅
2. c′ is not a possible successor statement of c, e.g.,

� c = (x := 0)
� c′ = skip

3. c′ is unreachable for all σ ∈ S, e.g.,
� c = (if x = 0 then x := 1 else skip end)
� c′ = skip
� σ(x) = 0 for each σ ∈ S

16 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Execution Relations

Safe Approximation of Execution Relations

Reminder: abstraction determined by Galois connection (α, γ) with α : L→ M,
γ : M → L
• here: L := 2Σ, M not fixed
• usually M = Var → . . . (more efficient) or M = 2Var→... (more precise)
• write Abs in place of M
• thus α : 2Σ → Abs and γ : Abs → 2Σ

Definition 12.5 (Abstract semantics of WHILE)

Given α : 2Σ → Abs, an abstract semantics is defined by a family of functions

next#c,c′ : Abs → Abs

where c ∈ Cmd , c′ ∈ Cmd ∪ {↓}, and each next#c,c′ is a safe approximation of
nextc,c′, i.e.,

α(nextc,c′(γ(abs))) vAbs next#c,c′(abs)

for every abs ∈ Abs (notation: 〈c, abs〉 ⇒ 〈c′, abs′〉 for next#c,c′(abs) = abs′).

17 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Examples

Example: Parity Abstraction

Example 12.6 (Parity abstraction (cf. Example 11.2))

• Var = {n}
• Abs = 2Var→{even,odd}

• Notation: [n 7→ p] ∈ abs ∈ Abs for p ∈ {even, odd}
• Some abstract transitions:

〈n := 3 * n + 1, {[n 7→ odd]}〉 ⇒ 〈↓, {[n 7→ even]}〉

〈n := 2 * n + 1, {[n 7→ even], [n 7→ odd]}〉 ⇒ 〈↓, {[n 7→ odd]}〉

〈while ¬(n=1) do c end, {[n 7→ odd]}〉 ⇒ 〈↓, {[n 7→ odd]}〉

〈while ¬(n=1) do c end, {[n 7→ odd]}〉 ⇒ 〈c; while ¬(n=1) do c end, {[n 7→ odd]}〉

〈while ¬(n=1) do c end, {[n 7→ even]}〉 ⇒ 〈↓, ∅〉

〈while ¬(n=1) do c end, {[n 7→ even]}〉 ⇒ 〈c; while ¬(n=1) do c end, {[n 7→ even]}〉

19 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

Examples

Example: Hailstone Sequences

Example 12.7 (Hailstone Sequences)
[skip]1;
while [¬(n = 1)]2 do
if [even(n)]3 then

[n := n / 2]4;[skip]5

else
[n := 3 * n + 1]6;[skip]7

end
end

• skip statements only for labels
• abstract transition system for σ(n) ∈ Zodd:

on the board
• formal derivation later

• Collatz Conjecture: given any n > 0, the program finally returns 1
(that is, every Hailstone Sequence terminates)
• see http://en.wikipedia.org/wiki/Collatz_conjecture

• aka 3n + 1 Conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites’ Conjecture,
Hasse’s Algorithm, or Syracuse Problem
• Latest proof attempt by Gerhard Opfer from Hamburg University

(http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf)

20 of 20 Static Program Analysis

Winter Semester 2016/17
Lecture 12: Abstract Interpretation II (Safe Approximation)

http://en.wikipedia.org/wiki/Collatz_conjecture
http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf

	Recap: Galois Connections
	Recap: Concrete Semantics of WHILE Programs
	Safe Approximation of Functions
	Safe Approximation of Execution Relations
	Examples

