Static Program Analysis

Lecture 11: Abstract Interpretation I (Theoretical Foundations)

Winter Semester 2016/17

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1617/spa/
Introduction to Abstract Interpretation

Outline of Lecture 11

Introduction to Abstract Interpretation

Theoretical Foundations of Abstract Interpretation

Excursus: Concrete Semantics of WHILE Programs
Abstract Interpretation I

- **Summary:** a theory of sound approximation of the semantics of programs
- **Basic idea:** execution of program on abstract values
- **Examples:**
 - parity (even/odd) rather than concrete numbers
 - types rather than concrete values (similar to type-level JVM bytecode interpreter)
Abstract Interpretation I

- **Summary**: a theory of sound approximation of the semantics of programs
- **Basic idea**: execution of program on abstract values
- **Examples**:
 - parity (even/odd) rather than concrete numbers
 - types rather than concrete values (similar to type-level JVM bytecode interpreter)
- **Procedure**: run program on (finite) set of abstract values that cover all concrete inputs using abstract operations (for basic operations, statements, ...) that cover all concrete outputs
 \[\Rightarrow\] soundness of approach
- **Preciseness** of information again characterized by partial order
Abstract Interpretation II

Advantages:
- Abstract interpretation covers *conditional branches* (if/while) without further extension
- Granularity of abstract domain influences *precision and complexity* of analysis (mutual trade-off)
- Numerous variants for *different kinds of programs* (functional, concurrent, ...)
- *Soundness* is guaranteed if abstract operations are determined according to theory
Introduction to Abstract Interpretation

Abstract Interpretation II

- **Advantages:**
 - Abstract interpretation covers conditional branches \((\text{if/while})\) without further extension
 - Granularity of abstract domain influences precision and complexity of analysis (mutual trade-off)
 - Numerous variants for different kinds of programs (functional, concurrent, ...)
 - Soundness is guaranteed if abstract operations are determined according to theory

- **Disadvantages:**
 - Complexity generally higher than with dataflow analysis
 - Automatic derivation of abstract operations can be difficult
Introduction to Abstract Interpretation

Overview

1. Theoretical foundations (Galois connections)
2. (Concrete & Abstract semantics of WHILE programs
3. Automatic derivation of abstract semantics
4. Application: verification of 16-bit multiplication
5. Predicate abstraction
6. CEGAR (CounterExample-Guided Abstraction Refinement)
Theoretical Foundations of Abstract Interpretation

Outline of Lecture 11

Introduction to Abstract Interpretation

Theoretical Foundations of Abstract Interpretation

Excursus: Concrete Semantics of WHILE Programs
Theoretical Foundations of Abstract Interpretation

Galois Connections I

Definition 11.1 (Galois connection)

Let \((L, \sqsubseteq_L)\) and \((M, \sqsubseteq_M)\) be complete lattices. A pair \((\alpha, \gamma)\) of monotonic functions

\[
\alpha : L \rightarrow M \quad \text{and} \quad \gamma : M \rightarrow L
\]

is called a **Galois connection** if

\[
\forall l \in L : l \sqsubseteq_L \gamma(\alpha(l)) \quad \text{and} \quad \forall m \in M : \alpha(\gamma(m)) \sqsubseteq_M m
\]

Interpretation:

- \(L = \{\text{sets of concrete values}\}\), \(M = \{\text{sets of abstract values}\}\)
- \(\alpha = \text{abstraction function}, \quad \gamma = \text{concretisation function}\)
- \(l \sqsubseteq_L \gamma(\alpha(l))\): \(\alpha\) yields over-approximation
- \(\alpha(\gamma(m)) \sqsubseteq_M m\): no loss of precision by abstraction after concretisation
- Usually: \(l \neq \gamma(\alpha(l)), \quad \alpha(\gamma(m)) = m\)
Theoretical Foundations of Abstract Interpretation

Galois Connections II

For $A = \{\text{concrete values}\}$, $B = \{\text{abstract values}\}$, $L = 2^A$, $M = 2^B$:

$\forall l \in L : l \sqsubseteq_L \gamma(\alpha(l))$

(α yields over-approximation)

$\forall m \in M : \alpha(\gamma(m)) \sqsubseteq_M m$

(no loss of precision by abstraction after concretisation)
Galois Connections III

<table>
<thead>
<tr>
<th>Example 11.2 (Parity abstraction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete domain</td>
</tr>
<tr>
<td>(L := (2\mathbb{Z}, \subseteq))</td>
</tr>
<tr>
<td>(\gamma : 2^{{\text{even, odd}}} \rightarrow 2^\mathbb{Z})</td>
</tr>
<tr>
<td>(\gamma(P) := \bigcup_{p \in P} \mathbb{Z}_p)</td>
</tr>
<tr>
<td>where</td>
</tr>
<tr>
<td>(\mathbb{Z}_{\text{even}} := { \ldots, -2, 0, 2, \ldots })</td>
</tr>
<tr>
<td>(\mathbb{Z}_{\text{odd}} := { \ldots, -3, -1, 1, 3, \ldots })</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M := (2^{{\text{even, odd}}}, \subseteq))</td>
</tr>
<tr>
<td>(\alpha : 2^\mathbb{Z} \rightarrow 2^{{\text{even, odd}}})</td>
</tr>
</tbody>
</table>
| \(\alpha(Z) := \begin{cases}
\emptyset & \text{if } Z = \emptyset \\
\{\text{even}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{even}} \\
\{\text{odd}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{odd}} \\
\{\text{even, odd}\} & \text{otherwise}
\end{cases} \) |

yields a Galois connection.
Theoretical Foundations of Abstract Interpretation

Galois Connections III

Example 11.2 (Parity abstraction)

Concrete domain

\[L := \left(2^{\mathbb{Z}}, \subseteq \right) \]

\[\gamma : 2^{\{\text{even, odd}\}} \rightarrow 2^{\mathbb{Z}} \]

\[\gamma(P) := \bigcup_{p \in P} \mathbb{Z}_p \]

where

\[\mathbb{Z}_{\text{even}} := \{ \ldots, -2, 0, 2, \ldots \} \]

\[\mathbb{Z}_{\text{odd}} := \{ \ldots, -3, -1, 1, 3, \ldots \} \]

Abstract domain

\[M := \left(2^{\{\text{even, odd}\}}, \subseteq \right) \]

\[\alpha : 2^{\mathbb{Z}} \rightarrow 2^{\{\text{even, odd}\}} \]

\[\alpha(Z) := \begin{cases}
\emptyset & \text{if } Z = \emptyset \\
\{\text{even}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{even}} \\
\{\text{odd}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{odd}} \\
\{\text{even, odd}\} & \text{otherwise}
\end{cases} \]

yields a Galois connection. For example,

- \(\gamma(\alpha(\{1, 3, 7\})) = \gamma(\{\text{odd}\}) = \{\ldots, -3, -1, 1, 3, \ldots \} \supseteq \{1, 3, 7\} \)
- \(\alpha(\gamma(\{\text{even}\})) = \alpha(\{\ldots, -2, 0, 2, \ldots \}) = \{\text{even}\} \)
Example 11.3 (Sign abstraction)

<table>
<thead>
<tr>
<th>Concrete domain</th>
<th>Abstract domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete domain</td>
<td>Abstract domain</td>
</tr>
<tr>
<td>$L := (2^\mathbb{Z}, \subseteq)$</td>
<td>$M := (2^{{+,-,0}}, \subseteq)$</td>
</tr>
<tr>
<td>$\gamma : 2^{{+,-,0}} \rightarrow 2^\mathbb{Z}$</td>
<td>$\alpha : 2^\mathbb{Z} \rightarrow 2^{{+,-,0}}$</td>
</tr>
<tr>
<td>$\gamma(S) := \bigcup_{s \in S} \mathbb{Z}_s$</td>
<td>$\alpha(Z) := { \text{sgn}(z) \mid z \in \mathbb{Z} }$</td>
</tr>
<tr>
<td>where</td>
<td>where</td>
</tr>
<tr>
<td>$\mathbb{Z}_+ := {1, 2, 3, \ldots}$</td>
<td>$\text{sgn}(z) :=$</td>
</tr>
<tr>
<td>$\mathbb{Z}_- := {-1, -2, -3, \ldots}$</td>
<td>$+$ if $z > 0$</td>
</tr>
<tr>
<td>$\mathbb{Z}_0 := {0}$</td>
<td>$-$ if $z < 0$</td>
</tr>
<tr>
<td></td>
<td>0 otherwise</td>
</tr>
</tbody>
</table>

yields a Galois connection.
Theoretical Foundations of Abstract Interpretation

Galois Connections IV

Example 11.3 (Sign abstraction)

<table>
<thead>
<tr>
<th>Concrete domain</th>
<th>Abstract domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L := (2^\mathbb{Z}, \subseteq)$</td>
<td>$M := (2^{{+, -, 0}}, \subseteq)$</td>
</tr>
<tr>
<td>$\gamma : 2^{{+, -, 0}} \to 2^\mathbb{Z}$</td>
<td>$\alpha : 2^\mathbb{Z} \to 2^{{+, -, 0}}$</td>
</tr>
<tr>
<td>$\gamma(S) := \bigcup_{s \in S} \mathbb{Z}_s$</td>
<td>$\alpha(Z) := {\text{sgn}(z) \mid z \in \mathbb{Z}}$</td>
</tr>
</tbody>
</table>

where

- $\mathbb{Z}_+ := \{1, 2, 3, \ldots\}$
- $\mathbb{Z}_- := \{-1, -2, -3, \ldots\}$
- $\mathbb{Z}_0 := \{0\}$

yields a Galois connection. For example,

- $\gamma(\alpha(\{0, 1, 3\})) = \gamma(\{+, 0\}) = \{0, 1, 2, 3, \ldots\} \supseteq \{0, 1, 3\}$
- $\alpha(\gamma(\{+, -, \})) = \alpha(\mathbb{Z} \setminus \{0\}) = \{+, -, \}$

where

- $\text{sgn}(z) := \begin{cases} + & \text{if } z > 0 \\ - & \text{if } z < 0 \\ 0 & \text{otherwise} \end{cases}$
Example 11.4 (Interval abstraction (cf. Slide 7.16))

Concrete domain

\[L := (2^\mathbb{Z}, \subseteq) \]

\[\gamma : \text{Int} \to 2^\mathbb{Z} \]

\[\gamma(J) := \begin{cases}
\emptyset & \text{if } J = \emptyset \\
\{ z \in \mathbb{Z} \mid z_1 \leq z \leq z_2 \} & \text{if } J = [z_1, z_2]
\end{cases} \]

Abstract domain

\[M := (\text{Int}, \subseteq) \]

where \(\text{Int} := (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \cup \{\emptyset\} \)

\[\alpha : 2^\mathbb{Z} \to \text{Int} \]

\[\alpha(Z) := \begin{cases}
\emptyset & \text{if } Z = \emptyset \\
[\cap Z, \cup Z] & \text{otherwise}
\end{cases} \]

yields a Galois connection.
Theoretical Foundations of Abstract Interpretation

Galois Connections V

Example 11.4 (Interval abstraction (cf. Slide 7.16))

<table>
<thead>
<tr>
<th>Concrete domain</th>
<th>Abstract domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L := (2^\mathbb{Z}, \subseteq))</td>
<td>(M := (\text{Int}, \subseteq))</td>
</tr>
<tr>
<td>(\gamma : \text{Int} \rightarrow 2^\mathbb{Z})</td>
<td>where (\text{Int} := (\mathbb{Z} \cup {-\infty}) \times (\mathbb{Z} \cup {+\infty}) \cup {\emptyset})</td>
</tr>
<tr>
<td>(\gamma(J) := \begin{cases} \emptyset & \text{if } J = \emptyset \ {z \in \mathbb{Z} \mid z_1 \leq z \leq z_2} & \text{if } J = [z_1, z_2] \end{cases})</td>
<td>(\alpha : 2^\mathbb{Z} \rightarrow \text{Int})</td>
</tr>
<tr>
<td>(\alpha(Z) := \begin{cases} \emptyset & \text{if } Z = \emptyset \ [\cap Z, \cup Z] & \text{otherwise} \end{cases})</td>
<td></td>
</tr>
</tbody>
</table>

Yields a Galois connection. For example,

- \(\gamma(\alpha(\{1, 3, 5, \ldots\})) = \gamma([1, +\infty]) = \{1, 2, 3, 4, 5, \ldots\} \supseteq \{1, 3, 5, \ldots\} \)
- \(\alpha(\gamma([-1, 1])) = \alpha(\{-1, 0, 1\}) = [-1, 1] \)
Theoretical Foundations of Abstract Interpretation

Properties of Galois Connections

Lemma 11.5

Let \((\alpha, \gamma)\) be a Galois connection with \(\alpha : L \to M\) and \(\gamma : M \to L\), and let \(l \in L\), \(m \in M\), \(L' \subseteq L\), \(M' \subseteq M\).

1. \(\alpha(l) \sqsubseteq_M m \iff l \sqsubseteq_L \gamma(m)\)
Theoretical Foundations of Abstract Interpretation

Properties of Galois Connections

Lemma 11.5

Let \((\alpha, \gamma)\) be a Galois connection with \(\alpha : L \rightarrow M\) and \(\gamma : M \rightarrow L\), and let \(l \in L\), \(m \in M\), \(L' \subseteq L\), \(M' \subseteq M\).

1. \(\alpha(l) \sqsubseteq_M m \iff l \sqsubseteq_L \gamma(m)\)

2. \(\gamma\) is uniquely determined by \(\alpha\) as follows: \(\gamma(m) = \bigcup\{l \in L \mid \alpha(l) \sqsubseteq_M m\}\)

Proof.
Lemma 11.5

Let \((\alpha, \gamma)\) be a Galois connection with \(\alpha : L \rightarrow M\) and \(\gamma : M \rightarrow L\), and let \(l \in L\), \(m \in M\), \(L' \subseteq L\), \(M' \subseteq M\).

1. \(\alpha(l) \sqsubseteq_M m \iff l \sqsubseteq_L \gamma(m)\)
2. \(\gamma\) is uniquely determined by \(\alpha\) as follows: \(\gamma(m) = \bigcup\{l \in L \mid \alpha(l) \sqsubseteq_M m\}\)
3. \(\alpha\) is uniquely determined by \(\gamma\) as follows: \(\alpha(l) = \bigcap\{m \in M \mid l \sqsubseteq_L \gamma(m)\}\)
Lemma 11.5

Let \((\alpha, \gamma)\) be a Galois connection with \(\alpha : L \to M\) and \(\gamma : M \to L\), and let \(l \in L\), \(m \in M\), \(L' \subseteq L\), \(M' \subseteq M\).

1. \(\alpha(l) \sqsubseteq_M m \iff l \sqsubseteq_L \gamma(m)\)
2. \(\gamma\) is uniquely determined by \(\alpha\) as follows: \(\gamma(m) = \bigsqcup\{l \in L | \alpha(l) \sqsubseteq_M m\}\)
3. \(\alpha\) is uniquely determined by \(\gamma\) as follows: \(\alpha(l) = \bigsqcap\{m \in M | l \sqsubseteq_L \gamma(m)\}\)
4. \(\alpha\) is completely distributive: for every \(L' \subseteq L\), \(\alpha(\bigsqcup L') = \bigsqcup\{\alpha(l) | l \in L'\}\)

Proof.

on the board
Theoretical Foundations of Abstract Interpretation

Properties of Galois Connections

Lemma 11.5

Let \((\alpha, \gamma)\) be a Galois connection with \(\alpha : L \to M\) and \(\gamma : M \to L\), and let \(l \in L\), \(m \in M\), \(L' \subseteq L\), \(M' \subseteq M\).

1. \(\alpha(l) \subseteq_M m \iff l \subseteq_L \gamma(m)\)

2. \(\gamma\) is uniquely determined by \(\alpha\) as follows: \(\gamma(m) = \bigsqcup\{l \in L \mid \alpha(l) \subseteq_M m\}\)

3. \(\alpha\) is uniquely determined by \(\gamma\) as follows: \(\alpha(l) = \bigsqcap\{m \in M \mid l \subseteq_L \gamma(m)\}\)

4. \(\alpha\) is completely distributive: for every \(L' \subseteq L\), \(\alpha(\bigsqcup L') = \bigsqcup\{\alpha(l) \mid l \in L'\}\)

5. \(\gamma\) is completely multiplicative: for every \(M' \subseteq M\), \(\gamma(\bigsqcap M') = \bigsqcap\{\gamma(m) \mid m \in M'\}\)
Properties of Galois Connections

Lemma 11.5

Let \((\alpha, \gamma) \) be a Galois connection with \(\alpha : L \rightarrow M \) and \(\gamma : M \rightarrow L \), and let \(l \in L \), \(m \in M \), \(L' \subseteq L \), \(M' \subseteq M \).

1. \(\alpha(l) \sqsubseteq_M m \iff l \sqsubseteq_L \gamma(m) \)
2. \(\gamma \) is uniquely determined by \(\alpha \) as follows: \(\gamma(m) = \bigcup \{ l \in L \mid \alpha(l) \sqsubseteq_M m \} \)
3. \(\alpha \) is uniquely determined by \(\gamma \) as follows: \(\alpha(l) = \bigcap \{ m \in M \mid l \sqsubseteq_L \gamma(m) \} \)
4. \(\alpha \) is completely distributive: for every \(L' \subseteq L \), \(\alpha(\bigcup L') = \bigcup \{ \alpha(l) \mid l \in L' \} \)
5. \(\gamma \) is completely multiplicative: for every \(M' \subseteq M \), \(\gamma(\bigcap M') = \bigcap \{ \gamma(m) \mid m \in M' \} \)

Proof.

on the board
Excursus: Concrete Semantics of WHILE Programs

Outline of Lecture 11

Introduction to Abstract Interpretation

Theoretical Foundations of Abstract Interpretation

Excursus: Concrete Semantics of WHILE Programs
Excursus: Concrete Semantics of WHILE Programs

Reminder: Syntax of WHILE

The syntax of WHILE Programs is defined by the following context-free grammar (cf. Definition 1.3):

\[a ::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 \cdot a_2 \in AExp \]
\[b ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \in BExp \]
\[c ::= \text{skip} \mid x := a \mid c_1 ; c_2 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end} \mid \text{while } b \text{ do } c \text{ end} \in Cmd \]
Excursus: Concrete Semantics of WHILE Programs

Program States

- **Meaning of expression** = value (in the usual sense)
- Depends on the **values of the variables** in the expression
Excursus: Concrete Semantics of WHILE Programs

Program States

- Meaning of expression = value (in the usual sense)
- Depends on the values of the variables in the expression

Definition 11.6 (Program state)

A (program) state is an element of the set

\[\Sigma := \{ \sigma \mid \sigma : \text{Var} \rightarrow \mathbb{Z} \} , \]

called the state space.

Thus \(\sigma(x) \) denotes the value of \(x \in \text{Var} \) in state \(\sigma \in \Sigma \).
Definition 11.7 (Evaluation function)

Let $\sigma \in \Sigma$ be a state.

1. $val_\sigma : AExp \rightarrow \mathbb{Z} : a \rightarrow val_\sigma(a)$ yields the value of a in state σ
2. $val_\sigma : BExp \rightarrow \mathbb{B} : b \rightarrow val_\sigma(b)$ yields the value of b in state σ
Excursus: Concrete Semantics of WHILE Programs

Evaluation of Expressions

Definition 11.7 (Evaluation function)

Let \(\sigma \in \Sigma \) be a state.

1. \(\text{val}_\sigma : AExp \rightarrow \mathbb{Z} : a \rightarrow \text{val}_\sigma(a) \) yields the value of \(a \) in state \(\sigma \)
2. \(\text{val}_\sigma : BExp \rightarrow \mathbb{B} : b \rightarrow \text{val}_\sigma(b) \) yields the value of \(b \) in state \(\sigma \)

Example 11.8

Let \(\sigma(x) = 1 \) and \(\sigma(y) = 2 \).

1. \(\text{val}_\sigma(2 \times x + y) = 4 \)
2. \(\text{val}_\sigma(\neg(x + 1 > y)) = \text{true} \)
Excursus: Concrete Semantics of WHILE Programs

Derivation Rules

- Definition employs derivation rules of the form

<table>
<thead>
<tr>
<th>Name</th>
<th>Premise(s)</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

 - meaning: if every premise is fulfilled, then conclusion can be drawn
 - a rule with no premises is called an axiom
Excursus: Concrete Semantics of WHILE Programs

Derivation Rules

- Definition employs derivation rules of the form

<table>
<thead>
<tr>
<th>Name</th>
<th>Premise(s)</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

- meaning: if every premise is fulfilled, then conclusion can be drawn
- a rule with no premises is called an axiom

- Iterated application yields complete derivation tree
 - initial program and state at root
 - premises as children of inner nodes
 - axioms at leaves
Definition 11.9 (Execution relation for statements)

If \(c \in \text{Cmd}\) and \(\sigma \in \Sigma\), then \(\langle c, \sigma \rangle\) is called a configuration. The execution relation
\[\to \subseteq (\text{Cmd} \times \Sigma) \times ((\text{Cmd} \cup \{\downarrow\}) \times \Sigma)\]
is defined by the following rules:

- **(skip)**
 \[
 \frac{}{\langle \text{skip}, \sigma \rangle \rightarrow \langle \downarrow, \sigma \rangle}
 \]

- **(asgn)**
 \[
 \frac{\langle x := a, \sigma \rangle \rightarrow \langle \downarrow, \sigma[x \mapsto \text{val}_\sigma(a)] \rangle}{\langle c_1, \sigma \rangle \rightarrow \langle c'_1, \sigma' \rangle}
 \]

- **(seq1)**
 \[
 \frac{\langle c_1, \sigma \rangle \rightarrow \langle c'_1, \sigma' \rangle \quad c'_1 \neq \downarrow}{\langle c_1 ; c_2, \sigma \rangle \rightarrow \langle c'_1 ; c_2, \sigma' \rangle}
 \]

- **(seq2)**
 \[
 \frac{\langle c_1, \sigma \rangle \rightarrow \langle \downarrow, \sigma' \rangle}{\langle c_1 ; c_2, \sigma \rangle \rightarrow \langle c_2, \sigma' \rangle}
 \]
Definition 11.9 (Execution relation for statements; continued)

\[
\begin{align*}
\text{val}_\sigma(b) &= \text{true} \\
\langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end, } \sigma \rangle &\rightarrow \langle c_1, \sigma \rangle \\
\text{val}_\sigma(b) &= \text{false} \\
\langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end, } \sigma \rangle &\rightarrow \langle c_2, \sigma \rangle \\
\text{val}_\sigma(b) &= \text{true} \\
\langle \text{while } b \text{ do } c \text{ end, } \sigma \rangle &\rightarrow \langle c; \text{while } b \text{ do } c \text{ end, } \sigma \rangle \\
\text{val}_\sigma(b) &= \text{false} \\
\langle \text{while } b \text{ do } c \text{ end, } \sigma \rangle &\rightarrow \langle \downarrow, \sigma \rangle
\end{align*}
\]

Remark: \downarrow indicates **successful termination** of the program
An Execution Example

Example 11.10

- \(y := 1; \) while \(\neg (x=1) \) do \(y := y \times x \); \(x := x - 1 \) end

- Claim: \(\langle c, \sigma \rangle \rightarrow^{+} \langle \downarrow, \sigma_{1,6} \rangle \) for every \(\sigma \in \Sigma \) with \(\sigma(x) = 3 \)

- Notation: \(\sigma_{i,j} \) means \(\sigma(x) = i, \sigma(y) = j \)

- Derivation: on the board
Excursus: Concrete Semantics of WHILE Programs

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 11.11

The execution relation for statements is *deterministic*, i.e., whenever \(c \in \text{Cmd} \), \(\sigma \in \Sigma \) and \(\kappa_1, \kappa_2 \in (\text{Cmd} \cup \{\downarrow\}) \times \Sigma \) such that \(\langle c, \sigma \rangle \rightarrow \kappa_1 \) and \(\langle c, \sigma \rangle \rightarrow \kappa_2 \), then \(\kappa_1 = \kappa_2 \).

Proof.

omitted
Excursus: Concrete Semantics of WHILE Programs

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 11.11

The execution relation for statements is deterministic, i.e., whenever \(c \in \text{Cmd} \), \(\sigma \in \Sigma \) and \(\kappa_1, \kappa_2 \in (\text{Cmd} \cup \{\downarrow\}) \times \Sigma \) such that \(\langle c, \sigma \rangle \rightarrow \kappa_1 \) and \(\langle c, \sigma \rangle \rightarrow \kappa_2 \), then \(\kappa_1 = \kappa_2 \).

Proof.

omitted

More on formal semantics of programming languages: *Semantics and Verification of Software* in next winter semester