Static Program Analysis WS2016/17

General Remarks

- Please hand in your solutions in groups of 3. Either hand in your solutions at the beginning of the exercise class or put them into the box at the chair.
- If you have questions regarding the exercises and/or lecture, feel free to write us an email or visit us at our office.

Exercise 1 (Extending Interval Analysis):

The WHILE-language presented in the lecture does not feature a division operator /. In this exercise we aim to incorporate this operator in the language and adapt the interval analysis accordingly. For simplicity, we assume that a division by zero yields an arbitrary value.

- a) Extend the val_{δ} function for interval analysis to account for division (be as precise as possible).
- **b)** Show that the transfer function of interval analysis (including your extension for division) is monotonic.

Exercise 2 (Limiting Fixed Point Iterations):

Let (D, \sqsubseteq) be a complete lattice with greatest element \top and least element \bot . Moreover, let $F : D \to D$ be a monotone function. For a fixed $k \in \mathbb{N}$, we define $\bigtriangledown_k : D \times D \to D$ as

$$d_1 \bigtriangledown_k d_2 = \begin{cases} d_1 \sqcup d_2 & \text{ if } (d_1 \sqcup d_2) \sqsubseteq F^k(\bot) \\ \top & \text{ otherwise} \end{cases}$$

Prove or disprove: For every $k \in \mathbb{N}$, ∇_k is a widening operator with respect to (D, \sqsubseteq) .

Exercise 3 (Widening):

Consider the domain $D = (\mathbb{N} \times \{0, 1\}) \cup \{\infty\}$.

- a) Define a relation ⊑ ⊆ D × D such that (D, ⊑) is a complete lattice that contains both infinite ascending and infinite descending chains. Justify your answer.
- **b)** Define a relation $\preceq \subseteq D \times D$ such that (D, \preceq) is a complete lattice that contains both infinitely many pairwise disjoint infinite ascending and infinitely many pairwise disjoint infinite descending chains. Justify your answer.
- **c)** Define widening operators for both (D, \sqsubseteq) and (D, \preceq) . Justify your answer.

Exercise 4 (Widening as Upper Bounds):

Prove or disprove: For every complete lattice (D, \sqsubseteq) and every widening $\bigtriangledown : D \times D \to D$, there exists a non-empty set $S \subseteq D$ such that (S, \preceq) , where $s \preceq s'$ iff $s \bigtriangledown s' = s'$, is a complete lattice.

(1 Points)

(2 Points)

(1 Points)

(6 Points)