Christina Jansen, Christoph Matheja

General Remarks

- Please hand in your solutions in groups of 3. Either hand in your solutions at the beginning of the exercise class or put them into the box at the chair.
- If you have questions regarding the exercises and/or lecture, feel free to write us an email or visit us at our office.

Exercise 1 (Galois Insertions):

(4 Points)

For most Galois connection we considered so far we observed the special case that $\alpha(\gamma(m)) = m$. These Galois connections are referred to as *Galois insertions*:

 (α, γ) is a *Galois insertion* between the complete lattices L and M if and only if:

 $\alpha: L \rightarrow M$ and $\gamma: M \rightarrow L$ are monotone functions

that satisfy:

$$\begin{array}{ccc} \gamma(\alpha(l)) & \sqsupseteq & l & \forall \, l \in L \\ \alpha(\gamma(m)) & = & m & \forall \, m \in M \end{array}$$

Show that for a Galois connection (α, γ) between L and M the following claims are equivalent:

- (i) (α, γ) is a Galois insertion
- (ii) γ is injective
- (iii) α is surjective
- (iv) $\forall m_1, m_2 : m_1 \sqsubseteq m_2 \Leftrightarrow \gamma(m_1) \sqsubseteq \gamma(m_2)$

Exercise 2 (Modulo Abstraction):

For a single integer, modulo abstraction is defined by the mapping $\mathbb{Z} \to \{0, ..., n-1\} : z \mapsto (z \mod n)$ for some fixed $n \ge 1$.

- a) Give the definition of the corresponding abstraction and concretization functions operating on sets of integers, and show that they form a Galois connection.
- **b)** Extract the functions $+_n^{\sharp}$, $*_n^{\sharp}$, $(\mod m)_n^{\sharp}$ and relations $=_n^{\sharp}$, $>_n^{\sharp}$ as safe approximations of +, *, mod m, = and >.
- c) Depict the reachable fragment of the abstract transition system for the following WHILE-program for the modulo abstraction with n = 4.

 $\begin{array}{l} x := 3 * x; \\ \text{while} (\neg (x \mod 4 = 0)) \\ \text{if } (x \mod 4 = 1) \\ x := 3 * x; \\ x := x + 1; \end{array}$

(4 Points)

Exercise 3 (Granularity of Sign Abstraction):

(2 Points)

Consider the following WHILE program:

while x > y do y := -x;x := x * y;

Let x and y be input variables. Determine the abstract states reachable from the initial state using the extraction function $\beta : \mathbb{Z} \to \{-, 0, +\}, \beta(z) := sgn(z)$ (lifted to the following abstract domains in a straightforward manner)

- 1. for the abstract domain $Var \rightarrow 2^{SGN}$
- 2. for the abstract domain $2^{Var \rightarrow SGN}$

where $SGN = \{-, 0, +\}$.