
Probabilistic Programming (WS16/17)
Prof. Dr. Ir. Joost-Pieter Katoen
Christoph Matheja Dr. Federico Olmedo

Exercise Sheet 5
General remarks:

• Due date: January 20th (before the exercise class). You can either hand your solutions
in at the beginning of the exercise class or submit them via email to

propro1617@i2.informatik.rwth-aachen.de

• Solutions must be written in English.

• If you have any questions regarding the lecture or the exercise, feel free to write us an
email or visit us at the chair.

Exercise 1 (Bayesian Networks) 25%
Suppose that there are two events which could cause grass to be wet: either the sprinkler
is on or it’s raining. Also, suppose that the rain has a direct effect on the use of the
sprinkler (namely that when it rains, the sprinkler is usually not turned on). To model
this scenario we use the Bayesian network depicted below.

(a) [15%] Compute the probability that it hadn’t rained, given that the grass is dry
and the sprinkler is off.

(b) [10%] Translate the Bayesian network into a conditioned pGCL program which more-
over encodes the evidence (or observation) that the grass is dry and the sprinkler is
off.

Exercise 2 (Backward compatibility of transformer cwp) 25%
Prove that if c is an unconditioned pGCL program and f is an expectation, then

cwp[c](f) = wp[c](f) .

Hint. Use the decomposition lemma of transformer cwp which says that

cwp[c](f, g) =
(
wp[c](f), wlp[c](g)

)
.

Page 1 of 2



Exercise 3 (ω–Invariants for Conditional Expectations) 50%
In this exercise, we will analyse the following problem:
Assume you repeatedly flip two fair coins until both turn tails (1). What is the probability
that you are finished after exactly N trials if in all unsuccessful trials you got at least one
tails?
This problem can be modeled as a pGCL program Ctail with observe as follows:

m := 0;

c1, c2 := 0, 0;

while(c1 = 0 ∨ c2 = 0){
{c1 := 0} [0.5] {c1 := 1};
{c2 := 0} [0.5] {c2 := 1};
observe (c1 = 1 ∨ c2 = 1);

m := m+ 1

}

Then, the desired probability is given by cwp[Ctail]([m = N ]).
Unfortunately, computing this probability relies on a complicated fixed point compu-
tation with two variables. As for wp, we would thus like to reason about the cwp of
loops while (G) {C} using invariants. In contrast to our previous proof rule for loops,
however, we make use of an ω–invariant, i.e., a sequence of invariants that – in the limit
– coincides with the cwp of a loop. More formally, given a loop while (G) {C}, where C
is some pGCL program, we define the functional

Ff,g(X,Y ) = [¬G] · (f, g) + [G] · cwp[C](X,Y ).

Then, given a sequence of pairs of expectations and bounded expectations In ∈ Exp ×
BExp, n ≥ 0, one can deduce the following proof rule for cwp:

Ff,g(0,1) = I0 Ff,g(In) = In+1

cwp[while (G) {C}](f, g) = limn→∞ In

(a) [35%] Show that

In =

(
[¬G] · [m = N ] +

1

2
[G] ·

n∑
i=1

1

2i
· [m+ i = N ] , [¬G] + [G] ·

(
1

2
+

1

4
· 1
2n

))

is an ω-invarant of the program Ctail (with loop guard G = (c1 = 0 ∨ c2 = 0)) with
respect to ([m = N ],1).

(b) [15%] Use the proof rule for ω-invariants to derive a solution for our problem, i.e.,
compute cwp[Ctail]([m = N ]).

Page 2 of 2


