

Prof. Dr. Ir. Joost-Pieter Katoen

Tim Quatmann, Matthias Volk

Exercise 1 (Symbolic bisimulation):

Let $\overline{x}, \overline{x}'$ and \overline{b} be three vectors of Boolean variables of size n > 0 and let a_i denote the *i*-th variable in a vector \overline{a} . Assume that the transition relation of a transition system TS with state space $S = Eval(\overline{x})$ is given by means of a switching function $\Delta : Eval(\overline{x}, \overline{x}') \to \{0, 1\}$ (as seen in the lecture). Let $Q = \{B_0, ..., B_{2^n-1}\}$ be a partition of the state space $(S = \bigcup_{i=0}^{2^n-1} B_i \text{ and } B_i = \emptyset$ is possible) represented as a switching function $f_Q : Eval(\overline{x}, \overline{b}) \to \{0, 1\}$ defined by

$$f_Q(s, B_i) = 1 \iff s \in B_i$$

(a) Using the available switching functions and the usual operations on them, define another switching function f_{siq^Q} : $Eval(\overline{x}, \overline{b}) \rightarrow \{0, 1\}$ given by

 $f_{sig^Q}(s, B_i) = 1 \iff \exists s' \in Post(s) : s' \in B_i$

(b) Let the characteristic functions $\chi_{Sat}(c)$ and $\chi_{Sat}(d)$ for the only two atomic propositions $c, d \in AP$ in *TS* be given. Define a switching function $f_{Q^*} : Eval(\overline{x}, \overline{b}) \to \{0, 1\}$ that represents the partition $Q^* = \{\{s|L(s) = A\} | A \in 2^{AP}\}$, i.e., the coarsest partition that respects the labeling.

You may use the usual operations on switching functions as well as the "special" switching functions $i|_{\overline{b}} : Eval(\overline{b}) \to \{0, 1\}$ that evaluate to 1 if and only if the input is the binary encoding of the number *i*.

(c) Conceptually explain how the functions $f_Q(s, B_i)$ and $f_{sig^Q}(s, B_i)$ can be used to compute the coarsest bisimulation equivalence on TS.

Exercise 2 (Bounded paths):

For LTL formula φ we write $TS \models_k \exists \varphi$ iff there exists a path $\pi \in Paths(TS)$ for which $\pi \models_k \varphi$. Notations like $TS \models_k \forall \varphi$ and $TS \models \exists \varphi$ are analogous.

Consider the transition system TS depicted below.

Determine all $k \ge 0$ for which the following holds.

- a) $TS \models_k \forall \Box a$
- b) $TS \models_k \exists \Box a$

Justify your answers!

Exercise 3 (Bounded model checking):

Perform bounded model checking on the following transition system TS.

(a) Let a state s be represented as s = (s[0], s[1]). Give the SAT representation of the transition relation T(s, s'), the initial state(s) I(s) and the atomic proposition a(s).

1

(0.5+0.5+1 points)

(0.5+0.5 points)

(1+3+1 points)

- (b) Given the property p := □(¬a ∨ ○¬a) and the bound k := 3 generate the SAT encoding for the bounded model checking problem [[TS, ¬p]]₃ by especially specifying:
 - The unfolding of the transition relation: $[TS]_3$
 - The loop condition: L_3
 - The translation for paths without loops: $[\neg \rho]_3^0$
 - The translation for paths with loops: $\ell [\neg p]_3^0$ (for variable ℓ)
- (c) Try to find a satisfying assignment for the SAT encoding and give the resulting counterexample if one can be found.

Exercise 4 (Bounded semantics):

Proof the following statements for finite transition systems TS without terminal states and LTL formulas of the form

$$\varphi ::= a \mid \neg a \mid \Box a \mid \Diamond a \mid \bigcirc a$$

where *a* is an atomic proposition.

- a) For any $\pi \in Paths(TS)$ and $k \ge 0$ it holds that $\pi \models_k \varphi \implies \pi \models \varphi$.
- b) If $TS \models \exists \varphi$ then there exists $k \ge 0$ with $TS \models_k \exists \varphi$.

(1+1 points)