

Prof. Dr. Ir. Joost-Pieter Katoen

Tim Quatmann, Matthias Volk

Exercise 1 (Stutter bisimulation quotient):

Consider the following transition system TS.

- (a) Depict the divergence-sensitive expansion \overline{TS} .
- (b) Determine the divergence-stutter-bisimulation quotient \overline{TS}/\approx . Apply the algorithm and give for each iteration the partition of the state space.
- (c) Depict $TS \approx div$.

Exercise 2 (Simulation relation):

Consider the given transition systems.

For each $i, j \in \{1..3\} \times \{1..3\}, i \neq j$ determine whether $TS_i \leq TS_j$. Justify your answer (e.g. by giving the simulation relation).

(3 points)

Exercise 3 (Stutter simulation):

(0.5+0.5+0.5+0.5 points)

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i), i = 1, 2$ be two finite transition systems. A stutter simulation for (TS_1, TS_2) is a relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- (A) $\forall s_1 \in I_1 \exists s_2 \in I_2 : (s_1, s_2) \in \mathcal{R}$
- (B) For all $(s_1, s_2) \in \mathcal{R}$ the following conditions hold:
 - 1. $L_1(s_1) = L_2(s_2)$.
 - 2. If $s'_1 \in Post(s_1)$ with $(s'_1, s_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 \ u_1 \dots u_n \ s'_2$ with $n \ge 0$ and $(s_1, u_i) \in \mathcal{R}$, $i = 1, \dots, n$ and $(s'_1, s'_2) \in \mathcal{R}$.

 TS_1 is said to be stutter simulated by TS_2 , denoted $TS_1 \leq_{st} TS_2$, iff there exists a stutter simulation for (TS_1, TS_2) .

- (a) Provide example transition systems TS_1 , TS_2 , such that $TS_1 \not\preceq TS_2$ but $TS_1 \preceq_{st} TS_2$.
- (b) Provide example transition systems TS_1, TS_2 , such that $TS_1 \leq TS_2$ but $TS_1 \not\leq_{st} TS_2$.
- (c) Provide example transition systems TS_1, TS_2 , such that $TS_1 \not \leq TS_2$ but $TS_1 \leq_{st} TS_2$.
- (d) Provide example transition systems TS_1 , TS_2 , such that $TS_1 \not\approx TS_2$ but $TS_1 \preceq_{st} TS_2$ and $TS_2 \preceq_{st} TS_1$.