

Prof. Dr. Ir. Joost-Pieter Katoen

Notes:

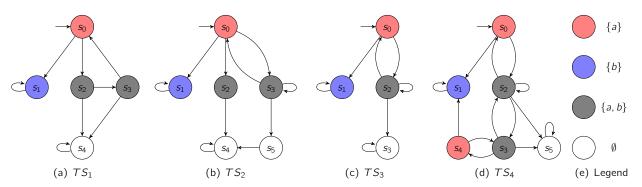
• The exercise sheets should be solved in groups of 2 persons and handed in before the exercise class on Wednesday, 14:15.

Exercise 1 (Relation \sim_n):

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. The relations $\sim_n \subseteq S \times S$ are inductively defined by:

- $s_1 \sim_0 s_2$ iff $L(s_1) = L(s_2)$.
- $s_1 \sim_{n+1} s_2$ iff:
 - $L(s_1) = L(s_2),$
 - for all $s'_1 \in Post(s_1)$ there exists $s'_2 \in Post(s_2)$ with $s'_1 \sim_n s'_2$,
 - for all $s'_2 \in Post(s_2)$ there exists $s'_1 \in Post(s_1)$ with $s'_1 \sim_n s'_2$.

Questions:


(a) Show that for *finite* TS it holds that $\sim_{TS} = \bigcap_{n \ge 0} \sim_n$, i.e.,

$$s_1 \sim_{TS} s_2$$
 iff $s_1 \sim_n s_2$ for all $n \ge 0$

(b) Does this also hold for infinite transition systems (provide a proof or a counterexample)?

Exercise 2 (Equivalences):

Consider the following transition systems.

- (a) Which transition systems are trace equivalent? Justify your answers by either providing the set of traces or a counterexample trace.
- (b) Which transition systems are bisimulation equivalent? Justify your answers by either providing a bisimulation relation or a $CTL_{\setminus U}$ formula that distinguishes the considered transition systems. (Note: a $CTL_{\setminus U}$ formula contains neither an U-operator nor one of its derived operators such as \Diamond and \Box .)

Tim Quatmann, Matthias Volk

(2 + 1 points)

(2 + 2 points)

Exercise 3 (Distinguishing formulae):

(1.5 + 1.5 points)

- (a) Give two transition systems TS_1 and TS_2 , s.t.
 - (i) $\exists CTL_{\setminus O}$ formula $\varphi : TS_1 \models \varphi$ but $TS_2 \not\models \varphi$.
 - (ii) $\forall CTL_{\setminus U}$ formula $\psi : TS_1 \models \psi \iff TS_2 \models \psi$.
- (b) Give two transition systems TS_1 and TS_2 , s.t.
 - (i) $\exists CTL_{\setminus U}$ formula $\varphi : TS_1 \models \varphi$ but $TS_2 \not\models \varphi$.
 - (ii) $\forall \mathsf{CTL}_{\setminus \mathbb{O}}$ formula $\psi : TS_1 \models \psi \iff TS_2 \models \psi$.