# Introduction

### Lecture #1 of Advanced Model Checking

Joost-Pieter Katoen

#### Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

October 18, 2016



# **Model checking**

- Automated model-based verification and debugging technique
  - model of system = Kripke structure  $\approx$  labeled transition system
  - properties expressed in temporal logic like LTL or CTL
  - provides counterexamples in case of property refutation
- Various striking examples
  - Needham-Schroeder security protocol, storm surge barrier, C code
- 2008: Pioneers awarded prestigious ACM Turing Award









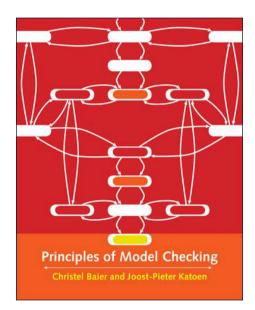
# **Course topics**

- Abstraction
  - bisimulation, simulation, minimization algorithms
  - stutter-bisimulation, stutter trace-equivalence, divergence
  - preservation of temporal logical formulae
- Partial-order reduction
  - independence, ample set method, branching-time POR



# **Course topics**

- Reduced binary decision diagrams
  - Boolean functions, operations, CTL model checking with ROBDDs
- Timed automata
  - semantics, region equivalence, timed reachability, zone automata, DBMs




### **Course organization**

- Lectures: twice per week
  - Tuesday 14:15-15:45 (5052)
  - Wednesday 10:15 12:45 (9U10)
  - Check web-page for dates!
- Exercises: once per week (Wed 14:15–15:45, 4201b, start: Oct 26)
  - marked exercises (40% of points needed)
  - assistants: Matthias Volk and Tim Quatmann
- Exam: to be determined
- Credits: 6 credits (M.Sc/B.Sc)



### **Principles of Model Checking**



CHRISTEL BAIER

TU Dresden, Germany

### JOOST-PIETER KATOEN

RWTH Aachen University, Germany



### **Course material**

#### • Course material:

- book "Principles of Model Checking" (Baier & Katoen)
- several copies are available in CS library

#### • Detailed overview:

- Section 6.7: Symbolic model checking
- Chapter 7: Abstraction
- Chapter 8: Partial-order reduction
- Chapter 9: Timed automata



### **Course Prerequisites**

#### • Mandatory courses:

- formal languages and automata theory, and
- complexity theory and decidability, and
- algorithms and data structures

#### • Preferred courses:

- introduction to model checking, or
- automata and reactive systems



# **Related Courses**

- Modeling and Verification of Probabilistic Systems
  - compositional modeling of probabilistic systems
  - model checking of probabilistic models

- Automata Theory Courses
  - applied automata theory, infinite computations, ...

• Modeling and Analysis of Hybrid Systems



- hybrid automata, reachability in hybrid automata, decidability . . .

- Satisfiability Checking
  - SAT solving algorithms, usage of SAT solving in verification . . .



### **Questions?**