Introduction

Lecture #1 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

October 18, 2016
Model checking

- Automated model-based verification and debugging technique
 - model of system = Kripke structure ≈ labeled transition system
 - properties expressed in temporal logic like LTL or CTL
 - provides counterexamples in case of property refutation

- Various striking examples
 - Needham-Schroeder security protocol, storm surge barrier, C code

- 2008: Pioneers awarded prestigious ACM Turing Award
Course topics

- **Abstraction**
 - bisimulation, simulation, minimization algorithms
 - stutter-bisimulation, stutter trace-equivalence, divergence
 - preservation of temporal logical formulae

- **Partial-order reduction**
 - independence, ample set method, branching-time POR
Course topics

- Reduced binary decision diagrams
 - Boolean functions, operations, CTL model checking with ROBDDs

- Timed automata
 - semantics, region equivalence, timed reachability, zone automata, DBMs
Course organization

- **Lectures**: twice per week
 - Tuesday 14:15–15:45 (5052)
 - Wednesday 10:15 - 12:45 (9U10)
 - Check web-page for dates!

- **Exercises**: once per week (Wed 14:15–15:45, 4201b, start: Oct 26)
 - marked exercises (40% of points needed)
 - assistants: Matthias Volk and Tim Quatmann

- **Exam**: to be determined

- **Credits**: 6 credits (M.Sc/B.Sc)
Principles of Model Checking

CHRISTEL BAIER
TU Dresden, Germany

JOOST-PiETER KATOEN
RWTH Aachen University, Germany
Course material

- **Course material:**
 - book “Principles of Model Checking” (Baier & Katoen)
 - several copies are available in CS library

- **Detailed overview:**
 - Section 6.7: Symbolic model checking
 - Chapter 7: Abstraction
 - Chapter 8: Partial-order reduction
 - Chapter 9: Timed automata
Course Prerequisites

- **Mandatory courses:**
 - formal languages and automata theory, and
 - complexity theory and decidability, and
 - algorithms and data structures

- **Preferred courses:**
 - introduction to model checking, or
 - automata and reactive systems
Related Courses

- Modeling and Verification of Probabilistic Systems
 - compositional modeling of probabilistic systems
 - model checking of probabilistic models

- Automata Theory Courses
 - applied automata theory, infinite computations, . . .

- Modeling and Analysis of Hybrid Systems
Advanced model checking

- hybrid automata, reachability in hybrid automata, decidability . . .

- **Satisfiability Checking**
 - SAT solving algorithms, usage of SAT solving in verification . . .
Questions?