Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic

Equivalences and Abstraction
 bisimulation
 CTL, CTL*-equivalence
 computing the bisimulation quotient
 abstraction stutter steps
 simulation relations
Classification of implementation relations
Classification of implementation relations

- **linear vs. branching time**
 - linear time: trace relations
 - branching time: (bi)simulation relations

- **(nonsymmetric) preorders vs. equivalences**:
 - preorders: trace inclusion, simulation
 - equivalences: trace equivalence, bisimulation

- **strong vs. weak relations**
 - strong: reasoning about all transitions
 - weak: abstraction from stutter steps
Classification of implementation relations

- **linear vs. branching time**
 - linear time: trace relations
 - branching time: (bi)simulation relations

- **(nonsymmetric) preorders vs. equivalences:**
 - preorders: trace inclusion, simulation
 - equivalences: trace equivalence, bisimulation

- **strong vs. weak relations**
 - strong: reasoning about all transitions
 - weak: abstraction from stutter steps
Classification of implementation relations

- **linear vs. branching time**
 - linear time: trace relations
 - branching time: (bi)simulation relations

- **(nonsymmetric) preorders vs. equivalences:**
 - preorders: trace inclusion, simulation
 - equivalences: trace equivalence, bisimulation

- **strong vs. weak relations**
 - strong: reasoning about all transitions
 - weak: abstraction from stutter steps
The simulation preorder

is a nonsymmetric branching time relation

- plays of central role for abstraction
- the BT-analogue to trace inclusion
- “unidirected” version of bisimulation:
The simulation preorder is a nonsymmetric branching time relation

- plays of central role for abstraction
- the BT-analogue to trace inclusion
- "unidirected" version of bisimulation:

if \mathcal{T}_1 is simulated by \mathcal{T}_2 then \mathcal{T}_2 can mimick all steps of \mathcal{T}_1, but possibly has more behaviors
The simulation preorder

is a nonsymmetric branching time relation
- plays of central role for abstraction
- the BT-analogue to trace inclusion
- “unidirected” version of bisimulation:

 if T_1 is simulated by T_2 then T_2 can mimick all steps of T_1, but possibly has more behaviors

- relies on a coinductive definition
 (as bisimulation equivalence)

here: just strong simulation, i.e., no abstraction from stutter steps
Simulation for two TS

let $\mathcal{T}_1 = (S_1, Act_1, \rightarrow_1, S_{0,1}, AP, L_1)$

$\mathcal{T}_2 = (S_2, Act_2, \rightarrow_2, S_{0,2}, AP, L_2)$

be two transition systems

- over the same set AP of atomic propositions
- possibly with terminal states
Simulation for a pair of TS

Simulation for $(\mathcal{T}_1, \mathcal{T}_2)$: binary relation $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

1. If $(s_1, s_2) \in \mathcal{R}$ then $L_1(s_1) = L_2(s_2)$

2. For all $(s_1, s_2) \in \mathcal{R}$:
 \[\forall s'_1 \in \text{Post}(s_1) \ \exists s'_2 \in \text{Post}(s_2) \text{ s.t. } (s'_1, s'_2) \in \mathcal{R}\]

(I) For all initial states s_1 of \mathcal{T}_1 there is an initial state s_2 of \mathcal{T}_2 with $(s_1, s_2) \in \mathcal{R}$
Simulation preorder ≤

simulation for (T_1, T_2): relation $R \subseteq S_1 \times S_2$ s.t.

(1) labeling condition
(2) stepwise simulation condition
(I) initial condition

simulation preorder ≤ for TS:

$T_1 \preceq T_2$ iff there exists a simulation R
for (T_1, T_2)
Simulation preorder \preceq

Simulation for (T_1, T_2): relation $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

1. Labeling condition
2. Stepwise simulation condition
3. Initial condition

<table>
<thead>
<tr>
<th>simulation preorder \preceq for TS:</th>
</tr>
</thead>
</table>
|$T_1 \preceq T_2$ iff \{
\begin{align*}
\text{there exists a simulation } \mathcal{R} \\
\text{for } (T_1, T_2)
\end{align*}
|}

If s_1 is a state of T_1 and s_2 a state of T_2 then

$s_1 \preceq s_2$ iff there exists a simulation \mathcal{R} for (T_1, T_2) such that $(s_1, s_2) \in \mathcal{R}$
Two beverage machines

\begin{align*}
\mathcal{T}_1 & \quad \text{pay} \\
\text{paid}_1 \quad \text{paid}_2 \\
\text{coke} \quad \text{soda}
\end{align*}

\begin{align*}
\mathcal{T}_2 & \quad \text{pay} \\
\text{select} \\
\text{coke} \quad \text{soda}
\end{align*}

for \(AP = \{\text{pay}, \text{coke}, \text{soda}\} \): \quad \mathcal{T}_1 \preceq \mathcal{T}_2
Two beverage machines

\[\mathcal{T}_1 \]

\[\mathcal{T}_2 \]

for \(\mathcal{AP} = \{ \text{pay}, \text{coke}, \text{soda} \} \): \(\mathcal{T}_1 \preceq \mathcal{T}_2 \)

simulation for \((\mathcal{T}_1, \mathcal{T}_2) \):

\[\{ (\text{pay, pay}), (\text{paid}_1, \text{select}), (\text{paid}_2, \text{select}), (\text{coke, coke}), (\text{soda, soda}) \} \]
Two beverage machines

For $AP = \{\text{pay}, \text{coke}, \text{soda}\}$: $T_1 \preceq T_2$, but $T_2 \not\preceq T_1$

Simulation for (T_1, T_2):

$$\{ (\text{pay}, \text{pay}), (\text{paid}_1, \text{select}), (\text{paid}_2, \text{select}),
(\text{coke}, \text{coke}), (\text{soda}, \text{soda}) \}$$
Two beverage machines

\[\mathcal{T}_1 \]

\[\mathcal{T}_2 \]

\[
\begin{align*}
\text{for } AP &= \{\text{pay, coke, soda}\}: \quad \mathcal{T}_1 \preceq \mathcal{T}_2, \text{ but } \mathcal{T}_2 \not\preceq \mathcal{T}_1 \\
\text{for } AP &= \{\text{pay, drink}\} :
\end{align*}
\]
Two beverage machines

\[T_1 \xrightarrow{\text{pay}} \text{paid}_1 \xrightarrow{\text{coke}} \quad \text{paid}_1 \xrightarrow{\text{soda}} \quad \text{paid}_2 \xrightarrow{\text{coke}} \quad \text{paid}_2 \xrightarrow{\text{soda}} \]

for \(AP = \{ \text{pay, coke, soda} \} \): \(T_1 \preceq T_2 \), but \(T_2 \nsubseteq T_1 \)

for \(AP = \{ \text{pay, drink} \} \): \(T_1 \preceq T_2 \), and \(T_2 \preceq T_1 \)
Two beverage machines

for $AP = \{\text{pay, coke, soda}\}$: $\mathcal{T}_1 \preceq \mathcal{T}_2$, but $\mathcal{T}_2 \not\preceq \mathcal{T}_1$

for $AP = \{\text{pay, drink}\}$: $\mathcal{T}_1 \preceq \mathcal{T}_2$, and $\mathcal{T}_2 \preceq \mathcal{T}_1$

simulation for $(\mathcal{T}_1, \mathcal{T}_2)$: as before
Two beverage machines

\[
\mathcal{T}_1 \xrightarrow{\text{pay}} \mathcal{P} \xrightarrow{\text{paid}_1} \mathcal{C} \xrightarrow{\text{coke}} \mathcal{P} \xrightarrow{\text{paid}_2} \mathcal{S} \xrightarrow{\text{soda}}
\]

\[
\mathcal{T}_2 \xrightarrow{\text{pay}} \mathcal{S} \xrightarrow{\text{select}} \mathcal{C} \xrightarrow{\text{coke}} \mathcal{P} \xrightarrow{\text{paid}_1} \mathcal{P} \xrightarrow{\text{paid}_2} \mathcal{S} \xrightarrow{\text{soda}}
\]

for \(\mathcal{A} \mathcal{P} = \{\text{pay, coke, soda}\} \): \(\mathcal{T}_1 \preceq \mathcal{T}_2 \), but \(\mathcal{T}_2 \not\preceq \mathcal{T}_1 \)

for \(\mathcal{A} \mathcal{P} = \{\text{pay, drink}\} \) : \(\mathcal{T}_1 \preceq \mathcal{T}_2 \), and \(\mathcal{T}_2 \preceq \mathcal{T}_1 \)

simulation for \((\mathcal{T}_2, \mathcal{T}_1)\):
\[
\{(\text{pay, pay}), (\text{select, paid}_1), (\text{select, paid}_2), (\text{coke, coke}), (\text{soda, soda})\}
\]
Path fragment lifting for simulation \mathcal{R}

can be completed to
Correct or wrong?

Correct. simulation: \[\{(s_1, s_2), (s'_1, s'_2)\} \]
Correct or wrong?

\begin{align*}
\text{correct. simulation: } & \{ (s_1, s_2), (s'_1, s'_2) \} \\
\end{align*}

\begin{align*}
\text{wrong. there is \underline{no} path fragment in } & \mathcal{T}_2 \\
\text{corresponding to the path fragment } & s_1 s'_1 s'_1
\end{align*}
Correct or wrong?
Correct or wrong?

Correct. simulation: \(\{ (s_1, s_2), (s'_1, s'_2), (s'_1, s''_2) \}\)
Correct or wrong?

correct. simulation: \{ (s_1, s_2), (s'_1, s'_2), (s'_1, s''_2) \}
Correct or wrong?

Correct. simulation: \(\{(s_1, s_2), (s_1', s_2'), (s_1', s_2'')\} \)

wrong. \(s_1' \not\leq s_2 \) and \(s_1' \not\leq t_2' \)
Simulation preorder ...

- as a relation that compares two transition systems
Simulation preorder ...

- as a relation that compares *two transition systems*

\[\mathcal{T}_1 \quad \mathcal{T}_2 \]
Simulation preorder ...

- as a relation that compares two transition systems
- as a relation on the states of one transition system
Simulation preorder ...

- as a relation that compares two transition systems
- as a relation on the states of one transition system

\[s_1 \preceq_T s_2 \] iff ?
Simulation preorder ...

- as a relation that compares two transition systems
- as a relation on the states of one transition system

\[s_1 \preceq_T s_2 \iff \tau_{s_1} \preceq \tau_{s_2} \]

iff there exists a simulation \(R \)
for \(\tau \) with \((s_1, s_2) \in R\)
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, \ldots)$ be a transition system.

The simulation preorder $\preceq_{\mathcal{T}}$ is the coarest relation on S such that for all states $s_1, s_2 \in S$ with $s_1 \preceq_{\mathcal{T}} s_2$:

Let $\mathcal{T} = (S, Act, \rightarrow, \ldots)$ be a transition system.

The simulation preorder $\preceq_{\mathcal{T}}$ is the coarsest relation on S such that for all states $s_1, s_2 \in S$ with $s_1 \preceq_{\mathcal{T}} s_2$:

1. $L(s_1) = L(s_2)$
2. each transition of s_1 can be mimicked by a transition of s_2
Simulation preorder for a single TS

Let $T = (S, Act, \rightarrow, \ldots)$ be a transition system.

The simulation preorder \preceq_T is the coarsest relation on S such that for all states $s_1, s_2 \in S$ with $s_1 \preceq_T s_2$:

1. $L(s_1) = L(s_2)$
2. each transition of s_1 can be mimicked by a transition of s_2

\preceq_T is a preorder, i.e., transitive and reflexive.
Let \mathcal{T} be a transition system with state space S.

A simulation for \mathcal{T} is a binary relation $\mathcal{R} \subseteq S \times S$ s.t.

1. if $(s_1, s_2) \in \mathcal{R}$ then $L(s_1) = L(s_2)$

2. for all $(s_1, s_2) \in \mathcal{R}$:
 \[
 \forall s'_1 \in \text{Post}(s_1) \exists s'_2 \in \text{Post}(s_2) \text{ s.t. } (s'_1, s'_2) \in \mathcal{R}
 \]

simulation preorder $\preceq_{\mathcal{T}}$:

$s_1 \preceq_{\mathcal{T}} s_2$ iff there exists a simulation \mathcal{R} for \mathcal{T} s.t. $(s_1, s_2) \in \mathcal{R}$
Path fragment lifting for \preceq_T

can be completed to
Example: simulation preorder \preceq_T

$s_1 \preceq_T s_2$

Diagram:

- s_1 with state label $\{a\}$ connected to s'_1.
- s_2 with state label $\{a\}$ connected to s'_2.
- s'_1 connected to s_1.
- s'_2 connected to s_2.
Example: simulation preorder \preceq_T

$s_1 \preceq_T s_2$ as

$\{(s_1, s_2), (s'_1, s'_2), (s'_1, s'_1)\}$ is a simulation for T
Example: simulation preorder \preceq_T

$s_1 \preceq_T s_2$ as

$\{(s_1, s_2), (s_1', s_2'), (s_1', s_1')\}$ is a simulation for \mathcal{T}
Example: simulation preorder \preceq_T

$s_1 \preceq_T s_2$ as

$\{(s_1, s_2), (s'_1, s'_2), (s'_1, s'_1)\}$ is a simulation for T

$s_1 \rightarrow s'_1 \rightarrow s'_1 \rightarrow s'_1 \rightarrow \ldots$

is simulated by

$s_2 \rightarrow s'_2 \rightarrow s'_1 \rightarrow s'_1 \rightarrow \ldots$
Abstraction and simulation
Abstraction and simulation

transition system \mathcal{T} with state space \mathcal{S}
Abstraction and simulation

transition system \mathcal{T}
with state space S

“small” abstract state space S'
Abstraction and simulation

transition system \mathcal{T} with state space S

abstract transition system \mathcal{T}_f with state space S'

abstraction function f

\mathcal{T}

S

s

$f(s)$
Abstraction and simulation

transition system \mathcal{T} with state space S

abstraction function f

abstract transition system \mathcal{T}_f with state space S'

lifting of transitions:

\[
\begin{align*}
 s & \rightarrow s' \\
 f(s) & \rightarrow f(s')
\end{align*}
\]
Abstraction and simulation

transition system \mathcal{T} with state space S

abstract transition system \mathcal{T}_f with state space S'

lifting of transitions:

$s \xrightarrow{s'} s' \xrightarrow{f(s)} f(s')$
given: transition system $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, \text{AP}, L)$

set S' and abstraction function $f : S \rightarrow S'$

s.t. $L(s) = L(t)$ if $f(s) = f(t)$ for all $s, t \in S$
Abstraction and simulation

given: transition system \(\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L) \)

set \(S' \) and abstraction function \(f : S \rightarrow S' \)

s.t. \(L(s) = L(t) \) if \(f(s) = f(t) \) for all \(s, t \in S \)

goal: define abstract transition system \(\mathcal{T}_f \)

with state space \(S' \) s.t. \(\mathcal{T} \preceq \mathcal{T}_f \)
Abstraction and simulation

abstraction function \(f : S \rightarrow S' \) s.t.
\[L(s) = L(t) \text{ if } f(s) = f(t) \text{ for all } s, t \in S \]

transition system
\[T = (S, Act, \rightarrow, S_0, AP, L) \]
\[\Downarrow \]
abstract transition system
\[T_f = (S', Act', \rightarrow_f, S'_0, AP, L') \]
abstraction function \(f : S \to S' \) s.t.

\[L(s) = L(t) \text{ if } f(s) = f(t) \text{ for all } s, t \in S \]

transition system

\[T = (S, \text{Act}, \mathbin{\rightarrow}, S_0, \text{AP}, L) \]

\[\Downarrow \]

abstract transition system

\[T_f = (S', \text{Act}', \mathbin{\rightarrow}_f, S'_0, \text{AP}, L') \]

where \(S'_0 = \{ f(s_0) : s_0 \in S_0 \} \) and \(L'(f(s)) = L(s) \)

\[s \mathbin{\rightarrow} s' \quad \frac{f(s)}{f(s) \mathbin{\rightarrow}_f f(s')} \]
Abstraction and simulation

abstraction function $f : S \rightarrow S'$ s.t.

$L(s) = L(t)$ if $f(s) = f(t)$ for all $s, t \in S$

$$
\text{transition system } \\
\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, \text{AP}, L)
$$

$$
\downarrow
$$

abstract transition system

$$
\mathcal{T}_f = (S', \text{Act}', \rightarrow_f, S'_0, \text{AP}, L')
$$

Then $\mathcal{T} \preceq \mathcal{T}_f$
Abstraction and simulation

abstraction function \(f : S \rightarrow S' \) s.t.

\[L(s) = L(t) \text{ if } f(s) = f(t) \text{ for all } s, t \in S \]

transition system

\[T = (S, Act, \rightarrow, S_0, AP, L) \]

abstract transition system

\[T_f = (S', Act', \rightarrow_f, S'_0, AP, L') \]

Then \(T \preceq T_f \)

\[\mathcal{R} = \{ \langle s, f(s) \rangle : s \in S \} \text{ is a simulation for } (T, T_f) \]
Data abstraction

\[
\text{WHILE} \ x > 0 \ \text{DO}
\]
\[
\begin{align*}
 x & := x - 1; \\
y & := y + 1
\end{align*}
\]
\text{OD}
\[
\text{IF} \ \text{even}\(y\) \ \text{THEN} \ \text{return} \ "1" \\
\text{ELSE} \ \text{return} \ "0"
\]
\text{FI}

\[x \in \mathbb{N}\]
\[y \in \mathbb{N}\]
WHILE \(x > 0 \) DO

\[
\begin{align*}
x & := x - 1; \\
y & := y + 1
\end{align*}
\]

OD

IF \(\text{even}(y) \)

THEN return “1”

ELSE return “0”

FI

\[
\begin{align*}
x & \in \mathbb{N} & \quad \rightarrow \quad x & \in \{ \text{gzero, zero} \} \\
y & \in \mathbb{N} & \quad \rightarrow \quad y & \in \{ \text{even, odd} \}
\end{align*}
\]
Data abstraction

\[
\text{WHILE } x > 0 \text{ DO}
\begin{align*}
x &:= x - 1; \\
y &:= y + 1
\end{align*}
\text{OD}
\]

\[
\text{IF } \text{even}(y) \text{ THEN return "1"}
\text{ELSE return "0"}
\text{FI}
\]

\[
x \in \mathbb{N} \quad \rightarrow \quad x \in \{ \texttt{gzero}, \texttt{zero} \}
\]

\[
y \in \mathbb{N} \quad \rightarrow \quad y \in \{ \texttt{even}, \texttt{odd} \}
\]
WHILE $x > 0$ DO
 $x := x - 1$;
 $y := y + 1$
OD

IF $\text{even}(y)$ THEN return "1"
ELSE return "0"
FI

WHILE $x = \text{gzero}$ DO
 $x := \text{gzero}$ or $x := \text{zero}$
 IF $y = \text{even}$ THEN $y := \text{odd}$
 ELSE $y := \text{even}$
 FI
OD

IF $y = \text{even}$ THEN return "1"
ELSE return "0"
FI
While $x > 0$ do
\[
\begin{align*}
 x &:= x - 1; \\
y &:= y + 1
\end{align*}
\]
end

If $\text{even}(y)$
\[
\begin{align*}
 \text{then} & \quad \text{return } "1" \\
 \text{else} & \quad \text{return } "0"
\end{align*}
\]
end

Concrete operation:
\[
x := x - 1
\]

Abstract operation, e.g.,
\[
gzero \mapsto gzero \text{ or } zero
\]
abstract TS simulates the concrete one
WHILE $x > 0$ DO
 $x := x - 1$
 $y := y + 1$
OD
IF even(y) THEN return 1 ELSE return 0 FI

WHILE $x = gzero$ DO
 $x := gzero$ or $x := zero$
 IF $y = even$ THEN $y := odd$ ELSE $y := even$ FI
OD
IF $y = even$ THEN return 1 ELSE return 0 FI
\(\ell_0 \) WHILE \(x > 0 \) DO
\(\ell_1 \) \(x := x - 1 \)
\(\ell_2 \) \(y := y + 1 \)
OD
\(\ell_3 \) IF \(\text{even}(y) \)
\(\ell_4 \) THEN return \(1 \)
\(\ell_5 \) ELSE return \(0 \)

\(\ell_0 \) WHILE \(x = \text{gzero} \) DO
\(\ell_1 \) \(x := \text{gzero} \) or \(x := \text{zero} \)
\(\ell_2 \) IF \(y = \text{even} \)
\(\quad \) THEN \(y := \text{odd} \)
\(\quad \) ELSE \(y := \text{even} \)
FI
OD
\(\ell_3 \) IF \(y = \text{even} \)
\(\ell_4 \) THEN return \(1 \)
\(\ell_5 \) ELSE return \(0 \) FI
\[\ell_0 \text{ WHILE } x > 0 \text{ DO}\]
\[\ell_1 x := x - 1\]
\[\ell_2 y := y + 1\]
\[\text{OD}\]
\[\ell_3 \text{ IF } \text{even}(y)\]
\[\ell_4 \text{ THEN return 1}\]
\[\ell_5 \text{ ELSE return 0}\]

\[\ell_0 \text{ WHILE } x = \text{gzero} \text{ DO}\]
\[\ell_1 x := \text{gzero or } x := \text{zero}\]
\[\ell_2 \text{ IF } y = \text{even}\]
\[\text{THEN } y := \text{odd}\]
\[\text{FI}\]
\[\text{ELSE } y := \text{even}\]
\[\text{OD}\]
\[\ell_3 \text{ IF } y = \text{even}\]
\[\ell_4 \text{ THEN return 1}\]
\[\ell_5 \text{ ELSE return 0} \text{ FI}\]
Simulation preorder vs. and trace inclusion

\[I_1 \preceq I_2 \implies \text{Tracesfin}(I_1) \subseteq \text{Tracesfin}(I_2) \]

reason: path fragment lifting for \(\preceq \)
Simulation preorder vs. and trace inclusion

\[\mathcal{T}_1 \preceq \mathcal{T}_2 \implies \text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2) \]

If \(\mathcal{T}_1 \) does not have terminal states, then:

\[\mathcal{T}_1 \preceq \mathcal{T}_2 \implies \text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2) \]

... does not hold if \(\mathcal{T}_1 \) has terminal states ...

\[\text{Traces}(\mathcal{T}_1) = \{ \emptyset \emptyset \} \neq \{ \emptyset^\omega \} = \text{Traces}(\mathcal{T}_2) \]
Simulation equivalence \simeq_T

kernel of the simulation preorder, i.e.,

$$\simeq = \preceq \cap \preceq^{-1}$$

For TS \mathcal{T}_1 and \mathcal{T}_2 over the same set of atomic propositions:

$$\mathcal{T}_1 \simeq \mathcal{T}_2 \iff \mathcal{T}_1 \preceq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \preceq \mathcal{T}_1$$
Simulation equivalence \simeq_T

kernel of the simulation preorder, i.e.,

$$\simeq = \preceq \cap \preceq^{-1}$$

For TS \mathcal{T}_1 and \mathcal{T}_2 over the same set of atomic propositions:

$$\mathcal{T}_1 \simeq \mathcal{T}_2 \text{ iff } \mathcal{T}_1 \preceq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \preceq \mathcal{T}_1$$

for states s_1 and s_2 of a TS \mathcal{T}:

$$s_1 \simeq_T s_2 \text{ iff } s_1 \preceq_T s_2 \text{ and } s_2 \preceq_T s_1$$
Two beverage machines

\(T_1: \)

- \text{pay}
- \text{soda}
- \text{coke}

\(T_2: \)

- \text{pay}
- \text{soda}
- \text{coke}
- \text{soda}'

for \(AP = \{ \text{pay}, \text{coke}, \text{soda} \} \)
Two beverage machines

T_1: $\text{pay} \rightarrow \text{soda} \rightarrow \text{coke} \rightarrow \text{pay}$

T_2: $\text{pay} \rightarrow \text{soda} \rightarrow \text{coke} \rightarrow \text{pay}$

for $AP = \{\text{pay, coke, soda}\}$

$T_2 \preceq T_1$, but $T_1 \not\equiv T_2$
Two beverage machines

\[\mathcal{T}_1 \] :

- Pay
- \(s_1 \)
- Coke
- Soda

\[\mathcal{T}_2 \] :

- Pay
- \(s_2 \)
- Coke
- Soda

\(\text{for } AP = \{ \text{pay}, \text{coke}, \text{soda} \} \)

\[\mathcal{T}_2 \preceq \mathcal{T}_1, \text{ but } \mathcal{T}_1 \not\cong \mathcal{T}_2 \]

\[\text{since } \mathcal{T}_1 \not\preceq \mathcal{T}_2 \]
Two beverage machines

T_1:

![Diagram of beverage machine 1]

For $AP = \{ \text{pay, coke, soda} \}$

$T_2 \preceq T_1$, but $T_1 \nRightarrow T_2$

since $T_1 \nRightarrow T_2$

T_2:

![Diagram of beverage machine 2]

For $AP = \{ \text{pay, drink} \}$:
Two beverage machines

\(\mathcal{T}_1: \)

\[
\begin{array}{c}
\text{pay} \\
\downarrow \\
\text{soda} \\
\downarrow \\
\text{coke} \\
\end{array}
\]

\(\mathcal{T}_2: \)

\[
\begin{array}{c}
\text{pay} \\
\downarrow \\
\text{soda} \\
\downarrow \\
\text{coke} \\
\end{array}
\]

for \(AP = \{ \text{pay, coke, soda} \} \)

\(\mathcal{T}_2 \preceq \mathcal{T}_1, \text{ but } \mathcal{T}_1 \not\equiv \mathcal{T}_2 \quad \text{ since } \mathcal{T}_1 \not\equiv \mathcal{T}_2 \)

for \(AP = \{ \text{pay, drink} \} : \quad \mathcal{T}_1 \simeq \mathcal{T}_2 \)
Example: simulation equivalent TS

\mathcal{T}_1:

\mathcal{T}_2:

T_1:s_1

t_1

u_1

T_2:

s_2

t_3

t_2

u_2
Example: simulation equivalent TS

\[\mathcal{T}_1: \]
\[\mathcal{T}_2: \]

simulation for \((\mathcal{T}_1, \mathcal{T}_2)\):

\[\{(s_1, s_2), (t_1, t_2), (u_1, u_2)\} \]
Example: simulation equivalent TS

\[T_1: \]

\[T_2: \]

\[
\text{simulation for } (T_1, T_2): \\
\{ (s_1, s_2), (t_1, t_2), (u_1, u_2) \}
\]

\[
\text{simulation for } (T_2, T_1): \\
\{ (s_2, s_1), (t_2, t_1), (t_3, t_1), (u_2, u_1) \}
\]
Bisimulation vs. simulation equivalence

Bisimulation equivalence \(\sim \) is strictly finer than simulation equivalence \(\simeq \)
Bisimulation vs. simulation equivalence

Bisimulation equivalence \sim is strictly finer than simulation equivalence \simeq

That is:

1. $\mathcal{I}_1 \sim \mathcal{I}_2$ implies $\mathcal{I}_1 \simeq \mathcal{I}_2$

 \textit{Proof:} Let \mathcal{R} is a bisimulation for $(\mathcal{I}_1, \mathcal{I}_2)$.

 \begin{itemize}
 \item \mathcal{R} is a simulation for $(\mathcal{I}_1, \mathcal{I}_2) \implies \mathcal{I}_1 \leq \mathcal{I}_2$
 \item \mathcal{R}^{-1} is a simulation for $(\mathcal{I}_2, \mathcal{I}_1) \implies \mathcal{I}_2 \leq \mathcal{I}_1$
 \end{itemize}

2. there exist TS \mathcal{I}_1 and \mathcal{I}_2 s.t. $\mathcal{I}_1 \simeq \mathcal{I}_2$ and $\mathcal{I}_1 \not\sim \mathcal{I}_2$
bisimulation equivalence

\[s_1 \sim s_2 \]

\[s'_1 \]
bisimulation equivalence

\[s_1 \sim s_2 \]

\[s_1' \sim s_2' \]
bisimulation equivalence

\[
\begin{array}{c}
S_1 \sim S_2 \\
S'_1 \sim S'_2
\end{array}
\]

simulation equivalence

\[
\begin{array}{c}
S_1 \sim S_2 \\
S'_1
\end{array}
\]
bisimulation equivalence

\[s_1 \sim s_2\]

\[s'_1 \sim s'_2\]

simulation equivalence

\[s_1 \sim s_2\]

\[s'_1 \preceq s'_2\]
bisimulation equivalence

\[S_1 \sim S_2 \]

\[S'_1 \sim S'_2 \]

simulation equivalence

\[S_1 \sim S_2 \]

\[S'_1 \preceq S'_2 \]
bisimulation equivalence

\[s_1 \sim s_2 \]

\[s_1' \sim s_2' \]

simulation equivalence

\[s_1 \sim s_2 \]

\[s_1' \preceq s_2' \]

\[T_1 \]

\[T_2 \]
bisimulation equivalence

\[s_1 \sim s_2 \]

\[s_1' \sim s_2' \]

simulation equivalence

\[s_1 \sim s_2 \]

\[s_1' \preceq s_2' \]

\[\mathcal{T}_2 \preceq \mathcal{T}_1 \text{, as } \mathcal{T}_2 \text{ is a "subsystem" of } \mathcal{T}_1 \]
bisimulation equivalence

$$s_1 \sim s_2$$

$$s_1' \sim s_2'$$

simulation equivalence

$$s_1 \sim s_2$$

$$s_1' \preceq s_2'$$

simulation for $$(\mathcal{T}_1, \mathcal{T}_2)$$:

$$\{(s_1, s_2), (s'_1, s'_2), (s''_1, s'_2), (u_1, u_2), (v_1, v_2)\}$$
Simulation vs trace equivalence

\[T_1 \simeq T_2 \iff \text{Traces}(T_1) = \text{Traces}(T_2) \]

\[\text{Traces}(T_1) = \text{Traces}(T_2) \implies T_1 \simeq T_2 \]

not trace equivalent but simulation equivalent

not trace equivalent not simulation equivalent
Simulation vs trace equivalence

\[T_1 \sim T_2 \nleftrightarrow Traces(T_1) = Traces(T_2) \]

\[Traces(T_1) = Traces(T_2) \nleftrightarrow T_1 \sim T_2 \]

\[\begin{align*}
&\text{not trace equivalent} \\
&\text{but simulation equivalent}
\end{align*} \]

\[\begin{align*}
&\text{trace equivalent} \\
&\text{not simulation equivalent}
\end{align*} \]
Simulation vs. finite trace equivalence

\[T_1 \sim T_2 \iff \text{Traces}(T_1) = \text{Traces}(T_2) \]

\[\text{Traces}(T_1) = \text{Traces}(T_2) \iff T_1 \sim T_2 \]

\[T_1 \sim T_2 \implies \text{Tracesfin}(T_1) = \text{Tracesfin}(T_2) \]

while "\(\iff\)" does not hold
Simulation vs. finite trace equivalence

\[T_1 \simeq T_2 \quad \not\Rightarrow \quad \text{Traces}(T_1) = \text{Traces}(T_2) \]

\[\text{Traces}(T_1) = \text{Traces}(T_2) \quad \not\Rightarrow \quad T_1 \simeq T_2 \]

\[T_1 \simeq T_2 \quad \Rightarrow \quad \text{Tracesfin}(T_1) = \text{Tracesfin}(T_2) \]

while "\(\Leftarrow\)" does not hold

If \(T_1, T_2 \) do not have terminal states then:

\[T_1 \simeq T_2 \quad \Rightarrow \quad \text{Traces}(T_1) = \text{Traces}(T_2) \]
Summary: trace and (bi)simulation relations
bisimulation equivalence
\[T_1 \sim T_2 \]

simulation equivalence
\[T_1 \simeq T_2 \]

simulation preorder
\[T_1 \preceq T_2 \]
bisimulation equivalence \(\mathcal{T}_1 \sim \mathcal{T}_2 \)

simulation equivalence \(\mathcal{T}_1 \simeq \mathcal{T}_2 \)

finite trace equivalence \(\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{Traces}_{\text{fin}}(\mathcal{T}_2) \)

simulation preorder \(\mathcal{T}_1 \preceq \mathcal{T}_2 \)

finite trace inclusion \(\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2) \)
bisimulation equivalence $\mathcal{T}_1 \sim \mathcal{T}_2$

simulation equivalence $\mathcal{T}_1 \simeq \mathcal{T}_2$

finite trace equivalence $\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{Traces}_{\text{fin}}(\mathcal{T}_2)$

finite trace inclusion $\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$

simulation preorder $\mathcal{T}_1 \preceq \mathcal{T}_2$

trace equivalence $\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2)$

trace inclusion $\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2)$
bisimulation equivalence
\[\mathcal{T}_1 \sim \mathcal{T}_2 \]

finite trace equivalence
\[\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{Traces}_{\text{fin}}(\mathcal{T}_2) \]

trace inclusion
\[\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2) \]

without terminal states

simulation preorder
\[\mathcal{T}_1 \preceq \mathcal{T}_2 \]

finite trace inclusion
\[\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2) \]

simulation equivalence
\[\mathcal{T}_1 \simeq \mathcal{T}_2 \]

trace equivalence
\[\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2) \]
bisimulation equivalence
\[T_1 \sim T_2 \]

finite trace equivalence
\[\text{Traces}_{\text{fin}}(T_1) = \text{Traces}_{\text{fin}}(T_2) \]

trace inclusion
\[\text{Traces}(T_1) \subseteq \text{Traces}(T_2) \]

without terminal states

simulation preorder
\[T_1 \preceq T_2 \]

simulation equivalence
\[T_1 \simeq T_2 \]

trace equivalence
\[\text{Traces}(T_1) = \text{Traces}(T_2) \]

finite trace inclusion
\[\text{Traces}_{\text{fin}}(T_1) \subseteq \text{Traces}_{\text{fin}}(T_2) \]

AP-determinism

without terminal states
Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

\mathcal{T} is called AP-deterministic iff

1. for all states s and all subsets A of AP:
 $$\left| \left\{ t \in S : s \rightarrow t \land L(t) = A \right\} \right| \leq 1$$

2. for all subsets A of AP:
 $$\left| \left\{ s_0 \in S_0 : L(s_0) = A \right\} \right| \leq 1$$
Let T be AP-deterministic and s_1, s_2 states in T.

If $\text{Traces}_{\text{fin}}(s_1) = \text{Traces}_{\text{fin}}(s_2)$ then

$$\text{Traces}(s_1) = \text{Traces}(s_2)$$

mainly because:

- each (finite or infinite) word σ_1 over 2^{AP} is induced by at most one path fragment starting in s_1 or s_2, respectively

- if $\sigma = A_0A_1 \ldots A_iA_{i+1} \ldots \in \text{Traces}(s_1)$ then there is no proper prefix $A_0A_1 \ldots A_i$ of σ belongs to $\text{Traces}(s_1)$

+ analogous statement for s_2
Let \mathcal{T} be AP-deterministic and s_1, s_2 states in \mathcal{T}.

If $\text{Traces}_{\text{fin}}(s_1) \subseteq \text{Traces}_{\text{fin}}(s_2)$ then

$\text{Traces}(s_1) \subseteq \text{Traces}(s_2)$
Let \mathcal{T} be AP-deterministic and s_1, s_2 states in \mathcal{T}.

If $Traces_{\text{fin}}(s_1) \subseteq Traces_{\text{fin}}(s_2)$ then

$Traces(s_1) \subseteq Traces(s_2)$

wrong.

$Traces_{\text{fin}}(s_1) \subseteq Traces_{\text{fin}}(s_2)$

$\bullet \in Traces(s_1) \setminus Traces(s_2)$
(Bi)simulation and trace equivalence

Let \mathcal{T} be AP-deterministic and s_1, s_2 states in \mathcal{T}.
Then the following statements are equivalent:

1. $s_1 \sim_{\mathcal{T}} s_2$ (bisimulation equivalence)
2. $s_1 \simeq_{\mathcal{T}} s_2$ (simulation equivalence)
3. $\text{Traces}_{\text{fin}}(s_1) = \text{Traces}_{\text{fin}}(s_2)$
4. $\text{Traces}(s_1) = \text{Traces}(s_2)$

(1) \implies (2): \checkmark
(2) \implies (3): ... path fragment lifting ...
(3) \implies (4): just shown
(4) \implies (1): ...
Bisimulation and trace equivalence

Let \mathcal{T} be AP-deterministic and s_1, s_2 states in \mathcal{T}. Then:

$$Traces(s_1) = Traces(s_2) \text{ implies } s_1 \sim_{\mathcal{T}} s_2$$
Let \mathcal{T} be AP-deterministic and s_1, s_2 states in \mathcal{T}. Then:

$$\text{Traces}(s_1) = \text{Traces}(s_2)$$ implies $s_1 \sim_T s_2$

Proof: show that

$$\mathcal{R} = \{(s_1, s_2) : \text{Traces}(s_1) = \text{Traces}(s_2)\}$$

is a bisimulation.
Bisimulation and trace equivalence

Let T be AP-deterministic and s_1, s_2 states in T. Then:

$$\text{Traces}(s_1) = \text{Traces}(s_2) \text{ implies } s_1 \sim_T s_2$$

Proof: show that

$$\mathcal{R} = \{(s_1, s_2) : \text{Traces}(s_1) = \text{Traces}(s_2)\}$$

is a bisimulation.

Note that if $s \rightarrow t$ then
Bisimulation and trace equivalence

Let \(T \) be \(AP \)-deterministic and \(s_1, s_2 \) states in \(T \). Then:

\[
\text{Traces}(s_1) = \text{Traces}(s_2) \implies s_1 \sim_T s_2
\]

Proof: show that

\[
\mathcal{R} = \{ (s_1, s_2) : \text{Traces}(s_1) = \text{Traces}(s_2) \}
\]

is a bisimulation.

Note that if \(s \rightarrow t \) then

\[
\text{Traces}(t) = \{ L(t)B_1B_2B_3 \ldots \in (2^{AP})^+ \cup (2^{AP})^\omega : L(s)L(t)B_1B_2B_3 \ldots \in \text{Traces}(s) \}
\]
Let \mathcal{T} be AP-deterministic and s_1, s_2 states in \mathcal{T}. Then:

$$Traces_{\text{fin}}(s_1) = Traces_{\text{fin}}(s_2) \implies s_1 \sim_{\mathcal{T}} s_2$$
Let T be AP-deterministic and s_1, s_2 states in T. Then:

$$\text{Traces}_{\text{fin}}(s_1) = \text{Traces}_{\text{fin}}(s_2) \implies s_1 \sim_T s_2$$

Proof: show that

$$\mathcal{R} = \{(s_1, s_2) : \text{Traces}_{\text{fin}}(s_1) = \text{Traces}_{\text{fin}}(s_2)\}$$

is a bisimulation.

Note that if $s \rightarrow t$ then

$$\text{Traces}_{\text{fin}}(t) = \{ L(t)B_1B_2\ldots B_n \in (2^{AP})^+ :$$

$$L(s)L(t)B_1B_2\ldots B_n \in \text{Traces}_{\text{fin}}(s) \}$$
Trace and (bi)simulation equivalence

\[\mathcal{T}_1 \sim \mathcal{T}_2 \]

Simulation equivalence

\[\mathcal{T}_1 \simeq \mathcal{T}_2 \]

Trace equivalence

\[\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2) \]

Finite trace equivalence

\[\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{Traces}_{\text{fin}}(\mathcal{T}_2) \]
For AP-deterministic TS

- Bisimulation equivalence: $\mathcal{T}_1 \sim \mathcal{T}_2$
- Simulation equivalence: $\mathcal{T}_1 \simeq \mathcal{T}_2$
- Trace equivalence: $\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2)$
- Finite trace equivalence: $\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{Traces}_{\text{fin}}(\mathcal{T}_2)$
For AP-deterministic TS

\[\mathcal{I}_1 \sim \mathcal{I}_2 \]

\[\text{trace equivalence} \quad \text{Traces}(\mathcal{I}_1) = \text{Traces}(\mathcal{I}_2) \]

\[\text{finite trace equivalence} \quad \text{Traces}_{\text{fin}}(\mathcal{I}_1) = \text{Traces}_{\text{fin}}(\mathcal{I}_2) \]

\[\text{simulation equivalence} \quad \mathcal{I}_1 \simeq \mathcal{I}_2 \]

\[\text{AP-determinism} \]
Logical characterizations

\(\text{LT safety prop.}\)

\(\text{trace inclusion}\)

\(\text{trace inclusion}\)

\(\text{trace equivalence}\)

\(\text{bisimulation equivalence} \sim\)

\(\text{LTL}\)

\(\text{LTL}\)

\(\text{LTL}^*\)

\(\text{CTL}\)
Logical characterizations

LTL
- safety prop.
- finite trace inclusion
- trace inclusion
- trace equivalence
- stutter trace equivalence

LTL_O
- stutter trace equivalence

LTL
- bisimulation equivalence
- stutter bis. equiv. with div.

CTL
- \(\Delta\)

CTL*
- \(\equiv\)
Logical characterizations

- **LT** safety prop.
- **LTL**
 - finite trace inclusion
 - trace inclusion
 - trace equivalence
 - stutter trace equivalence

- **LTL**
 - simulation preorder \preceq
 - bisimulation equivalence \sim
 - stutter bis. equiv. with div. \approx_{div}

- **CTL**
 - \bullet

- **CTL***
 - \bullet

For TS without terminal states
Logical characterizations

\[\text{LT safety prop.} \]

\[\text{LTL} \]

\[\text{LTL} \]

\[\text{LTL} \]

\[\forall \text{CTL*} \]

\[\text{CTL*} \]

\[\text{CTL*} \]

\[\text{CTL} \]

\[\text{CTL} \]

finite trace inclusion

trace inclusion

trace equivalence

bisimulation equivalence

simulation preorder \(\preceq \)

for TS without terminal states

\[\forall \text{CTL*} \]

\[\text{CTL*} \]

\[\text{CTL} \]

\[\text{CTL} \]

stutter trace equivalence \(\triangleq \)

stutter bis. equiv. with div. \(\approx^{\text{div}} \)

LTL

\[\text{LTL} \]

\[\text{LTL} \]

\[\text{LTL} \]
for bisimulation equivalence \sim_T:

\[
\begin{align*}
 s_1 \sim_T s_2 &\text{ iff } s_1, s_2 \text{ satisfy the same } \mathbf{CTL}^* \text{ formulas} \\
 &\text{iff } s_1, s_2 \text{ satisfy the same } \mathbf{CTL} \text{ formulas}
\end{align*}
\]
for bisimulation equivalence \sim_T:

$$s_1 \sim_T s_2 \iff s_1, s_2 \text{ satisfy the same } \text{CTL}^* \text{ formulas}$$

iff s_1, s_2 satisfy the same CTL formulas

for the simulation preorder \preceq_T:

by a sublogic L of CTL^* that subsumes LTL

$$s_1 \preceq_T s_2 \iff \text{for all formulas } \Phi \in L: \quad s_2 \models \Phi \text{ implies } s_1 \models \Phi$$

observation: L cannot be closed under negation
The universal fragment $\forall \text{CTL}^*$ of CTL^*

CTL^* formulas in positive normal form, without \exists
Syntax of ∀CTL*

∀CTL* state formulas:

\[\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \forall \varphi \]

∀CTL* path formulas:

\[\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \O \varphi \mid \varphi_1 \cup \varphi_2 \mid \varphi_1 \mathsf{W} \varphi_2 \]
Syntax of \forallCTL*

\forallCTL* state formulas:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \forall \varphi$$

\forallCTL* path formulas:

$$\varphi ::= \Phi \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \bigcirc \varphi \mid \Phi_1 \mathsf{U} \Phi_2 \mid \Phi_1 \mathsf{W} \Phi_2$$

evitably: $\Diamond \varphi \overset{\text{def}}{=} \text{true} \mathsf{U} \varphi$

always: $\Box \varphi \overset{\text{def}}{=} \varphi \mathsf{W} \text{false}$
Embedding of LTL in ∀CTL*

∀CTL* state formulas:

\[\Phi ::= true | false | a | \neg a | \Phi_1 \land \Phi_2 | \Phi_1 \lor \Phi_2 | \forall \varphi \]

∀CTL* path formulas:

\[\varphi ::= \Phi | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | \bigcirc \varphi | \varphi_1 \mathcal{U} \varphi_2 | \varphi_1 \mathcal{W} \varphi_2 \]

for all LTL formulas \(\varphi \) in PNF:

\[s \models_{\text{LTL}} \varphi \text{ iff } s \models_{\forall \text{CTL}*} \forall \varphi \]

but \(\forall \diamond \forall \square a \) cannot be expressed in LTL
The universal fragments of CTL* and CTL

syntax of ∀CTL*:

\[\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \forall \varphi \]

\[\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \varphi_1 \mathbf{U} \varphi_2 \mid \varphi_1 \mathbf{W} \varphi_2 \]

∀CTL: sublogic of ∀CTL*

- no Boolean operators for paths formulas
- the arguments of the temporal modalities \(\mathbf{U} \), \(\mathbf{U} \) and \(\mathbf{W} \) are state formulas
The universal fragments of \forallCTL* and CTL

Syntax of \forallCTL*:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \forall \varphi$$

$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box \varphi \mid \varphi_1 \mathcal{U} \varphi_2 \mid \varphi_1 \mathcal{W} \varphi_2$$

\forallCTL: sublogic of \forallCTL*

Syntax of \forallCTL:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid$$

$$\forall \Box \Phi \mid \forall(\Phi_1 \mathcal{U} \Phi_2) \mid \forall(\Phi_1 \mathcal{W} \Phi_2)$$
Let \mathcal{T} be a finite TS without terminal states. Then, for all states s_1 and s_2 in \mathcal{T}, the following statements are equivalent:

1. $s_1 \preceq_T s_2$
2. For all \forallCTL state formulas Φ: if $s_2 \models \Phi$ then $s_1 \models \Phi$
3. For all \forallCTL* state formulas Φ: if $s_2 \models \Phi$ then $s_1 \models \Phi$
∀CTL and simulation

\[T_1: \]
\[\emptyset \xrightarrow{a} \{a\} \]
\[\emptyset \xrightarrow{a} \{a\} \]

\[T_2: \]
\[\emptyset \xrightarrow{a} \{a\} \]
\[\emptyset \xrightarrow{a} \{a\} \]

\[AP = \{a\} \]
∀CTL and simulation

\(\mathcal{T}_1: \)

\(\emptyset \)

\(\{a\} \)

\(\{a\} \)

\(\emptyset \)

\(\{a\} \)

\(\mathcal{T}_2: \)

\(\emptyset \)

\(\{a\} \)

\(\{a\} \)

AP = \(\{a\} \)
∀CTL and simulation

\[\mathcal{T}_1 : \quad \emptyset \xrightarrow{a} \{a\} \xrightarrow{a} \{a\} \xrightarrow{a} \emptyset \]
\[\mathcal{T}_2 : \quad \emptyset \xrightarrow{a} \{a\} \xrightarrow{a} \{a\} \xrightarrow{a} \emptyset \]

\[AP = \{a\} \]

e.g.,

\[\mathcal{T}_1 \not\models \forall \bigodot (\forall \bigodot \neg a \lor \forall \bigodot a) \]
\[\mathcal{T}_2 \models \forall \bigodot (\forall \bigodot \neg a \lor \forall \bigodot a) \]
\[\mathcal{T}_1 \not\models \forall \bigodot (\forall \square \neg a \lor \forall \square a) \]
\[\mathcal{T}_2 \models \forall \bigodot (\forall \square \neg a \lor \forall \square a) \]
∀CTL/∀CTL* and the simulation preorder

For finite TS without terminal states, the following statements are equivalent:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$s_1 \preceq_T s_2$</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>for all ∀CTL formulas Φ: $s_2 \models \Phi$ implies $s_1 \models \Phi$</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>for all ∀CTL* formulas Φ: $s_2 \models \Phi$ implies $s_1 \models \Phi$</td>
<td></td>
</tr>
</tbody>
</table>
∀CTL/∀CTL* and the simulation preorder

For finite TS without terminal states, the following statements are equivalent:

(1) $s_1 \preceq_T s_2$

(2) for all $∀CTL$ formulas Φ: $s_2 \models \Phi$ implies $s_1 \models \Phi$

(3) for all $∀CTL^*$ formulas Φ: $s_2 \models \Phi$ implies $s_1 \models \Phi$

(3) \Rightarrow (2): obvious as $∀CTL$ is a sublogic of $∀CTL^*$
∀CTL/∀CTL* and the simulation preorder

For finite TS without terminal states, the following statements are equivalent:

<table>
<thead>
<tr>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (s_1 \preceq_T s_2)</td>
</tr>
<tr>
<td>(2) for all (\forall \text{CTL}) formulas (\Phi): (s_2 \models \Phi) implies (s_1 \models \Phi)</td>
</tr>
<tr>
<td>(3) for all (\forall \text{CTL}*) formulas (\Phi): (s_2 \models \Phi) implies (s_1 \models \Phi)</td>
</tr>
</tbody>
</table>

(3) \(\Rightarrow \) (2): obvious as \(\forall \text{CTL} \) is a sublogic of \(\forall \text{CTL}* \)

(1) \(\Rightarrow \) (3): holds for arbitrary (possibly infinite) TS without terminal states

\[\text{proof by structural induction} \]
∀CTL/∀CTL* and the simulation preorder

For finite TS without terminal states, the following statements are equivalent:

(1) \(s_1 \preceq_T s_2 \)

(2) for all ∀CTL formulas \(\Phi: s_2 \models \Phi \) implies \(s_1 \models \Phi \)

(3) for all ∀CTL* formulas \(\Phi: s_2 \models \Phi \) implies \(s_1 \models \Phi \)

(1) \(\implies \) (3): show by structural induction:

(i) for all ∀CTL* state formulas \(\Phi \) and states \(s_1, s_2 \):
 if \(s_1 \preceq_T s_2 \) and \(s_2 \models \Phi \) then \(s_1 \models \Phi \)

(ii) for all ∀CTL* path formulas \(\varphi \) and paths \(\pi_1, \pi_2 \):
 if \(\pi_1 \preceq_T \pi_2 \) and \(\pi_2 \models \varphi \) then \(\pi_1 \models \varphi \)
\(\forall CTL/\forall CTL^*\) and the simulation preorder

For finite TS without terminal states, the following statements are equivalent:

1. \(s_1 \preceq_T s_2\)
2. For all \(\forall CTL\) formulas \(\Phi\): \(s_2 \models \Phi\) implies \(s_1 \models \Phi\)
3. For all \(\forall CTL^*\) formulas \(\Phi\): \(s_2 \models \Phi\) implies \(s_1 \models \Phi\)

\((2) \implies (1):\) show that for finite TS:

\[\mathcal{R} = \{(s_1, s_2) : \text{ for all } \forall CTL \text{ formulas } \Phi: s_2 \models \Phi \text{ implies } s_1 \models \Phi\}\]

is a simulation.
Duality of $\forall\text{CTL}^*$ and $\exists\text{CTL}^*$

$\exists\text{CTL}^*$ (state) formulas:

$$\Psi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Psi_1 \land \Psi_2 \mid \Psi_1 \lor \Psi_2 \mid \exists \phi$$

$\exists\text{CTL}^*$ path formulas:

$$\phi ::= \Psi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \Box \phi \mid \phi_1 \mathcal{U} \phi_2 \mid \phi_1 \mathcal{W} \phi_2$$

analogous: $\exists\text{CTL}$

For each $\forall\text{CTL}^*$ formula Φ there is a $\exists\text{CTL}^*$ formula Ψ s.t. $\Phi \equiv \neg \Psi$ (and vice versa)

For each $\forall\text{CTL}$ formula Φ there is a $\exists\text{CTL}$ formula Ψ s.t. $\Phi \equiv \neg \Psi$ (and vice versa)
If s_1 and s_2 are states in a finite TS then the following statements are equivalent:

(1) $s_1 \preceq_T s_2$

(2) for all $\forall \text{CTL}$ formulas Φ:

 \[
 \text{if } s_2 \models \Phi \text{ then } s_1 \models \Phi
 \]

(3) for all $\forall \text{CTL}^*$ formulas Φ:

 \[
 \text{if } s_2 \models \Phi \text{ then } s_1 \models \Phi
 \]
If s_1 and s_2 are states in a finite TS then the following statements are equivalent:

(1) $s_1 \leq_T s_2$

(2∀) for all ∀CTL formulas Φ:
\[
\text{if } s_2 \models \Phi \text{ then } s_1 \models \Phi
\]

(3∀) for all ∀CTL* formulas Φ:
\[
\text{if } s_2 \models \Phi \text{ then } s_1 \models \Phi
\]

(2∃) for all ∃CTL formulas Ψ:
\[
\text{if } s_1 \models \Psi \text{ then } s_2 \models \Psi
\]

(3∃) for all ∃CTL formulas Ψ:
\[
\text{if } s_1 \models \Psi \text{ then } s_2 \models \Psi
\]
Example: $\forall\text{CTL}/\exists\text{CTL}$ and simulation

T_1: $\emptyset \xrightarrow{a} \{a\}$

T_2: $\emptyset \xrightarrow{a} \{a\}$

$T_1 \not\preceq T_2$
Example: ∀CTL/∃CTL and simulation

$$\mathcal{T}_1:$$

$$\mathcal{T}_2:$$

$$\forall CTL$$ formula

$$\exists CTL$$ formula
Characterizations of simulation equivalence

for finite TS without terminal states:

\[\mathcal{T}_1 \sim \mathcal{T}_2 \quad \text{iff} \quad \mathcal{T}_1 \preceq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \preceq \mathcal{T}_1 \]

iff \(\mathcal{T}_1, \mathcal{T}_2 \) satisfy the same \(\forall \text{CTL}^* \) formulas

iff \(\mathcal{T}_1, \mathcal{T}_2 \) satisfy the same \(\forall \text{CTL} \) formulas

iff \(\mathcal{T}_1, \mathcal{T}_2 \) satisfy the same \(\exists \text{CTL}^* \) formulas

iff \(\mathcal{T}_1, \mathcal{T}_2 \) satisfy the same \(\exists \text{CTL} \) formulas

... even holds for \(\forall \text{CTL}^* \setminus \{u,w\}, \forall \text{CTL} \setminus \{u,w\}, \exists \text{CTL}^* \setminus \{u,w\}, \exists \text{CTL} \setminus \{u,w\} \)
Simulation equivalence

\[T_1 \]

\[T_2 \]

\[\hat{=} \{ a \} \]

\[\hat{=} \{ b \} \]
Simulation equivalence

\(\mathcal{T}_1, \mathcal{T}_2\) cannot be distinguished by the temporal logics
\(\forall\text{CTL}, \forall\text{CTL}^*, \exists\text{CTL},\) or \(\exists\text{CTL}^*,\)
Simulation equivalence

\[T_1 \cong T_2 \]

\[\not\equiv T_1 \not\equiv T_2 \]

\[\hat{T} = \{ a \} \]
\[\hat{T} = \{ b \} \]

\(T_1, T_2 \) cannot be distinguished by the temporal logics \(\forall \text{CTL}, \forall \text{CTL}^*, \exists \text{CTL}, \) or \(\exists \text{CTL}^* \),

but by \(\text{CTL} \):

\[T_1 \not\models \forall \bigcirc (\exists \bigcirc a \land \exists \bigcirc b) \]
\[T_2 \models \forall \bigcirc (\exists \bigcirc a \land \exists \bigcirc b) \]
Does there exist a $\exists \mathcal{CTL}$ formula Φ s.t. $
abla_1 \models \Phi$ and $\nabla_2 \not\models \Phi$?
Does there exist ...?

Does there exist a $\exists\text{CTL}$ formula Φ s.t. $T_1 \models \Phi$ and $T_2 \not\models \Phi$?

Yes, as $T_1 \not\preceq T_2$, e.g., $\Phi = \exists \Diamond (\exists \Diamond a \land \exists \Diamond b)$
Does there exist a $\exists\text{CTL}$ formula Φ s.t. $T_1 \models \Phi$ and $T_2 \not\models \Phi$?

Yes, as $T_1 \not\preceq T_2$, e.g., $\Phi = \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$

Does there exist a $\forall\text{CTL}$ formula Φ s.t. $T_1 \models \Phi$ and $T_2 \not\models \Phi$?
Does there exist ...?

Does there exist a $\exists \text{CTL}$ formula Φ s.t.

$\mathcal{T}_1 \models \Phi$ and $\mathcal{T}_2 \not\models \Phi$?

Yes, as $\mathcal{T}_1 \not\preceq \mathcal{T}_2$, e.g., $\Phi = \exists O (\exists O a \land \exists O b)$

Does there exist a $\forall \text{CTL}$ formula Φ s.t.

$\mathcal{T}_1 \models \Phi$ and $\mathcal{T}_2 \not\models \Phi$?

No, as $\mathcal{T}_2 \preceq \mathcal{T}_1$
Does there exist a $\exists\text{CTL}$ formula Φ s.t.

$\mathcal{T}_1 \models \Phi$ and $\mathcal{T}_2 \not\models \Phi$?
Does there exist a \existsCTL formula Φ s.t.

\[T_1 \models \Phi \text{ and } T_2 \not\models \Phi \]?

No, since $T_1 \simeq T_2$
Does there exist a $\exists\text{CTL}$ formula Φ s.t. $\mathcal{T}_1 \models \Phi$ and $\mathcal{T}_2 \not\models \Phi$?

No, since $\mathcal{T}_1 \simeq \mathcal{T}_2$

Simulation for $(\mathcal{T}_1, \mathcal{T}_2)$: $\{ (s_1, s_2), (v_1, s_2), (t_1, t_2) \}$
Does there exist \(\exists \mathcal{CTL} \) formula \(\Phi \) s.t.

\[
\mathcal{T}_1 \models \Phi \quad \text{and} \quad \mathcal{T}_2 \not\models \Phi
\]

\textbf{no, since } \mathcal{T}_1 \simeq \mathcal{T}_2

simulation for \((\mathcal{T}_1, \mathcal{T}_2)\): \(\{(s_1, s_2), (v_1, s_2), (t_1, t_2)\}\)

simulation for \((\mathcal{T}_2, \mathcal{T}_1)\):

\(\{(s_2, s_1), (s_2, v_1), (v_2, v_1), (t_1, t_2)\}\)
Does there exist a \textbf{CTL} formula Φ s.t. $\mathcal{T}_1 \not\models \Phi$ and $\mathcal{T}_2 \models \Phi$?
Does there exist a \(\mathbf{CTL}\) formula \(\Phi\) s.t. \(\mathcal{T}_1 \not\models \Phi\) and \(\mathcal{T}_2 \models \Phi\)?

Yes, as \(\mathcal{T}_1 \not\sim \mathcal{T}_2\), e.g., \(\Phi = \exists \bigodot \forall \bigcirc \text{blue}\).
Does there exist ...?

Does there exist a **CTL** formula Φ s.t. $T_1 \not\models \Phi$ and $T_2 \models \Phi$?

yes, as $T_1 \not\models T_2$, e.g., $\Phi = \exists \bigcirc \forall \square \text{blue}$

Does there exist a **LTL** formula φ s.t. $T_1 \not\models \varphi$ and $T_2 \models \varphi$?
Does there exist a **CTL** formula Φ s.t.

$\mathcal{T}_1 \not\models \Phi$ and $\mathcal{T}_2 \models \Phi$?

yes, as $\mathcal{T}_1 \not\sim \mathcal{T}_2$, e.g., $\Phi = \exists \Diamond \forall \Box blue$

Does there exist a **LTL** formula φ s.t.

$\mathcal{T}_1 \not\models \varphi$ and $\mathcal{T}_2 \models \varphi$?

no, as \mathcal{T}_1, \mathcal{T}_2 are simulation equivalent
Simulation quotient

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS.

simulation quotient \mathcal{T}/\sim:

transition system that arises from \mathcal{T} by collapsing all simulation equivalent states
Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS. Then:

$$\mathcal{T} / \sim \overset{\text{def}}{=} (S / \sim, Act', \rightarrow_{\sim}, S'_0, AP', L')$$
Let $T = (S, \text{Act}, \to, S_0, \text{AP}, L)$ be a TS. Then:

$$T/\sim \overset{\text{def}}{=} (S/\sim, \text{Act}', \to\sim, S'_0, \text{AP}', L')$$

- state space S/\sim ← set of all simulation equivalence classes
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS. Then:

$$\mathcal{T}/\sim \overset{\text{def}}{=} (S/\sim, \text{Act}', \rightarrow_{\sim}, S_0', AP', L')$$

- state space $S/\sim \leftarrow$ set of all simulation equivalence classes
- initial states: $S_0' = \{[s] : s \in S_0\}$
- labeling: $AP' = AP$ and $L'([s]) = L(s)$

$$[s] = \{s' \in S : s \sim_T s'\}$$
Simulation quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS. Then:

$\mathcal{T}/\sim \overset{\text{def}}{=} (S/\sim, Act', \rightarrow_{\sim}, S'_0, AP', L')$

- state space S/\sim \hspace{2cm} set of all simulation equivalence classes
- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: $AP' = AP$ and $L'([s]) = L(s)$
- transition relation: $\begin{align*}
 s &\rightarrow s' \\
 [s] &\rightarrow_{\sim} [s']
\end{align*}$

action labels: irrelevant
Similarity of \mathcal{T} and \mathcal{T}/\sim
Similarity of \mathcal{T} and \mathcal{T}/\sim

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS. Then:

$\mathcal{T}/\sim = (S/\sim, \text{Act}', \rightarrow_{\sim}, S_0', AP, L')$

where the transitions are given by

\[\frac{s \rightarrow s'}{[s] \rightarrow_{\sim} [s']} \]

\mathcal{T} and \mathcal{T}/\sim are simulation equivalent, i.e.,

$\mathcal{T} \preceq \mathcal{T}/\sim$ and $\mathcal{T}/\sim \preceq \mathcal{T}$

Proof. provide simulations for $(\mathcal{T}, \mathcal{T}/\sim)$ and $(\mathcal{T}/\sim, \mathcal{T})$

simulation for $(\mathcal{T}, \mathcal{T}/\sim)$: $\{(s, [s]) : s \in S\}$

simulation for $(\mathcal{T}/\sim, \mathcal{T})$: ?
Example: simulation quotient

\[T \]

- \(u_1 \) and \(u_2 \) are simulation equivalent
- \(t_1, t_2, t_3 \) are simulation equivalent
- \(v_1, v_2 \) are simulation equivalent
Example: simulation quotient

\[T \]

\[t_1, t_2, t_3 \text{ are simulation equivalent} \]
\[v_1, v_2 \text{ are simulation equivalent} \]
\[u_1 \simeq u_2, \quad w \preceq u_1, u_2, \quad \text{but } w \not\simeq u_1, u_2 \]
Example: simulation quotient

t_1, t_2, t_3 are simulation equivalent
v_1, v_2 are simulation equivalent

$u_1 \sim u_2, \quad w \preceq u_1, u_2, \quad$ but $w \not\succ u_1, u_2$

$s_1 \sim s_2$
Example: simulation quotient

\[T \]

\[\mathcal{T} / \sim \]

\[\{ u_1, u_2 \} \]

\[\{ v_1, v_2 \} \]

\[\{ t_1, t_2, t_3 \} \]

\[\{ s_1, s_2 \} \]

\[t_1, t_2, t_3 \text{ are simulation equivalent} \]

\[v_1, v_2 \text{ are simulation equivalent} \]

\[u_1 \preceq u_2, \quad w \preceq u_1, u_2, \quad \text{but } w \not\sim u_1, u_2 \]

\[s_1 \preceq s_2 \]
Example: simulation quotient

\[\mathcal{T} \]

- \(s_1 \) with \(u_1 \) and \(w \) with \(u_2 \)

\[\mathcal{T}/\sim \]

- \(\{ s_1, s_2 \} \) with \(\{ u_1, u_2 \} \) and \(\{ w \} \)

Simulation for \((\mathcal{T}, \mathcal{T}/\sim)\):

\[\{ (s, [s]) : s \text{ is a state in } \mathcal{T} \} \]
Example: simulation quotient

\[\mathcal{T} \]

\[\mathcal{T}/\simeq \]

Simulation for \((\mathcal{T}, \mathcal{T}/\simeq)\):
\[\{ (s, [s]) : s \text{ is a state in } \mathcal{T} \} \]

But
\[\{ ([s], s) : s \text{ is a state in } \mathcal{T} \} \]

Is not a simulation for \((\mathcal{T}/\simeq, \mathcal{T})\)
Example: simulation quotient

\[T \]

\[\{ s_1, s_2 \} \]

\[\{ u_1, u_2 \} \]

\[\{ w \} \]

show that \(R = \{ ([s], s) : s \text{ is a state in } T \} \) is not a simulation for \((T/\sim, T)\)
Example: simulation quotient

\[\mathcal{T} \]

\[\frac{\mathcal{T}}{\sim} \]

show that \(\mathcal{R} = \{ ([s], s) : s \text{ is a state in } \mathcal{T} \} \)

is not a simulation for \((\mathcal{T}/\sim, \mathcal{T})\)

regard \((\{s_1, s_2\}, s_2) \in \mathcal{R}\) and \(\{s_1, s_2\} \rightarrow \sim \{w\}\)
Example: simulation quotient

\[\mathcal{T} \]

\[\mathcal{T} / \sim \]

show that \(\mathcal{R} = \{([s], s) : s \text{ is a state in } \mathcal{T} \} \)

is not a simulation for \((\mathcal{T} / \sim, \mathcal{T})\)

regard \(\{s_1, s_2\}\) \(\in \mathcal{R}\) and \(\{s_1, s_2\} \rightarrow \sim \{w\}\)

there is no transition \(s_2 \rightarrow w'\) in \(\mathcal{T}\) s.t. \((\{w\}, w') \in \mathcal{R}\)
Similarity of \mathcal{T} and \mathcal{T}/\simeq

Let $\mathcal{T} = (S, \text{Act}, \to, S_0, AP, L)$ be a TS. Then:

$$\mathcal{T}/\simeq = (S/\simeq, \text{Act}', \to\simeq, S'_0, AP, L')$$

where the transitions are given by

\[
\begin{align*}
s & \mapsto s' \\
[s] & \mapsto \simeq [s']
\end{align*}
\]

\mathcal{T} and \mathcal{T}/\simeq are simulation equivalent, i.e.,

$$\mathcal{T} \preceq \mathcal{T}/\simeq \text{ and } \mathcal{T}/\simeq \preceq \mathcal{T}$$

Proof. Provide simulations for $(\mathcal{T}, \mathcal{T}/\simeq)$ and $(\mathcal{T}/\simeq, \mathcal{T})$

Simulation for $(\mathcal{T}, \mathcal{T}/\simeq)$:

$$\{(s, [s]) : s \in S\}$$

Simulation for $(\mathcal{T}/\simeq, \mathcal{T})$: ?
Similarity of \(\mathcal{T} \) and \(\mathcal{T}/\sim \)

Let \(\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, \text{AP}, L) \) be a TS. Then:

\[
\mathcal{T}/\sim = (S/\sim, \text{Act}', \rightarrow_{\sim}, S'_0, \text{AP}, L')
\]

where the transitions are given by \(\frac{s}{[s]} \rightarrow_{\sim} \frac{s'}{[s']} \)

\(\mathcal{T} \) and \(\mathcal{T}/\sim \) are simulation equivalent, i.e.,

\(\mathcal{T} \preceq \mathcal{T}/\sim \) and \(\mathcal{T}/\sim \preceq \mathcal{T} \)

Proof. provide simulations for \((\mathcal{T}, \mathcal{T}/\sim)\) and \((\mathcal{T}/\sim, \mathcal{T})\)

simulation for \((\mathcal{T}, \mathcal{T}/\sim)\): \(\{(s, [s]) : s \in S\} \)

simulation for \((\mathcal{T}/\sim, \mathcal{T})\): \(\{([s], t) : s \preceq_{\mathcal{T}} t\} \)