Overview

Introduction Modelling parallel systems Linear Time Properties **Regular Properties** Linear Temporal Logic (LTL) Computation-Tree Logic **Equivalences and Abstraction** bisimulation CTL, CTL*-equivalence computing the bisimulation quotient abstraction stutter steps simulation relations

Graph minimization under \approx^{div}

Graph minimization under \approx^{div}

given: finite transition system T $CTL*_{O}$ formula Φ question: does $T \models \Phi$ hold ?

given: finite transition system \mathcal{T} CTL^*_{O} formula Φ question: does $\mathcal{T} \models \Phi$ hold ?

1. compute the quotient system T/\approx^{div}

2. apply a **CTL*** model checker to $\mathcal{T}/\approx^{\mathsf{div}}$ and Φ

Graph minimization under \approx^{div}

given: finite transition system \mathcal{T} CTL^*_{O} formula Φ question: does $\mathcal{T} \models \Phi$ hold ?

1. compute the quotient system T/\approx^{div}

given: finite transition system \mathcal{T} CTL^*_{O} formula Φ question: does $\mathcal{T} \models \Phi$ hold ?

1. compute the quotient system T/\approx^{div}

1.1. construct the divergence-sensitive expansion \overline{T} 2. apply a **CTL*** model checker to T/\approx^{div} and Φ \uparrow Remind: $T \models \Phi$ iff $T/\approx^{\text{div}} \models \Phi$

given: finite transition system \mathcal{T} CTL^*_{O} formula Φ question: does $\mathcal{T} \models \Phi$ hold ?

1. compute the quotient system $T \approx div$

- 1.1. construct the divergence-sensitive expansion \overline{T}
- 1.2. compute quotient system \overline{T}/\approx

2. apply a **CTL*** model checker to $\mathcal{T} / \approx^{\text{div}}$ and Φ Remind: $\mathcal{T} \models \Phi$ iff $\mathcal{T} / \approx^{\text{div}} \models \Phi$

given: finite transition system \mathcal{T} CTL^*_{O} formula Φ question: does $\mathcal{T} \models \Phi$ hold ?

1. compute the quotient system $T \approx div$

- 1.1. construct the divergence-sensitive expansion \overline{T}
- 1.2. compute quotient system \overline{T}/\approx
- 1.3. derive $\mathcal{T}/\approx^{\text{div}}$ from $\overline{\mathcal{T}}/\approx$

2. apply a **CTL*** model checker to $\mathcal{T} / \approx^{\text{div}}$ and Φ Remind: $\mathcal{T} \models \Phi$ iff $\mathcal{T} / \approx^{\text{div}} \models \Phi$

- *input*: finite transition system T over AP with state space S
- goal: computation of $S \approx_T$ t stutter bisimulation equivalence classes without divergence

- *input*: finite transition system T over AP with state space S
- goal: computation of $S \approx_T$ \uparrow stutter bisimulation equivalence classes without divergence

algorithm by Groote/Vaandrager:

• iterative partitioning refinement approach

- *input*: finite transition system T over AP with state space S
- goal: computation of $S \approx_T$ \uparrow stutter bisimulation equivalence classes without divergence

- iterative partitioning refinement approach
- initial partition \mathcal{B}_{AP}

- *input*: finite transition system T over AP with state space S
- goal: computation of $S \approx_T$ \uparrow stutter bisimulation equivalence classes without divergence

- iterative partitioning refinement approach
- initial partition \mathcal{B}_{AP}
- refinement relies on a *Pre*^{*}_B-operator

STUTTER5.4-61

Let \mathcal{B} be a partition and \mathbb{C} be a block of \mathcal{B} .

STUTTER5.4-61

Let \mathcal{B} be a partition and \mathbb{C} be a block of \mathcal{B} .

 $Pre^*_{\mathcal{B}}(C) = set of states s_0 that have a path fragment$

 $\textbf{S}_0 \, \textbf{S}_1 \, \ldots \, \textbf{S}_{m-1} \, \textbf{S}_m$

such that $m \ge 0$ and $s_0, s_1, \ldots, s_{m-1}$ belong to the same block of \mathcal{B} and $s_m \in C$

$$\label{eq:pressure} \begin{split} \text{Pre}^*_{\mathcal{B}}(\textbf{C}) &= \text{set of states } \textbf{s}_0 \text{ that have a path} \\ & \text{fragment } \textbf{s}_0 \ \dots \ \textbf{s}_{m-1} \ \textbf{s}_m \text{ s.t. } m \geq 0, \\ & \textbf{s}_0, \ \textbf{s}_1, \ \dots, \ \textbf{s}_{m-1} \text{ belong to the same} \\ & \text{block of } \boldsymbol{\mathcal{B}} \text{ and } \textbf{s}_m \in \textbf{C} \end{split}$$

$$\begin{split} \text{Pre}^*_{\mathcal{B}}(\textbf{C}) &= \text{set of states } \textbf{s}_0 \text{ that have a path} \\ & \text{fragment } \textbf{s}_0 \ \dots \ \textbf{s}_{m-1} \ \textbf{s}_m \text{ s.t. } m \geq 0, \\ & \textbf{s}_0, \ \textbf{s}_1, \ \dots, \ \textbf{s}_{m-1} \text{ belong to the same} \\ & \text{block of } \boldsymbol{\mathcal{B}} \text{ and } \textbf{s}_m \in \textbf{C} \end{split}$$

Computing the stutter bisimulation quotient stutter

STUTTER5.4-60

input: finite TS T over AP with state space S

goal: computation of S/\approx_T

input: finite TS \mathcal{T} over AP with state space S goal: computation of $S/\approx_{\mathcal{T}}$ set of stutter bisimulation equivalence classes

Computing the stutter bisimulation quotient

STUTTER5.4-60

input: finite TS \mathcal{T} over AP with state space Sgoal: computation of $S/\approx_{\mathcal{T}}$ set of stutter bisimulation equivalence classes

algorithm by Groote/Vaandrager:

• iterative partitioning refinement approach

Computing the stutter bisimulation quotient st

STUTTER5.4-60

input: finite TS \mathcal{T} over AP with state space Sgoal: computation of $S/\approx_{\mathcal{T}}$ f set of stutter bisimulation equivalence classes

- iterative partitioning refinement approach
- initial partition $\mathcal{B}_0 = \mathcal{B}_{AP}$

Computing the stutter bisimulation quotient st

STUTTER5.4-60

input: finite TS \mathcal{T} over AP with state space S goal: computation of $S/\approx_{\mathcal{T}}$ set of stutter bisimulation equivalence classes

- iterative partitioning refinement approach
- initial partition $\mathcal{B}_0 = \mathcal{B}_{AP}$
- uses splitter pairs, i.e., pairs (B, C) of blocks of the current partition B_i

input: finite TS $\boldsymbol{\mathcal{T}}$ over \boldsymbol{AP} with state space \boldsymbol{S}

goal: computation of S/\approx_T

set of stutter bisimulation equivalence classes

- iterative partitioning refinement approach
- initial partition $\mathcal{B}_0 = \mathcal{B}_{AP}$
- uses splitter pairs, i.e., pairs (B, C) of blocks of the current partition B_i such that B ∩ Pre^{*}_{Bi}(C) and B \ Pre^{*}_{Bi}(C) are nonempty

Groote/Vaandrager algorithm (pseudo-code) STUTTER5.4-60B

 $\mathcal{B} := \mathcal{B}_{AP};$ WHILE \mathcal{B} can be refined DO OD return **B**

```
\mathcal{B} := \mathcal{B}_{AP};
WHILE \mathcal{B} can be refined DO
     choose a splitter pair (B, C) for B
OD
return B
```

```
\mathcal{B} := \mathcal{B}_{AP};
WHILE \mathcal{B} can be refined DO
     choose a splitter pair (B, C) for B
      remove B from \mathcal{B}:
OD
return B
```

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE B can be refined DO
      choose a splitter pair (B, C) for B
      remove B from \mathcal{B}:
      add B \cap Pre_{\mathcal{B}}^{*}(C) and B \setminus Pre_{\mathcal{B}}^{*}(C) to \mathcal{B}
OD
return B
```

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE \mathcal{B} can be refined DO
      choose a splitter pair (B, C) for B
      remove B from \mathcal{B}:
      add B \cap Pre^*_{\mathcal{B}}(C) and B \setminus Pre^*_{\mathcal{B}}(C) to \mathcal{B}
OD
return B
```

loop invariant:

 \mathcal{B} is finer than \mathcal{B}_{AP} and coarser than $S/\approx_{\mathcal{T}}$

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE \mathcal{B} can be refined DO
       choose a splitter pair (B, C) for B
       remove B from \mathcal{B}:
       add B \cap Pre^*_{\mathcal{B}}(C) and B \setminus Pre^*_{\mathcal{B}}(C) to \mathcal{B}
OD
                              \mathcal{B} = \mathcal{S} \approx_{\mathcal{T}}
return B
```

loop invariant:

 \mathcal{B} is finer than \mathcal{B}_{AP} and coarser than $S/\approx_{\mathcal{T}}$

stutter5.4-60b

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE \mathcal{B} can be refined DO
      choose a splitter pair (B, C) for B
      remove B from \mathcal{B};
      add B \cap Pre_{\mathcal{B}}^{*}(C) and B \setminus Pre_{\mathcal{B}}^{*}(C) to \mathcal{B}
OD
return B
```

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE B can be refined DO
      choose a splitter pair (B, C) for B
      remove B from \mathcal{B}:
      add B \cap Pre^*_{\mathcal{B}}(C) and B \setminus Pre^*_{\mathcal{B}}(C) to \mathcal{B}
OD
return B
```


• search for splitter pair in time $\mathcal{O}(m)$

where m = number of edges $\geq |S|$

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE \mathcal{B} can be refined DO
      choose a splitter pair (B, C) for B
      remove B from \mathcal{B}:
      add B \cap Pre^*_{\mathcal{B}}(C) and B \setminus Pre^*_{\mathcal{B}}(C) to \mathcal{B}
ND
return B
```

- search for splitter pair in time $\mathcal{O}(m)$
- complexity: $\mathcal{O}(|S| \cdot |AP| + |S| \cdot m)$

where m = number of edges $\geq |S|$

Example: computation of $S \approx_{\mathcal{T}}$

STUTTER5.4-62

initial partition:

$$\{s_1, s_2, s'_2, s_3, s'_3\}, \\ \{u_1, u'_1, u''_1, u_2, u'_2, u_3\}, \\ \{v_1, v'_1, v_2, v'_2, v''_2, v_3\}$$

Example: computation of $S \approx_T$

STUTTER5.4-62

initial partition:
$$\{s_1, s_2, s'_2, s_3, s'_3\}, \{u_1, u'_1, u''_1, u_2, u'_2, u_3\}, \{v_1, v'_1, v_2, v'_2, v''_2, v_3\}$$

splitter pair (B, C) with $B = \{s_1, ..., s'_3\}, C = \{u_1, ...\}$

Example: computation of $S \approx_{\mathcal{T}}$

STUTTER5.4-62

initial partition:
$$\{s_1, s_2, s'_2, s_3, s'_3\}, \{u_1, u'_1, u''_1, u_2, u'_2, u_3\}, \{v_1, v'_1, v_2, v'_2, v''_2, v_3\}$$

splitter pair (B, C) with $B = \{s_1, \dots, s'_3\}, C = \{u_1, \dots\}$

splitter pair (B, C) with $B = \{s_1, \dots, s_3\}$, $C = \{u \ B \rightsquigarrow B_1 = \{s_1, s_2, s_2', s_3\}$ and $B_2 = \{s_3'\}$

Example: computation of $S \approx_{\mathcal{T}}$

STUTTER5.4-62

initial partition:
$$\{s_1, s_2, s'_2, s_3, s'_3\}, \{u_1, u'_1, u''_1, u_2, u'_2, u_3\}, \{v_1, v'_1, v_2, v'_2, v''_2, v_3\}$$

splitter pair (B, C) with $B = \{s_1, ..., s'_3\}$, $C = \{u_1, ...\}$ $B \rightsquigarrow B_1 = \{s_1, s_2, s'_2, s_3\}$ and $B_2 = \{s'_3\}$ splitter pair (B_1, B_2):

Example: computation of $S \approx_{\mathcal{T}}$ STUTTER5.4-62 **S**1 **S**2 **S**3 s', V_1' **U**1 v_2'' U_2 *s*3 V1 U₃ V_2 **ป**ว V₃

splitter pair (B_1, B_2) : $B_1 \rightsquigarrow B_3 = \{s_1, s_2, s_2'\}$ and $B_4 = \{s_3\}$

splitter pair (B_1, B_2) : $B_1 \rightsquigarrow B_3 = \{s_1, s_2, s'_2\}$ and $B_4 = \{s_3\}$ splitter pair $(D, \{s_3\})$ where $D = \{v_1, v'_1, ..., v_3\}$...

splitter pair (B_1, B_2) : $B_1 \rightsquigarrow B_3 = \{s_1, s_2, s'_2\}$ and $B_4 = \{s_3\}$ splitter pair $(D, \{s_3\})$ where $D = \{v_1, v'_1, \dots, v_3\}$... $D \rightsquigarrow D_1 = \{v_1, \dots\}$ and $D_2 = \{v_3\}$

splitter pair (B_1, B_2) : $B_1 \rightsquigarrow B_3 = \{s_1, s_2, s'_2\}$ and $B_4 = \{s_3\}$ splitter pair $(D, \{s_3\})$ where $D = \{v_1, v'_1, \dots, v_3\}$... $D \rightsquigarrow D_1 = \{v_1, \dots\}$ and $D_2 = \{v_3\}$ splitter pair $(C, \{v_3\})$ where $C = \{u_1, u'_1, \dots, u_3\}$...

splitter pair (B_1, B_2) : $B_1 \rightsquigarrow B_3 = \{s_1, s_2, s'_2\}$ and $B_4 = \{s_3\}$ splitter pair $(D, \{s_3\})$ where $D = \{v_1, v'_1, \dots, v_3\}$... $D \rightsquigarrow D_1 = \{v_1, \dots\}$ and $D_2 = \{v_3\}$ splitter pair $(C, \{v_3\})$ where $C = \{u_1, u'_1, \dots, u_3\}$... $C \rightsquigarrow C_1 = \{u_1, \dots\}$ and $C_2 = \{u_3\}$

Computation of the quotient for $\approx_{\tau}^{\text{div}}$ STUTTER5.4-DIV-VIA-APPROX

given: finite transition system Twith state space S

goal: compute $S \approx \frac{div}{\tau}$

Computation of the quotient for $\approx_{\tau}^{\text{div}}$ STUTTER 5.4-DIV-VIA-APPROX

given: finite transition system Twith state space S

goal: compute $S \approx \frac{div}{\tau}$

via reduction to the problem of computing the quotient w.r.t. \approx

Computation of the quotient for \approx_{T}^{div} STUTTER5.4-DIV-VIA-APPROX

- given: finite transition system Twith state space S
- *goal*: compute $S \approx \frac{div}{\tau}$

via reduction to the problem of computing the quotient w.r.t. \approx

1. construct the divergence-sensitive expansion \mathcal{T} with state space $\overline{S} = S \cup \dots$

Computation of the quotient for \approx_T^{div}

given: finite transition system \mathcal{T} with state space Sgoal: compute $S/\approx_{\mathcal{T}}^{\text{div}}$

via reduction to the problem of computing the quotient w.r.t. \thickapprox

- 1. construct the divergence-sensitive expansion \overline{T} with state space $\overline{S} = S \cup \ldots$
- compute the quotient 5/≈_T
 w.r.t. stutter bisimulation equivalence without divergence

Computation of the quotient for $\approx_{\tau}^{\text{div}}$ STUTTER5.4-DIV

given: finite transition system Twith state space S*goal*: compute $S \approx \frac{div}{T}$

via reduction to the problem of computing the quotient w.r.t. \approx

- 1. construct the divergence-sensitive expansion \mathcal{T} with state space $\overline{S} = S \cup \dots$
- 2. compute the quotient $\overline{\mathbf{S}} \approx_{\overline{\boldsymbol{\tau}}}$ w.r.t. stutter bisimulation equivalence without divergence
- 3. derive $S \approx \frac{div}{\tau}$ from $\overline{S} \approx \tau$

A stutter cycle is a cycle
$$s_0 s_1 \dots s_n$$
 in \mathcal{T} s.t.
 $L(s_0) = L(s_i)$ for $i = 1, \dots, n$.

A stutter cycle is a cycle
$$s_0 s_1 \dots s_n$$
 in T s.t.
 $L(s_0) = L(s_i)$ for $i = 1, \dots, n$.

A stutter cycle is a cycle
$$s_0 s_1 \dots s_n$$
 in \mathcal{T} s.t.
 $L(s_0) = L(s_i)$ for $i = 1, \dots, n$.

stutter cycles, e.g.:

*s*₁ *s*₂ *s*₁

*S*3 *S*3

*u*₁ *u*₂ *u*₃ *u*₁

A stutter cycle is a cycle $s_0 s_1 \dots s_n$ in T s.t. $L(s_0) = L(s_i)$ for $i = 1, \dots, n$.

A stutter cycle is a cycle
$$s_0 s_1 \dots s_n$$
 in T s.t.
 $L(s_0) = L(s_i)$ for $i = 1, \dots, n$.

If
$$s_0 s_1 \dots s_n$$
 is a stutter cycle then
 $s_0 \approx_T^{div} s_1 \approx_T^{div} \dots \approx_T^{div} s_n$

Proof: show that

$$\mathcal{R} = \mathsf{id} \cup \{(\mathbf{s}_i, \mathbf{s}_j) : i, j = 1, \dots, n\}$$

is a divergence-sensitive stutter bisimulation.

Let \mathcal{T} be a finite transition system.

If state **s** is \approx_T^{div} -divergent then **s** belongs to a stutter cycle.

Let \mathcal{T} be a finite transition system.

If state s is \approx_T^{div} -divergent then s belongs to a stutter cycle.

wrong.

Let \mathcal{T} be a finite transition system.

If state s is \approx_T^{div} -divergent then s belongs to a stutter cycle.

Let \mathcal{T} be a finite transition system.

If state s is \approx_T^{div} -divergent then s belongs to a stutter cycle.

Let \mathcal{T} be a finite transition system.

If state s is \approx_T^{div} -divergent then s belongs to a stutter cycle.

If state **s** is $\approx_{\mathcal{T}}^{\text{div}}$ -divergent then **s** can reach a stutter cycle by stutter steps within [s].

Let \mathcal{T} be a finite transition system.

If state **s** is \approx_T^{div} -divergent then **s** belongs to a stutter cycle.

State **s** is $\approx_{\mathcal{T}}^{\text{div}}$ -divergent iff **s** can reach a stutter cycle by stutter steps within **[s]**.

stutter5.4-65

If
$$s \to s'$$
 is a stutter step, i.e., $L(s) = L(s')$,
then $s \approx_T^{\text{div}} s'$.

stutter5.4-65

If
$$s \to s'$$
 is a stutter step, i.e., $L(s) = L(s')$,
then $s \approx_T^{\text{div}} s'$.

wrong.

stutter5.4-65

If
$$s \to s'$$
 is a stutter step, i.e., $L(s) = L(s')$,
then $s \approx_T^{\text{div}} s'$.

stutter5.4-65

If
$$s \to s'$$
 is a stutter step, i.e., $L(s) = L(s')$,
then $s \approx_T^{\text{div}} s'$.

wrong.

s divergent*s*' nondivergent

stutter5.4-65

If
$$s \to s'$$
 is a stutter step, i.e., $L(s) = L(s')$,
then $s \approx_T^{\text{div}} s'$.

wrong.

s divergent*s*' nondivergent

 $s \not\approx_{\mathcal{T}}^{\mathsf{div}} s'$

1. If $s \to s'$ is a stutter step and $Post(s) = \{s'\}$ then $s \approx_T^{div} s'$.

 If s → s' is a stutter step and Post(s) = {s'} then s ≈^{div}_T s'.
 If s and s' are on the same stutter cycle then s ≈^{div}_T s'.

Divergence-sensitive expansion

STUTTER5.4-67

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a finite TS.
Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a finite TS. The divergence-sensitive expansion $\overline{\mathcal{T}}$ of \mathcal{T} is a TS

- The divergence-sensitive expansion $\overline{\mathcal{T}}$ of \mathcal{T} is a TS
 - that contains ${\mathcal T}$ as a subsystem

The divergence-sensitive expansion $\overline{\mathcal{T}}$ of \mathcal{T} is a TS

- that contains ${\mathcal T}$ as a subsystem
- for all states s_1 , $s_2 \in S$:

$s_1 \approx_T^{\text{div}} s_2$ iff $s_1 \approx_{\overline{T}} s_2$

The divergence-sensitive expansion $\overline{\mathcal{T}}$ of \mathcal{T} is a TS

- that contains ${oldsymbol{\mathcal{T}}}$ as a subsystem
- for all states s_1 , $s_2 \in S$:

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a finite TS.

The divergence-sensitive expansion $\overline{\mathcal{T}}$ of \mathcal{T} is a TS

- that contains ${\mathcal T}$ as a subsystem
- for all states s_1 , $s_2 \in S$:

$$\overline{\mathcal{T}} \stackrel{\text{def}}{=} (S \cup \{ div \}, Act', \rightarrow', S_0, \overline{AP}, \overline{L})$$

Divergence-sensitive expansion of T:

$$\overline{\mathcal{T}} \stackrel{\text{def}}{=} (S \cup \{ \text{div} \}, \text{Act}', \rightarrow', S_0, \overline{\text{AP}}, \overline{L})$$

where *div* is a new state, not contained in *S*

$$\overline{\mathcal{T}} \stackrel{\text{def}}{=} (S \cup \{ \text{div} \}, \text{Act}', \rightarrow', S_0, \overline{AP}, \overline{L})$$
$$\overline{AP} = AP \cup \{ \text{div} \}$$

$$\overline{\mathcal{T}} \stackrel{\text{def}}{=} (S \cup \{ \underline{div} \}, Act', \rightarrow', S_0, \overline{AP}, \overline{L})$$

- $\overline{AP} = AP \cup \{div\}$
- labeling: $\overline{L(s)} = L(s)$ for all states s in T $\overline{L}(div) = \{div\}$

$$\overline{\mathcal{T}} \stackrel{\text{def}}{=} (S \cup \{ \underline{div} \}, Act', \rightarrow', \underline{S_0}, \overline{AP}, \overline{L})$$

- $\overline{AP} = AP \cup \{div\}$
- labeling: $\overline{L(s)} = L(s)$ for all states s in T $\overline{L}(div) = \{div\}$
- transition relation →' consists of all transitions in T
 + s →' div for all states s on a stutter cycle in T
 + self-loop div →' div

Divergence-sensitive expansion of T:

$$\overline{\mathcal{T}} \stackrel{\text{def}}{=} (S \cup \{ \underline{div} \}, Act', \rightarrow', \underline{S_0}, \overline{AP}, \overline{L})$$

- $\overline{AP} = AP \cup \{div\}$
- labeling: $\overline{L(s)} = L(s)$ for all states s in T $\overline{L}(div) = \{div\}$
- transition relation \rightarrow' consists of all transitions in ${\mathcal T}$

+ $s \rightarrow' div$ for all states s on a stutter cycle in T

+ self-loop $div \rightarrow' div$

• actions names: irrelevant

STUTTER5.4-66

$$AP = \{a\}$$

STUTTER5.4-66

$$AP = \{a\}$$

stutter cycle $s_2 s_3 s_2$

STUTTER5.4-66

$$AP = \{a\}$$

stutter cycle $s_2 s_3 s_2$

divergence-sensitive expansion:

STUTTER5.4-66

$$AP = \{a\}$$

stutter cycle $s_2 s_3 s_2$

divergence-sensitive expansion:

STUTTER5.4-66

$$AP = \{a\}$$

stutter cycle $s_2 s_3 s_2$

divergence-sensitive expansion:

$$\overline{AP} = \{a, div\}$$

 $\approx_{\overline{\tau}}$ -equivalence classes:

$$\{s_0\} \{s_1\} \{s_2, s_3\} \{u\} \{div\}$$

stutter5.4-66

$$AP = \{a\}$$

stutter cycle s2 s3 s2

 $\approx_{\mathcal{T}}^{\text{div}}$ -equivalence classes:

 $\{s_0\} \{s_1\} \{s_2, s_3\} \{u\}$

divergence-sensitive expansion:

$$\overline{AP} = \{ \underline{a}, \underline{div} \}$$

 $\approx_{\overline{T}}$ -equivalence classes:

$$\{s_0\} \{s_1\} \{s_2, s_3\} \{u\} \{div\}$$

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a finite TS. Then, for all states $s_1, s_2 \in S$: $s_1 \approx_T^{\text{div}} s_2$ iff $s_1 \approx_{\overline{T}} s_2$

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a finite TS. Then,
for all states $s_1, s_2 \in S$:
 $s_1 \approx_T^{\text{div}} s_2$ iff $s_1 \approx_{\overline{T}} s_2$

"⇒":

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a finite TS. Then,
for all states $s_1, s_2 \in S$:
 $s_1 \approx_T^{\text{div}} s_2$ iff $s_1 \approx_{\overline{T}} s_2$

" \Longrightarrow ": show that

$$\mathcal{R} = \approx_{\mathcal{T}}^{\mathsf{div}} \cup \{(\mathit{div}, \mathit{div})\}$$

is a stutter bisimulation for $\overline{\mathcal{T}}$

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a finite TS. Then,
for all states $s_1, s_2 \in S$:
 $s_1 \approx_T^{\text{div}} s_2$ iff $s_1 \approx_{\overline{T}} s_2$

" \Longrightarrow ": show that

$$\mathcal{R} = \approx_{\mathcal{T}}^{\mathsf{div}} \cup \{(\mathsf{div}, \mathsf{div})\}$$

is a stutter bisimulation for $\overline{\mathcal{T}}$

" \Leftarrow ": show that

$$\mathcal{R} = \approx_{\overline{\mathcal{T}}} \cap (S \times S)$$

is a divergence-sensitive stutter bisimulation for ${\mathcal T}$

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a finite TS. Then,
for all states $s_1, s_2 \in S$:
 $s_1 \approx_T^{\text{div}} s_2$ iff $s_1 \approx_{\overline{T}} s_2$

" \Longrightarrow ": show that

$$\mathcal{R} = \approx_{\mathcal{T}}^{\mathsf{div}} \cup \{(\mathsf{div}, \mathsf{div})\}$$

is a stutter bisimulation for $\overline{\mathcal{T}}$

"←": show that

$$\mathcal{R} = \approx_{\overline{\mathcal{T}}} \cap (S \times S)$$

is a divergence-sensitive stutter bisimulation for ${\mathcal T}$

$\approx_{\overline{\mathcal{T}}}$ is finer than $\approx_{\mathcal{T}}^{\mathrm{div}}$

STUTTER5.4-68

Claim: $\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$ is a

divergence-sensitive stutter bisimulation for T.

STUTTER5.4-68

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a

divergence-sensitive stutter bisimulation for T.

Proof: show that for all states s_1 , s_2 in \mathcal{T} with $s_1 \approx_{\overline{\mathcal{T}}} s_2$:

Claim: $\mathcal{R} = \{(s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2\}$ is a

divergence-sensitive stutter bisimulation for T.

Proof: show that for all states s_1 , s_2 in \mathcal{T} with $s_1 \approx_{\overline{\mathcal{T}}} s_2$:

(1) $L(s_1) = L(s_2)$

Claim: $\mathcal{R} = \{(s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2\}$ is a

divergence-sensitive stutter bisimulation for T.

Proof: show that for all states s_1 , s_2 in \mathcal{T} with $s_1 \approx_{\overline{\mathcal{T}}} s_2$:

(1) $L(s_1) = L(s_2) \quad \checkmark$

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a divergence-sensitive stutter bisimulation for \mathcal{T} .

Proof: show that for all states s_1 , s_2 in \mathcal{T} with $s_1 \approx_{\overline{\mathcal{T}}} s_2$:

- (1) $L(s_1) = L(s_2) \quad \checkmark$
- (2) if $\mathbf{s_1} \to \mathbf{t_1}$ in \mathcal{T} s.t. $\mathbf{s_1} \not\approx_{\overline{T}} \mathbf{t_1}$ then there is a path fragment $\mathbf{s_2} \mathbf{u_1} \dots \mathbf{u_n} \mathbf{t_2}$ in \mathcal{T} with $\mathbf{s_2} \approx_{\overline{T}} \mathbf{u_i}$ for $\mathbf{1} \leq \mathbf{i} \leq \mathbf{n}$ and $\mathbf{t_1} \approx_{\overline{T}} \mathbf{t_2}$

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a divergence-sensitive stutter bisimulation for \mathcal{T} .

Proof: show that for all states s_1 , s_2 in T with $s_1 \approx_{\overline{T}} s_2$:

- (1) $L(s_1) = L(s_2) \quad \checkmark$
- (2) if $s_1 \rightarrow t_1$ in \mathcal{T} s.t. $s_1 \not\approx_{\overline{T}} t_1$ then there is a path fragment $s_2 u_1 \dots u_n t_2$ in \mathcal{T} with $s_2 \approx_{\overline{T}} u_i$ for $1 \leq i \leq n$ and $t_1 \approx_{\overline{T}} t_2$
 - \checkmark by definition of $pprox_{\overline{T}}$

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a divergence-sensitive stutter bisimulation for \mathcal{T} .

Proof: show that for all states s_1 , s_2 in T with $s_1 \approx_{\overline{T}} s_2$:

- (1) $L(s_1) = L(s_2) \quad \checkmark$
- (2) if $s_1 \rightarrow t_1$ in \mathcal{T} s.t. $s_1 \not\approx_{\overline{T}} t_1$ then there is a path fragment $s_2 u_1 \dots u_n t_2$ in \mathcal{T} with $s_2 \approx_{\overline{T}} u_i$ for $1 \leq i \leq n$ and $t_1 \approx_{\overline{T}} t_2$

 \checkmark by definition of $pprox_{\overline{T}}$

(3) s_1 is \mathcal{R} -divergent iff s_2 is \mathcal{R} -divergent

Claim: $\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$ is a

divergence-sensitive stutter bisimulation for $\boldsymbol{\mathcal{T}}$.

Proof of the divergence-sensitivity of \mathcal{R} :

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a

divergence-sensitive stutter bisimulation for $\boldsymbol{\mathcal{T}}$.

Proof of the divergence-sensitivity of \mathcal{R} :

suppose $s_1 \approx_{\overline{T}} s_2$, $s_1 \mathcal{R}$ -divergent

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a

divergence-sensitive stutter bisimulation for $\boldsymbol{\mathcal{T}}$.

Proof of the divergence-sensitivity of \mathcal{R} :

suppose $s_1 \approx_{\overline{T}} s_2$, $s_1 \mathcal{R}$ -divergent

S1 \mathcal{R} -divergent path from **S**

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a

divergence-sensitive stutter bisimulation for $\boldsymbol{\mathcal{T}}$.

Proof of the divergence-sensitivity of \mathcal{R} :

suppose $s_1 \approx_{\overline{T}} s_2$, $s_1 \mathcal{R}$ -divergent

Claim:
$$\mathcal{R} = \{(s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2\}$$
 is a

divergence-sensitive stutter bisimulation for ${\mathcal T}$.

Proof of the divergence-sensitivity of \mathcal{R} :

suppose $s_1 \approx_{\overline{T}} s_2$, $s_1 \mathcal{R}$ -divergent

 $\mathbf{u} \approx_{\overline{T}} \mathbf{s}_1 \approx_{\overline{T}} \mathbf{s}_2$

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a

divergence-sensitive stutter bisimulation for T.

Proof of the divergence-sensitivity of \mathcal{R} :

$$u \approx_{\overline{T}} s_1 \approx_{\overline{T}} s_2$$

 \downarrow
div

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a divergence-sensitive stutter bisimulation for \mathcal{T} .

Proof of the divergence-sensitivity of \mathcal{R} :

$$\begin{array}{c} u \approx_{\overline{T}} s_1 \approx_{\overline{T}} s_2 \\ \downarrow \qquad \qquad \downarrow \\ liv \qquad \qquad \downarrow \\ v \\ \downarrow \\ div \end{array}$$

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a

divergence-sensitive stutter bisimulation for $\boldsymbol{\mathcal{I}}$.

Proof of the divergence-sensitivity of \mathcal{R} :

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a

divergence-sensitive stutter bisimulation for ${\cal T}$.

Proof of the divergence-sensitivity of \mathcal{R} :

Claim:
$$\mathcal{R} = \{ (s_1, s_2) \in S \times S : s_1 \approx_{\overline{T}} s_2 \}$$
 is a divergence-sensitive stutter bisimulation for \mathcal{T} .

Proof of the divergence-sensitivity of \mathcal{R} :

suppose $s_1 \approx_{\overline{T}} s_2$, $s_1 \mathcal{R}$ -divergent $\Longrightarrow s_2 \mathcal{R}$ -divergent

 $\approx_{\mathcal{T}}^{\mathrm{div}}$ is finer than $\approx_{\overline{\mathcal{T}}}$

STUTTER5.4-69

 $\mathcal{R} = \left\{ (s_1, s_2) \in S \times S \colon s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$ is a stutter bisimulation for $\overline{\mathcal{T}}$.

116/248

stutter5.4-69

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

(1) labeling condition: \mathbf{v}

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

- (1) labeling condition: \checkmark
- (2) simulation condition:

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for $\overline{\mathcal{T}}$.

- (1) labeling condition: \checkmark
- (2) simulation condition:
 - for the pair $(div, div) \in \mathcal{R}$: $\sqrt{}$

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for $\overline{\mathcal{T}}$.

- (1) labeling condition: \checkmark
- (2) simulation condition:
 - for the pair $(div, div) \in \mathcal{R}$: \checkmark
 - regard now a pair $(s_1, s_2) \in \mathcal{R}$ where $s_1, s_2 \in S$

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\overset{s_1}{\downarrow} \approx_T^{\mathsf{div}} \overset{s_2}{\overset{s_2}{\downarrow}} \\ \overset{div}{\downarrow}$$

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\begin{matrix} \mathbf{s_1} \approx_T^{\mathsf{div}} \mathbf{s_2} \\ \downarrow \\ div \end{matrix}$$

s₁ is on stutter cycle

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$s_1 \approx_T^{\text{div}} s_2$$

$$\downarrow$$

$$div$$

 s_1 is on stutter cycle ↓ $s_1, s_2 \approx_T^{div}$ -divergent

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

$$\mathcal{R} = \left\{ (s_1, s_2) \in S \times S : s_1 \approx_T^{\text{div}} s_2 \right\} \cup \left\{ (\text{div}, \text{div}) \right\}$$

is a stutter bisimulation for \overline{T} .

For finite transition systems:

$$s_1 \approx_T^{\text{div}} s_2$$
 iff $s_1 \approx_{\overline{T}} s_2$

$\approx_{\mathcal{T}}^{\operatorname{div}}$ and $\approx_{\overline{\mathcal{T}}}$ for infinite systems

wrong for infinite transition systems

$pprox_{\mathcal{I}}^{\mathsf{div}}$ and $pprox_{\overline{\mathcal{I}}}$ for infinite systems

wrong for infinite transition systems

As there are no stutter cycles:

 ${\mathcal T}$ agrees with the reachable part of $\overline{{\mathcal T}}$

$pprox_{\mathcal{I}}^{\mathsf{div}}$ and $pprox_{\overline{\mathcal{I}}}$ for infinite systems

wrong for infinite transition systems

As there are no stutter cycles:

 ${\mathcal T}$ agrees with the reachable part of $\overline{{\mathcal T}}$

$s_1 \approx s_2$,

$\approx_{\mathcal{T}}^{\operatorname{div}}$ and $\approx_{\overline{\mathcal{T}}}$ for infinite systems

wrong for infinite transition systems

As there are no stutter cycles:

 ${\mathcal T}$ agrees with the reachable part of $\overline{{\mathcal T}}$

 $s_1 \approx s_2$, but $s_1 \not\approx^{div} s_2$

stutter5.4-71

stutter5.4-71

transition system T

atomic prop.: AP

stutter5.4-71

atomic prop.: AP

STUTTER5.4-71

atomic prop.: AP

add trap state *div*

STUTTER5.4-71

atomic prop.: AP

add trap state *div* atomic prop.: *AP* ∪ {*div*}

STUTTER5.4-71

atomic prop.: AP

add trap state *div* atomic prop.: *AP* ∪ {*div*}

STUTTER5.4-71

atomic prop.: AP

add trap state *div* atomic prop.: *AP* ∪ {*div*}

Computing $T \approx div$ for finite TS

STUTTER5.4-71

add trap state *div* atomic prop.: *AP* U {*div*}

Example: computing $\mathcal{T}/{pprox}^{\operatorname{div}}$

 $AP = \{blue\}$

STUTTER5.4-72

 $AP = \{blue\}$
stutter cycles
 $u u \text{ and } s_1 s_2 s_1$

STUTTER5.4-72

 $AP = \{blue\}$
stutter cycles
 $u u \text{ and } s_1 s_2 s_1$

STUTTER5.4-72


```
AP = \{blue\}<br/>stutter cycles<br/>u u \text{ and } s_1 s_2 s_1
```


STUTTER5.4-72

 $AP = \{blue\}$
stutter cycles
 $u u \text{ and } s_1 s_2 s_1$

STUTTER5.4-72

 $AP = \{blue\}$
stutter cycles
 $u u \text{ and } s_1 s_2 s_1$

STUTTER5.4-73

STUTTER5.4-73

	bisimulation equivalence	stutter bisimulation with divergence	trace equivalence
temporal logic characteriz.	CTL* CTL	CTL* _{\O} CTL _{\O}	LTL

stutter5.4-73

	bisimulation equivalence	stutter bisimulation with divergence	trace equivalence
temporal logic characteriz.	CTL* CTL	CTL* _{\O} CTL _{\O}	LTL
equivalence checking	PTIME	PTIME	PSPACE - complete

STUTTER5.4-73

	bisimulation equivalence	stutter bisimulation with divergence	trace equivalence
temporal logic characteriz.	CTL* CTL	CTL* _{\O} CTL _{\O}	LTL
equivalence checking	PTIME <i>O</i> (<i>m</i> ·log <i>S</i>)	PTIME <i>O</i> (<i>m</i> ·log S)	PSPACE - complete

where AP is fixed and m = number of edges \geq number of states = |S|

STUTTER5.4-73

	bisimulation equivalence	stutter bisimulation with divergence	trace equivalence
temporal logic characteriz.	CTL* CTL	CTL* _{\O} CTL _{\O}	LTL
equivalence checking	PTIME <i>O</i> (<i>m</i> · log <i>S</i>)	PTIME <i>O</i> (<i>m</i> · log S)	PSPACE - complete
graph minimization	\checkmark	\checkmark	

where AP is fixed and m = number of edges \geq number of states = |S|