Stutter Equivalences
Lecture #4–#6 of Advanced Model Checking

Joost-Pieter Katoen
Software Modeling and Verification Group
affiliated to University of Twente, Formal Methods and Tools

October 27, 2016
Content of this lecture

- **Stutter trace equivalence**
 - definition, properties, LTL (no next) equivalence

- **Stutter bisimulation**
 - definition, properties, no LTL (no next) equivalence

- **Divergence sensitivity**
 - divergence-sensitive bisimulation, CTL* (no next) equivalence

- **Divergence-sensitive bisimulation minimisation**
 - basic idea of algorithm, complexity
Content of this lecture

⇒ Stutter trace equivalence
 – definition, properties, LTL (no next) equivalence

• Stutter bisimulation
 – definition, properties, no LTL (no next) equivalence

• Divergence sensitivity
 – divergence-sensitive bisimulation, CTL* (no next) equivalence

• Divergence-sensitive bisimulation minimisation
 – basic idea of algorithm, complexity
Motivation

- Bisimulation, simulation and trace equivalence are strong
 - each transition \(s \rightarrow s' \) must be matched by a transition of a related state
 - for comparing models at different abstraction levels, this is too fine
 - consider e.g., modeling an abstract action by a sequence of concrete actions

- Idea: allow for sequences of “invisible” transitions
 - each transition \(s \rightarrow s' \) must be matched by a path fragment of a related state
 - matching means: ending in a state related to \(s' \), and all previous states invisible

- Abstraction of such internal computations yields coarser quotients
 - but: what kind of properties are preserved?
 - but: can such quotients still be obtained efficiently?
 - but: how to treat infinite internal computations?
Motivating example

Let TS_{conc} model the concrete program fragment

\[
i := y; \quad z := 1; \\
\text{while } i > 1 \text{ do} \\
\quad z := z \times i; \quad i := i - 1; \\
\text{od} \\
x := z;
\]

that computes the factorial of y iteratively.

Let TS_{abs} be the transition system of the (abstract) program $x := y!$

Clearly, TS_{abs} and TS_{conc} are in some sense equivalent
Stuttering equivalence

- $s \rightarrow s'$ in transition system TS is a stutter step if $L(s) = L(s')$

- Paths π_1 and π_2 are stutter equivalent, denoted $\pi_1 \triangleq \pi_2$:
 - if there exists an infinite sequence $A_0A_1A_2\ldots$ with $A_i \subseteq AP$ and
 - natural numbers $n_0, n_1, n_2, \ldots, m_0, m_1, m_2, \ldots > 0$ such that:

 $\text{trace}(\pi_1) = \underbrace{A_0 \ldots A_0}_{n_0\text{-times}} \underbrace{A_1 \ldots A_1}_{n_1\text{-times}} \underbrace{A_2 \ldots A_2}_{n_2\text{-times}} \ldots$

 $\text{trace}(\pi_2) = \underbrace{A_0 \ldots A_0}_{m_0\text{-times}} \underbrace{A_1 \ldots A_1}_{m_1\text{-times}} \underbrace{A_2 \ldots A_2}_{m_2\text{-times}} \ldots$

$\Rightarrow \pi_1 \triangleq \pi_2$ if both their traces are of the form $A_0^+A_1^+A_2^+\ldots$ for $A_i \subseteq AP$
Semaphore-based mutual exclusion

\[\langle n_1, n_2, y=1 \rangle \]

\[\langle w_1, n_2, y=1 \rangle \]

\[\langle n_1, w_2, y=1 \rangle \]

\[\langle c_1, n_2, y=0 \rangle \]

\[\langle w_1, w_2, y=1 \rangle \]

\[\langle n_1, c_2, y=0 \rangle \]

\[\langle c_1, w_2, y=0 \rangle \]

\[\langle w_1, c_2, y=0 \rangle \]
Stutter equivalent traces

These infinite paths are stutter equivalent

$$\pi_1 = \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle w_1, w_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \langle n_1, w_2 \rangle \rightarrow \langle n_1, c_2 \rangle \rightarrow \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle w_1, w_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \ldots$$

$$\pi_2 = \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle c_1, n_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \langle n_1, n_2 \rangle \rightarrow \langle w_1, w_2 \rangle \rightarrow \langle w_1, c_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle c_1, n_2 \rangle \rightarrow \ldots$$

Hence, $\pi_1 \equiv \pi_2$, since for $AP = \{ \text{crit}_1, \text{crit}_2 \}$:

$$\text{trace}(\pi_1) = \varnothing^3 \{ \text{crit}_1 \} \varnothing \{ \text{crit}_2 \} \varnothing^3 \{ \text{crit}_1 \} \ldots \text{ and}$$

$$\text{trace}(\pi_2) = \varnothing^2 (\{ \text{crit}_1 \})^2 \varnothing^2 \{ \text{crit}_2 \} \varnothing \{ \text{crit}_1 \} \ldots$$
Pictorially
Stutter trace equivalence

Transition systems TS_i over AP, $i=1, 2$, are *stutter-trace equivalent*:

$$TS_1 \equiv TS_2 \text{ if and only if } TS_1 \subseteq TS_2 \text{ and } TS_2 \subseteq TS_1$$

where \subseteq, pronounced *stutter trace inclusion*, is defined by:

$$TS_1 \subseteq TS_2 \text{ iff } \forall \sigma_1 \in \text{Traces}(TS_1) \left(\exists \sigma_2 \in \text{Traces}(TS_2). \sigma_1 \equiv \sigma_2 \right)$$

$\text{Traces}(TS_1) = \text{Traces}(TS_2)$ implies $TS_1 \equiv TS_2$, but not always the converse
Example

$TS_1 \triangleq TS_2$, $TS_1 \not\preceq TS_3$ and $TS_2 \not\preceq TS_3$, but $TS_3 \preceq TS_2$ and $TS_3 \preceq TS_1$
The \bigcirc operator

Stuttering equivalence does not preserve the validity of next-formulas:

$\sigma_1 = A B B B \ldots$ and $\sigma_2 = A A A B B B B \ldots$ for $A, B \subseteq AP$ and $A \neq B$

Then for $b \in B \setminus A$:

$$\sigma_1 \trianglelefteq \sigma_2 \text{ but } \sigma_1 \models \bigcirc b \text{ and } \sigma_2 \not\models \bigcirc b.$$

\Rightarrow a logical characterization of \trianglelefteq can only be obtained by omitting \bigcirc in fact, it turns out that this is the only modal operator that is not preserved by \trianglelefteq!
Stutter trace and LTL\(\bigcirc\) equivalence

For traces \(\sigma_1\) and \(\sigma_2\) over \(2^{\text{AP}}\) it holds:

\[\sigma_1 \triangleq \sigma_2 \Rightarrow (\sigma_1 \models \varphi \text{ if and only if } \sigma_2 \models \varphi) \]

for any LTL\(\bigcirc\) formula \(\varphi\) over \(\text{AP}\)

LTL\(\bigcirc\) denotes the class of LTL formulas without the next operator \(\bigcirc\)
Stutter trace and LTL\(\Box\) equivalence

For transition systems \(TS_1, TS_2\) without terminal states:

(a) \(TS_1 \equiv TS_2\) if and only if \(\left(TS_1 \equiv_{LTL \Box} TS_2 \right)\)

(b) if \(TS_1 \preceq TS_2\) then for any LTL\(\Box\) formula \(\varphi\): \(TS_2 \models \varphi\) implies \(TS_1 \models \varphi\)
Semaphore-based mutual exclusion

This transition system is stutter trace-equivalent:

\[
\begin{align*}
\{ \text{crit}_1 \} & \rightarrow s_1 \\
\emptyset & \rightarrow s_0 \\
& \rightarrow s_2 \{ \text{crit}_2 \}
\end{align*}
\]
Content of this lecture

- **Stutter trace equivalence**
 - definition, properties, LTL (no next) equivalence

 ⇒ **Stutter bisimulation**
 - definition, properties, no LTL (no next) equivalence

- **Divergence sensitivity**
 - divergence-sensitive bisimulation, CTL* (no next) equivalence

- **Divergence-sensitive bisimulation minimisation**
 - basic idea of algorithm, complexity
Stutter bisimulation

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$.

\mathcal{R} is a **stutter-bisimulation** for TS if for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$

2. if $s'_1 \in \text{Post}(s_1)$ with $(s'_1, s_2) \not\in \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \ldots u_n s'_2$ with $n \geq 0$ and $(s_1, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

3. if $s'_2 \in \text{Post}(s_2)$ with $(s_1, s'_2) \not\in \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \ldots v_n s'_1$ with $n \geq 0$ and $(s_2, v_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

s_1, s_2 are **stutter-bisimulation equivalent**, denoted $s_1 \approx_{TS} s_2$, if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$
Stutter bisimulation

can be completed to

\[
\begin{align*}
\forall \alpha \in \{u_1, u_2, \ldots, u_n\}, \\
\forall s' \in S', \\
\forall s \in S, \\
\forall \eta \in \Delta, \\
s_1 &\approx s_2 \\
\downarrow & \\
s'_1 &\not\approx s_2 \\
\downarrow & \\
s_1 &\approx u_1 \\
\downarrow & \\
s_1 &\approx u_2 \\
\downarrow & \\
\vdots & \\
\downarrow & \\
s_1 &\approx u_n \\
\downarrow & \\
s'_1 &\approx s'_2 \\
\end{align*}
\]
Semaphore-based mutual exclusion

stutter-bisimilar states for $AP = \{ \text{crit}_1, \text{crit}_2 \}$
Stutter-bisimilar transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i = 1, 2$, be transition systems

TS_1 and TS_2 are stutter bisimilar, denoted $TS_1 \approx TS_2$, if there exists a stutter bisimulation \mathcal{R} on $TS_1 \oplus TS_2$ such that:

$$\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}) \text{ and } \forall s_2 \in I_2. (\exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R})$$
Stutter bisimulation quotient

Let $TS = (S, \text{Act}, \rightarrow, I, AP, L)$ and stutter bisimulation $\mathcal{R} \subseteq S \times S$ be an equivalence.

The quotient of TS under \mathcal{R} is defined by:

$$TS/\mathcal{R} = (S', \{ \tau \}, \rightarrow', I', AP, L')$$

where

- $S' = S/\mathcal{R} = \{ [s]_\mathcal{R} \mid s \in S \}$ with $[s]_\mathcal{R} = \{ s' \in S \mid (s, s') \in \mathcal{R} \}$
- $I' = \{ [s]_\mathcal{R} \mid s \in I \}$
- $L'([s]_\mathcal{R}) = L(s)$
- \rightarrow' is defined by: $
\frac{s \xrightarrow{\alpha} s' \text{ and } (s, s') \notin \mathcal{R}}{[s]_\mathcal{R} \xrightarrow{\tau'} [s']_\mathcal{R}}$

note that (a) no self-loops occur in TS/\approx_{TS} and (b) $TS \approx TS/\approx_{TS}$
Semaphore-based mutual exclusion

The stutter-bisimulation quotient:

\{ crit_1 \} \overset{s_1}{\longrightarrow} \overset{s_0}{\longrightarrow} \{ crit_2 \}
Stutter trace and stutter bisimulation

For transition systems TS_1 and TS_2 over AP:

- Known fact: $TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$

- But: $TS_1 \approx TS_2$ does not imply $TS_1 \equiv TS_2$!

- So:
 - bisimilar transition systems are trace equivalent
 - but stutter-bisimilar transition systems are not always stutter trace-equivalent!

- Why? Paths that only stutter!
 - stutter bisimulation does not impose any constraint on such paths
 - but \equiv requires the existence of a stuttering equivalent trace
Stutter trace and stutter bisimulation are incomparable
Stutter bisimulation does not preserve LTL\[\text{∅}\]

\[TS_{left} \approx TS_{right}\] but \[TS_{left} \not\models \diamond a\] and \[TS_{right} \models \diamond a\]

reason: presence of infinite stutter paths in \(TS_{left}\)
Content of this lecture

- **Stutter trace equivalence**
 - definition, properties, LTL (no next) equivalence

- **Stutter bisimulation**
 - definition, properties, no LTL (no next) equivalence

⇒ **Divergence sensitivity**
 - divergence-sensitive bisimulation, CTL* (no next) equivalence

- **Divergence-sensitive bisimulation minimisation**
 - basic idea of algorithm, complexity
Divergence sensitivity

- **Stutter paths** are paths that only consist of stutter steps
 - no restrictions are imposed on such paths by a stutter bisimulation

- Stutter paths **diverge**: they never leave an equivalence class

- Remedy: only relate **divergent** states or **non-divergent** states
 - divergent state = a state that has a stutter path
 - relate states only if they either both have stutter paths or none of them

- This yields **divergence-sensitive stutter bisimulation** (\approx^{div})
 - \approx^{div} is strictly finer than \triangleq (and \approx)
Outlook

<table>
<thead>
<tr>
<th>Formal Relation</th>
<th>Trace Equivalence</th>
<th>Bisimulation</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>PSPACE-complete</td>
<td>PTIME</td>
<td>PTIME</td>
</tr>
<tr>
<td>Logical Fragment</td>
<td>LTL</td>
<td>CTL*</td>
<td>∀CTL*</td>
</tr>
<tr>
<td>Preservation</td>
<td>strong</td>
<td>strong match</td>
<td>weak match</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formal Relation</th>
<th>Stutter Trace Equivalence</th>
<th>Divergence-Sensitive Stutter Bisimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>PSPACE-complete</td>
<td>PTIME</td>
</tr>
<tr>
<td>Logical Fragment</td>
<td>LTL(\bigcirc)</td>
<td>CTL*(\bigcirc)</td>
</tr>
<tr>
<td>Preservation</td>
<td>strong</td>
<td>strong match</td>
</tr>
</tbody>
</table>
Divergence sensitivity

Let TS be a transition system and \mathcal{R} an equivalence relation on S

- s is \mathcal{R}-divergent if there exists an infinite path fragment $s \ s_1 \ s_2 \ldots \in \text{Paths}(s)$ such that $(s, s_j) \in \mathcal{R}$ for all $j > 0$
 - s is \mathcal{R}-divergent if there is an infinite path starting in s that only visits $[s]_\mathcal{R}$

- \mathcal{R} is divergence sensitive if for any $(s_1, s_2) \in \mathcal{R}$:

 s_1 is \mathcal{R}-divergent implies s_2 is \mathcal{R}-divergent

 - \mathcal{R} is divergence-sensitive if in any $[s]_\mathcal{R}$ either all or none states are \mathcal{R}-divergent
Divergent-sensitive stutter bisimulation

s_1, s_2 are **divergent-sensitive stutter-bisimilar**, denoted $s_1 \approx_{TS}^{\text{div}} s_2$, if:

\exists divergent-sensitive stutter bisimulation R on TS such that $(s_1, s_2) \in R$

$\approx_{TS}^{\text{div}}$ is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS
Quotient transition system under \approx^{div}

$$TS / \approx^{\text{div}} = (S', \{ \tau \}, \rightarrow', I', AP, L'),$$
the quotient of TS under \approx^{div}

where

- S', I' and L' are defined as usual (for eq. classes $[s]_{\text{div}}$ under \approx^{div})

- \rightarrow' is defined by:

$$\frac{s \xrightarrow{\alpha} s' \land s \not\approx^{\text{div}} s'}{[s]_{\text{div}} \xrightarrow{\tau} [s']_{\text{div}}}$$
and

$$s \text{ is } \approx^{\text{div}} - \text{divergent} \quad \frac{[s]_{\text{div}} \xrightarrow{\tau} [s]_{\text{div}}}{[s]_{\text{div}} \xrightarrow{\tau} [s]_{\text{div}}}$$

note that $TS \approx^{\text{div}} TS / \approx^{\text{div}}$
Example

Transition system \(TS\)

\[[s_3] \approx [s_0] \approx \emptyset \]

\[[s_3] \text{div} [s_2] \text{div} [s_0] \text{div} \]

Transition system \(TS/\approx\)

Transition system \(TS/\approx^{\text{div}}\)
Summary

stutter trace inclusion:
\[TS_1 \trianglelefteq TS_2 \text{ iff } \forall \sigma_1 \in \text{Traces}(TS_1) \exists \sigma_2 \in \text{Traces}(TS_2). \sigma_1 \trianglelefteq \sigma_2 \]

stutter trace equivalence:
\[TS_1 \triangleq TS_2 \text{ iff } TS_1 \trianglelefteq TS_2 \text{ and } TS_2 \trianglelefteq TS_1 \]

stutter bisimulation equivalence:
\[TS_1 \approx TS_2 \text{ iff } \text{there exists a stutter bisimulation for } (TS_1, TS_2) \]

stutter bisimulation equivalence with divergence:
\[TS_1 \approx^{\text{div}} TS_2 \text{ iff } \text{there exists a divergence-sensitive stutter bisimulation for } (TS_1, TS_2) \]
CTL* and CTL\$ equivalence vs \sim^{div}

For finite transition system TS without terminal states, and s_1, s_2 in TS:

$$s_1 \sim^{div}_{TS} s_2 \iff s_1 \equiv_{CTL^*} s_2 \iff s_1 \equiv_{CTL\$} s_2$$
CTL\(_\)equivalence vs \(\approx_{\text{div}}\)

For finite transition system \(TS\) without terminal states, and \(s_1, s_2\) in \(TS\):

\[s_1 \approx_{TS}^d s_2 \quad \text{iff} \quad s_1 \equiv_{\text{CTL}__} s_2 \quad \text{iff} \quad s_1 \equiv_{\text{CTL}__} s_2 \quad \text{iff} \quad s_1 \equiv_{\text{CTL}__,U} s_2 \]
Equivalences and logical equivalence

\[
\begin{align*}
\text{CTL}^* \text{ equivalence} & \quad \text{LTL equivalence} \\
\text{bisimulation equivalence} & \quad \text{trace equivalence} & \quad \text{trace inclusion} \\
TS_1 \sim TS_2 & \quad \text{Traces}(T_1) = \text{Traces}(TS_2) & \quad \text{Traces}(T_1) \subseteq \text{Traces}(TS_2) \\
\text{divergence sensitive} & \quad \text{stutter trace-equivalence} & \quad \text{stutter trace inclusion} \\
\text{stutter bisimulation equivalence} & \quad TS_1 \triangleq TS_2 & \quad TS_1 \sqsubseteq TS_2 \\
\text{CTL}^* \text{ equivalence} & \quad \text{LTL} \text{ equivalence}
\end{align*}
\]
Content of this lecture

- **Stutter trace equivalence**
 - definition, properties, LTL (no next) equivalence

- **Stutter bisimulation**
 - definition, properties, no LTL (no next) equivalence

- **Divergence sensitivity**
 - divergence-sensitive bisimulation, CTL* (no next) equivalence

⇒ **Divergence-sensitive bisimulation minimisation**
 - basic idea of algorithm, complexity
Quotienting: Motivation

- Quotienting wrt. \(\approx^{\text{div}} \) allows to *abstract from stutter steps*
 - in particular \(TS \approx^{\text{div}} TS/\approx^{\text{div}} \)
 - typically we have \(|TS| \gg |TS/\approx^{\text{div}}| \)

- \(TS_1 \approx^{\text{div}} TS_2 \) if and only if \((TS_1 \models \Phi \iff TS_2 \models \Phi) \)
 - for any CTL\(^*\) (or CTL\(\setminus\)) formula \(\Phi \)

\(\therefore \) To check \(TS \models \Phi \), if suffices to check whether \(TS/\approx^{\text{div}} \models \Phi \)
 - quotienting with respect to \(\approx^{\text{div}} \) is a useful preprocessing step of model checking
Quotienting: A two-phase approach

[Groote and Vaandrager, 1990]

1. A quotienting algorithm to determine TS/\approx:
 - remove *stutter cycles* from TS
 - a refine operator to *efficiently split* (blocks of) partitions
 - exploit partition-refinement (as for bisimulation \sim)

2. A quotienting algorithm to determine TS/\approx^{div}:
 - *transform* TS into a (divergence-sensitive) transition system \overline{TS}
 - \overline{TS} is divergent-sensitive, i.e., $\approx_{\overline{TS}}$ and $\approx^{div}_{\overline{TS}}$ coincide
 - determine \overline{TS}/\approx using the quotienting algorithm for \approx
 - “distill” TS/\approx^{div} from \overline{TS}/\approx
Partition-refinement

from now on, we assume that TS is finite

- Iteratively compute a partition of S
- Initially: Π_0 equals $\Pi_{AP} = \{(s, t) \in S \times S \mid L(s) = L(t)\}$ as before
- Repeat until no change: $\Pi_{i+1} := \text{Refine}_\approx(\Pi_i)$
 - loop invariant: Π_i is coarser than S/\approx and finer than $\{S\}$
- Return Π_i
 - termination: $\mathcal{R}_{\Pi_0} \supseteq \mathcal{R}_{\Pi_1} \supseteq \mathcal{R}_{\Pi_2} \supseteq \ldots \supseteq \mathcal{R}_{\Pi_i} = \approx_{TS}$
 - time complexity: maximally $|S|$ iterations needed
Theorem

\[S/ \approx \text{ is the coarsest partition } \Pi \text{ of } S \text{ such that:} \]

(i) \(\Pi \) is finer than the initial partition \(\Pi_{AP} \), and

(ii) \(B \cap Pre^*_\Pi(C) = \emptyset \) or \(B \subseteq Pre^*_\Pi(C) \) for all \(B, C \in \Pi \)

for partition \(\Pi \) of \(S \) and blocks \(B, C \) in \(\Pi \) we have:

\[s \in Pre^*_\Pi(C) \text{ whenever } s = s_1 s_2 \ldots s_{n-1} s_n \in Paths(s) \]

\(\text{state } s \text{ can reach } C \text{ via a path that is completely in } B (= [s]_{\Pi}) \)
The refinement operator

- Let: \(\text{Refine}_{\approx}(\Pi, C) = \bigcup_{B \in \Pi} \text{Refine}_{\approx}(B, C) \) for \(C \) a block in \(\Pi \)
 - where \(\text{Refine}_{\approx}(B, C) = \{ B \cap \text{Pre}_{\Pi}(C), B \setminus \text{Pre}_{\Pi}(C) \} \setminus \{\emptyset\} \)

- Basic properties:
 - for \(\Pi \) finer than \(\Pi_{AP} \) and coarser than \(S/\approx \):
 \[
 \text{Refine}_{\approx}(\Pi, C) \text{ is finer than } \Pi \quad \text{and} \quad \text{Refine}_{\approx}(\Pi, C) \text{ is coarser than } S/\approx
 \]
 - \(\Pi \) is strictly coarser than \(S/\approx \) if and only if there exists a \textit{splitter} for \(\Pi \)

what is an appropriate splitter for \(\approx \)?
Splitter for \approx

Let Π be a partition of S and let $C, B \in \Pi$.

1. C is a Π-splitter for B if and only if:

 $$B \neq C \quad \text{and} \quad B \cap \text{Pre}^*_\Pi(C) \neq \emptyset \quad \text{and} \quad B \setminus \text{Pre}^*_\Pi(C) \neq \emptyset$$

2. Π is C-stable if there is no $B \in \Pi$ such that C is a Π-splitter for B

3. Π is stable if Π is C-stable for all blocks $C \in \Pi$
Partition-refinement

Input: finite transition system TS with state space S
Output: stutter-bisimulation quotient space S/\approx

$\Pi := \Pi_{AP}$;
while ($\exists B, C \in \Pi$. C is a Π-splitter for B) do
choose such $B, C \in \Pi$;
$\Pi := (\Pi \setminus \{B\}) \cup \{B \cap Pre^*_{\Pi}(C), B \setminus Pre^*_{\Pi}(C)\} \setminus \{\emptyset\}$;
(* refine Π *)

od
return Π

(* as before *)
Stutter cycles

• \(s_0 \ s_1 \ldots s_n \) is a stutter cycle if \(s_i \ s_{i+1} \) is a stutter step. One stutter cycle is

\[
\begin{align*}
 s_0 & \approx_{TS} s_1 \\
 s_1 & \approx_{TS} s_2 \\
 & \ldots \\
 s_{n-1} & \approx_{TS} s_n \\
 s_n & = s_0
\end{align*}
\]

• Corollary: for finite TS and state \(s \) in TS:

\(s \) is \(\approx_{\div} \) divergent if and only if a stutter cycle is reachable from \(s \) via a path in \([s]_{\div} \).
Removal of stutter cycles: How?

1. Determine the SCCs in $G(TS)$ that only contain stutter steps
 - use depth-first search to find these strongly connected components (SCCs)

2. Collapse any stutter SCC into a single state
 - $C \rightarrow C'$ with $C \neq C'$ whenever $s \rightarrow s'$ in TS with $s \in C$ and $s' \in C'$

⇒ Resulting TS' has no stutter cycles
 - $s_1 \approx_{TS} s_2$ if and only if $\underbrace{C_1}_{s_1 \in C_1} \approx_{TS'} \underbrace{C_2}_{s_2 \in C_2}$

from now on, assume transition systems have no stutter cycles
A “local” splitter characterization

• \(C \) is a \(\Pi\)-splitter for \(B \) if and only if:

\[
B \neq C \quad \text{and} \quad B \cap \text{Pre}_\Pi(C) \neq \emptyset \quad \text{and} \quad B \setminus \text{Pre}_\Pi(C) \neq \emptyset
\]

• How to avoid the computation of \(\text{Pre}_\Pi(C) \) for \(C \in \Pi \)?

• No stutter cycles \(\Rightarrow \) block \(B \in \Pi \) has at least one exit state

 – exit state = a state with only direct successors outside \(B \):

\[
\text{Bottom}(B) = \left\{ s \in B \mid \text{Post}(s) \cap B = \emptyset \right\}
\]

• For finite TS without stutter cycles, \(C \) is a \(\Pi\)-splitter for \(B \) iff:

\[
B \neq C \quad \text{and} \quad B \cap \text{Pre}(C) \neq \emptyset \quad \text{and} \quad \text{Bottom}(B) \setminus \text{Pre}(C) \neq \emptyset
\]
Time complexity

The partition-refinement algorithm to compute TS/ \approx has a worst-case time complexity in $O\left(|S| \cdot (|AP| + M)\right)$.
Approach

1. A quotienting algorithm to determine TS/\approx:
 - remove *stutter cycles* from TS
 - a refine operator to *efficiently split* (blocks of) partitions
 - exploit partition-refinement (as for bisimulation \sim)

\Rightarrow A quotienting algorithm to determine TS/\approx^{div}:
 - *transform* TS into a (divergence-sensitive) transition system \overline{TS}
 - \overline{TS} is divergent-sensitive, i.e., $\approx_{\overline{TS}}$ and $\approx_{\overline{TS}}^{div}$ coincide
 - determine \overline{TS}/\approx using the quotienting algorithm for \approx
 - “distill” TS/\approx^{div} from \overline{TS}/\approx
Divergence expansion

Divergence-sensitive expansion of finite $TS = (S, Act, \rightarrow, I, AP, L)$ is:

$$\overline{TS} = (S \cup \{s_{\text{div}}\}, Act \cup \{\tau\}, \rightarrow, I, AP \cup \{\text{div}\}, \overline{L})$$

where

- $s_{\text{div}} \notin S$
- \rightarrow extends the transition relation of TS by:
 - $s_{\text{div}} \xrightarrow{\tau} s_{\text{div}}$ and
 - $s \xrightarrow{\tau} s_{\text{div}}$ for every state $s \in S$ on a stutter cycle in TS
- $\overline{L}(s) = L(s)$ if $s \in S$ and $\overline{L}(s_{\text{div}}) = \{\text{div}\}$

$s_{\text{div}} \not\approx s$ for any $s \in S$ and s_{div} can only be reached from a \approx_{div}-divergent state
Example
Correctness

For finite transition system TS:

1. \overline{TS} is divergence-sensitive, and

2. for all $s_1, s_2 \in S$: $s_1 \approx_{\text{div}}^{TS} s_2$ if and only if $s_1 \approx_{\overline{TS}} s_2$
Recipe for computing \(TS/\approx^{\text{div}} \)

1. **Construct the divergence-sensitive expansion** \(\overline{TS} \)
 - determine the SCCs in \(G_{\text{stutter}}(TS) \), and insert transitions \(s_{\text{div}} \rightarrow s_{\text{div}} \) and
 - \(s \rightarrow s_{\text{div}} \) for any state \(s \) in a non-trivial SCC of \(G_{\text{stutter}} \)

2. **Apply partition-refinement to** \(\overline{TS} \) **to obtain** \(S/\approx^{\text{div}}_{TS} = S/\approx_{\overline{TS}} \)

3. **Generate** \(\overline{TS}/\approx \)
 - any \(C \in S/\approx^{\text{div}} \) that contains an initial state of \(TS \) is an initial state
 - the labeling of \(C \in S/\approx^{\text{div}} \) equals the labeling of any \(s \in C \)
 - any transition \(s \rightarrow s' \) with \(s \not\approx^{\text{div}}_{TS} s' \) yields a transition between \(C_s \) and \(C_{s'} \)

4. **“Distill”** \(TS/\approx^{\text{div}} \) **from** \(\overline{TS}/\approx \):
 - replace transition \(s \rightarrow s_{\text{div}} \) in \(\overline{TS} \) by the self-loop \([s]_{\approx^{\text{div}}} \rightarrow [s]_{\approx^{\text{div}}} \)
 - delete state \(s_{\text{div}} \)
Time complexity

The quotient transition system $TS/\approx^{\mathsf{div}}$ can be determined with a worst-case time complexity in $O\left(|S| \cdot (|AP|+M)\right)$.
Summary

<table>
<thead>
<tr>
<th>formal relation</th>
<th>trace equivalence</th>
<th>bisimulation</th>
<th>simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity</td>
<td>PSPACE-complete</td>
<td>$O(M \cdot \log</td>
<td>S</td>
</tr>
<tr>
<td>logical fragment</td>
<td>LTL</td>
<td>CTL*</td>
<td>\forallCTL*</td>
</tr>
<tr>
<td>preservation</td>
<td>strong</td>
<td>strong match</td>
<td>weak match</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>formal relation</th>
<th>stutter trace equivalence</th>
<th>divergence-sensitive stutter bisimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity</td>
<td>PSPACE-complete</td>
<td>$O(M \cdot</td>
</tr>
<tr>
<td>logical fragment</td>
<td>LTL (\bigcirc)</td>
<td>CTL* (\bigcirc)</td>
</tr>
<tr>
<td>preservation</td>
<td>strong</td>
<td>strong match</td>
</tr>
</tbody>
</table>