
Timed Automata
Lecture #15 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 17, 2017

c© JPK

Advanced model checking

Time-critical systems

• Timing issues are of crucial importance for many systems, e.g.,

– landing gear controller of an airplane, railway crossing, robot controllers
– steel production controllers, communication protocols

• In time-critical systems correctness depends on:

– not only on the logical result of the computation, but
– also on the time at which the results are produced

• How to model timing issues:

– discrete-time or continuous-time?

c© JPK 1

Advanced model checking

A discrete time domain

• Time has a discrete nature, i.e., time is advanced by discrete steps

– time is modelled by naturals; actions can only happen at natural time values
– a single transition corresponds to a single time unit

⇒ delay between any two events is always a multiple of a single time unit

• Properties can be expressed in traditional temporal logic

– the next-operator “measures” time passage
– two time units after being red, the light is green: � (red ⇒ © © green)

– within two time units after red, the light is green:

� (red ⇒ (green ∨ © green ∨ © © green))
︸ ︷︷ ︸

©�2 green

• Main application area: synchronous systems, e.g., hardware

c© JPK 2

Advanced model checking

A discrete time domain

• Main advantage: conceptual simplicity

– labeled transition systems can be taken as is
– temporal logic can be taken as is

⇒ traditional model-checking algorithms suffice
⇒ adequate for synchronous systems. e.g., hardware systems

• Main limitations:

– (minimal) delay between any pair of actions is a multiple of an a priori fixed
minimal delay

⇒ difficult (or impossible) to determine this in practice
⇒ not invariant against changes of the time scale
⇒ inadequate for asynchronous systems. e.g., distributed systems

c© JPK 3

Advanced model checking

A continuous time-domain
If time is continuous, state changes can happen at any point in time:

t = 0 t = 0.74 t = 2 t = 3 t = π t = 4

.
t = 0 t = 0.74 t = 2 t = 3 t = π t = 4

within four
time-units is modeled by

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state
within π time-units?

c© JPK 4

Advanced model checking

Approach
• Restrict expressivity of the property language

– e.g., only allow reference to natural time units

=⇒ Timed CTL

• Model timed systems symbolically rather than explicitly

– in a similar way as program graphs and channel systems

=⇒ Timed Automata

• Consider a finite quotient of the infinite state space on-demand

– i.e., using an equivalence that depends on the property and the timed automaton

=⇒ Region Automata

c© JPK 5

Advanced model checking

A railroad crossing

please close and open the gate at the right time!

c© JPK 6

Advanced model checking

Modeling using transition systems

far near

in

approach

enterexit

0 1

3 2

approach

lower

exit

raise

up

down

lower raise

Train Controller Gate

No guarantee that the gate is closed when train is passing

c© JPK 7

Advanced model checking

This can be seen as follows

〈far, 0, up〉

〈near, 1, up〉

〈in, 1, up〉〈near, 2, down〉

approach

enterlower

the train can enter the crossing while gate is still open

c© JPK 8

Advanced model checking

Timing assumptions

Train Controller Gate

far near

in

approach

enterexit

0 1

3 2

approach

lower

exit

raise

up

down

lower raise

after delay of execution time
> 2 minutes 1 minute of � 1 minute

c© JPK 9

Advanced model checking

Resulting composite behaviour

far 0 up near 1 up

near 2 down

in 1 up

approach
lower

enter

� 2min

� 2min

...

c© JPK 10

Advanced model checking

Timed automata model of train

train is now also assumed to leave crossing within five time units

c© JPK 11

Advanced model checking

Timed automata model of gate

raising the gate is now also assumed to take between one and two time units

c© JPK 12

Advanced model checking

Clocks

• Clocks are variables that take non-negative real values, i.e., in R�0

• Clocks increase implicitly, i.e., clock updates are not allowed

• All clocks increase at the same pace, i.e., with rate one

– after an elapse of d time units, all clocks advance by d

• Clocks may only be inspected and reset to zero

• Boolean conditions on clocks are used as:

– guards of edges: when is an edge enabled?
– invariants of locations: how long is it allowed to stay?

c© JPK 13

Advanced model checking

Clock constraints

• A clock constraint over set C of clocks is formed according to:

g ::= x < c
∣∣∣ x � c

∣∣∣ x > c
∣∣∣ x � c

∣∣∣ g ∧ g where c ∈ N and x ∈ C

• Let CC(C) denote the set of clock constraints over C.

• Clock constraints without any conjunctions are atomic

– let ACC(C) denote the set of atomic clock constraints over C

clock difference constraints such as x−y < c can be added at
expense of slightly more involved theory

c© JPK 14

Advanced model checking

Timed automaton

A timed automaton TA =
(
Loc,Act, C, ↪→,Loc0, Inv,AP, L

)
where:

• Loc is a finite set of locations

• Loc0 ⊆ Loc is a set of initial locations

• C is a finite set of clocks

• ↪→ ⊆ Loc × CC(C)× Act × 2C × Loc is a transition relation

• Inv : Loc → CC(C) is an invariant-assignment function, and

• L : Loc → 2AP is a labeling function

c© JPK 15

Advanced model checking

Intuitive interpretation

• Edge �
g:α,C
↪→ �′ means:

– action α is enabled once guard g holds
– when moving from location � to �′:

∗ perform action α, and
∗ reset any clock in C will to zero
∗ . . . all clocks not in C keep their value

• Nondeterminism if several transitions are enabled

• Inv(�) constrains the amount of time that may be spent in location �

– once the invariant Inv(�) becomes invalid, the location � must be left
– if this is impossible – no enabled transition – no further progress is possible

c© JPK 16

Advanced model checking

Guards versus invariants

2

4

time

2 4 6 8 10

value
of x

x � 2
{x }

c© JPK 17

Advanced model checking

Guards versus invariants

2

4

time

2 4 6 8 10

value
of x 3

2 � x � 3
{ x }

c© JPK 18

Advanced model checking

Guards versus invariants

2

4

time

2 4 6 8 10

value
of x

x � 2
{x }

x � 3

3

c© JPK 19

Advanced model checking

Arbitrary clock differences

clock x
clock y

2

4

time

2 4 6 8 10

clock
value

y � 2

{ y }

x � 2
{x }

This is impossible to model in a discrete-time setting

c© JPK 20

Advanced model checking

Fisher’s mutual exclusion protocol

c© JPK 21

Advanced model checking

Composing timed automata
Let TAi =

(
Loci,Acti, Ci, ↪→i,Loc0,i, Invi,AP, Li

)
and H an action-set

TA1 ||H TA2 =
(
Loc,Act1 ∪ Act2, C, ↪→,Loc0, Inv,AP, L

)
where:

• Loc = Loc1 × Loc2 and Loc0 = Loc0,1 × Loc0,2 and C = C1 ∪ C2

• Inv(〈�1, �2〉) = Inv1(�1)∧ Inv2(�2) and L(〈�1, �2〉) = L1(�1) ∪ L2(�2)

• � is defined by the rules: for α ∈ H
�1

g1:α,D1
↪→1�

′
1 ∧ �2

g2:α,D2
↪→2�

′
2

〈�1, �2〉
g1∧g2:α,D1∪D2
↪→〈�′1, �′2〉

for α �∈ H:
�1

g:α,D
↪→1�

′
1

〈�1, �2〉
g:α,D
↪→〈�′1, �2〉

and
�2

g:α,D
↪→2�

′
2

〈�1, �2〉
g:α,D
↪→〈�1, �′2〉

c© JPK 22

Advanced model checking

Example: a railroad crossing

c© JPK 23

Advanced model checking

c© JPK 24

Advanced model checking

Clock valuations

• A clock valuation η for set C of clocks is a function η : C −→ R�0

– assigning to each clock x ∈ C its current value η(x)

• Clock valuation η+d for d ∈ R�0 is defined by:

– (η+d)(x) = η(x) + d for all clocks x ∈ C

• Clock valuation reset x in η for clock x is defined by:

(reset x in η)(y) =

{
η(y) if y 	= x
0 if y = x.

– reset x in (reset y in η) is abbreviated by reset x, y in η

c© JPK 25

Advanced model checking

Satisfaction of clock constraints

Let x ∈ C, η ∈ Eval(C), c ∈ N, and g, g′ ∈ CC(C)

The the relation |=⊆ Eval(C)× CC(C) is defined by:

η |= true

η |= x < c iff η(x) < c

η |= x � c iff η(x) � c

η |= x > c iff η(x) > c

η |= x � c iff η(x) � c

η |= g ∧ g′ iff η |= g ∧ η |= g′

c© JPK 26

Advanced model checking

Timed automaton semantics
For timed automaton TA =

(
Loc,Act, C, ↪→, Loc0, Inv,AP, L

)
:

Transition system TS(TA) = (S,Act′,→, I,AP′, L′) where:

• S = Loc × Eval(C), so states are of the form s = 〈�, η〉

• Act′ = Act ∪ R�0, (discrete) actions and time passage actions

• I = { 〈�0, η0〉 | �0 ∈ Loc0 ∧ η0(x) = 0 for all x ∈ C }

• AP′ = AP ∪ ACC(C)

• L′(〈�, η〉) = L(�) ∪ { g ∈ ACC(C) | η |= g }

• ↪→ is the transition relation defined on the next slide

c© JPK 27

Advanced model checking

Timed automaton semantics

The transition relation −→ is defined by the following two rules:

• Discrete transition: 〈�, η〉 α−−→〈�′, η′〉 if all following conditions hold:

– there is a transition labeled (g : α,D) from location � to �′ such that:
– g is satisfied by η, i.e., η |= g

– η′ = η with all clocks in D reset to 0, i.e., η′ = reset D in η

– η′ fulfills the invariant of location �′, i.e., η′ |= Inv(�′)

• Delay transition: 〈�, η〉 d−→〈�, η+d〉 for d ∈ R�0 if η+d |= Inv(�)

c© JPK 28

Advanced model checking

Example

c© JPK 29

