Symbolic Model Checking with ROBDDs
Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail; katoen@cs.rwth—aachen.de

December 14, 2016

© JPK

Advanced model checking

Symbolic representation of transition systems

e let 1S=(5,—,I,AP, L) be a “large” finite transition system
— the set of actions is irrelevant here and has been omitted, i.e., -=C S x S

e Forn > [log|S|], letinjective function enc: S — {0,1}"

— note: enc(S) = {0, 1}" is no restriction, as all elements { 0,1 }" \ enc(S)
can be treated as the encoding of pseudo states that are unreachable

e |dentify the states s € S = enc™({0,1}") with enc(s) € {0,1}"
e And T' C S by its characteristic function xp: {0,1}" — {0,1}

— thatis xr(enc(s)) = lifandonlyifs € T
e And — C S x S by the Boolean function A : {0,1}*" — {0,1}

— such that A (enc(s), enc(s’)) = 1ifandonlyif s — s’

© JPK 1

Advanced model checking

Switching functions
o Let Var=1{z,...,2,} be a finite set of Boolean variables

e An evaluation is a functionn : Var— {0,1}

— let Eval(z, . . ., z,) denote the set of evaluations for 21, . . ., 2z,
— shorthand [y = by, ..., 2, = bp] forn(z) = b1, ..., n(2m) = by,
e f:EvallVar) — {0,1} is a switching function for Var={z,..., zn}

e Logical operations and quantification are defined by:

fi() A f2(0) = min{ fi(+), f2() }
f()V f2(0) = max{ fi(+), f2(-) }
dz. f(-) = f()]:=0V f(-)]:=1, and
Vz. f(-) = f()lz=0Nf(+)]:=1

© JPK 2

Advanced model checking

Ordered Binary Decision Diagram

Let p be a variable ordering for Varwhere z; <, ... <, 2

An p-OBDD is atuple %8 = (V, V;, Vip, Succy, succ,, var, val, vy) with

e a finite set V of nodes, partitioned into V; (inner) and V- (terminals)

— and a distinguished root vy € V

e successor functions succy, succ; : Vi — V

— such that each node v € V' \ {v} has at least one predecessor

e labeling functions var: V; — Varand val: Vp — { 0,1 } satisfying

ve Vi N we{succy(v),sucei(v)} NV = var(v) <, var(w)

© JPK 3

Advanced model checking

Reduced OBDDs

A ©-OBDD *5 is reduced if for every pair (v, w) of nodes in B:
v #£ w implies f, # fu

= in -ROBDDs any g-consistent cofactor is represented by exactly one node

© JPK 4

Advanced model checking

Reducing OBDDs

e Generate an OBDD (or BDT) for a switching function, then reduce

— by means of a recursive descent over the OBDD

e Elimination of duplicate leafs

— for a duplicate O-leaf (or 1-leaf), redirect all incoming edges to just one of them

e Elimination of “don’t care” (non-leaf) vertices

— if succy(v) = succ, (v) = w, delete v and redirect all its incoming edges to w

e Elimination of isomorphic sub-trees

— if v # w are roots of isomorphic sub-trees, remove w
and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

© JPK 5

Advanced model checking

Variable ordering

e ROBDDs are canonical for a fixed variable ordering

— the size of the ROBDD crucially depends on the variable ordering
— # nodes in ROBDD B = # of ©-consistent co-factors of f

e Some switching functions have linear and exponential ROBDDs

— e.g., the addition function, or the stable function

e Some switching functions only have polynomial ROBDDs

— this holds, e.g., for symmetric functions (see next)
— examples f(...)=x1 D ... B x,, 0or f(...) = 1iff > k variables z; are true

e Some switching functions only have exponential ROBDDs

— this holds, e.g., for the middle bit of the multiplication function

© JPK 6

Advanced model checking

The function stable with exponential ROBDD

The ROBDD of fuu(Z,7) = (x1 <> y1) A ... A (T < Yn)

has 3-2" — 1 verticesunderorderingz; < ... <z, < y1 < ... < Yp

© JPK

Advanced model checking

The function stable with linear ROBDD
)

¢
-

1

The ROBDD of fuw(x,y) = (1 <> y1) A ... A (Tn <> Yn)

has 3-n + 2 vertices underordering z1 < y1 < ... < xn, < Yn,

© JPK 8

Advanced model checking

Another function with an exponential ROBDD

-
-
,
7
e @ e @
7 ’
/ /
/ /
I
|
@ / //,, @
- A
/ _ -
-
7
<
-7 /
!
! -
- -
i - - ;
- /
(I L /
\l/
\
|
|
|
\
\
\
\
\
-
N \ ,
NN \ ,
NN
~ ’
PN /
NS
\@

ROBDD for fg(z, g) = (Zl N\ yl) Vv (ZQ A\ yg) V (23 N\ yg)
for the variable ordering 21 < 2 < z3 < 11 < 12 < U3

© JPK 9

Advanced model checking

And an optimal linear ROBDD

e ROBDDfor f3(-) = (z1A11)V(22A12)V (23N 93)
e forordering 21 < 11 < 22 < 12 < 23 < U3

e as all variables are essential for f, this ROBDD is
optimal

e that is, for no variable ordering a smaller ROBDD
exists

© JPK

10

Advanced model checking

Symmetric functions

f € Eval(z, . .., z,) is symmetric if and only if

f([Z1 = bl, e .9 R — bm]) = f([Z1 = bil’ N bzm])

for each permutation (i1, ..., %,) of (1,...,m)

E.g.:z1V2V... V2, 21\ A. ..z, the parity function, and the majority function

If fis a symmetric function with m essential variables, then

for each variable ordering g the -ROBDD has size O (m?)

© JPK 11

Advanced model checking

The even parity function

feven(x1, - .., xy) = 1iff the number of variables x; with value 1 is even

truth table or propositional formula for f..., has exponential size

but an ROBDD of linear size is possible

© JPK >

Advanced model checking =

The multiplication function

e Consider two n-bit integers

— letb,,_1b,_o . .. bo and c,,_1¢,,—2 . .. Co

— where b,,_1 is the most significant bit, and b, the least significant bit
e Multiplication yields a 2n-bit integer

— the ROBDD B, | has at least 1.09" vertices
— where f,,_; denotes the (n—1)-st output bit of the multiplication

© JPK 13

Advanced model checking

Optimal variable ordering
e The size of ROBDDs is dependent on the variable ordering

e Is it possible to determine p such that the ROBDD has minimal size?
— to check whether a variable ordering is optimal is NP-hard
— polynomial reduction from the 3SAT problem [Bollig & Wegener, 1996]
e There are many switching functions with large ROBDDs

— for almost all switching functions the minimal size is in Q(%)

e How to deal with this problem in practice?

— guess a variable ordering in advance
— rearrange the variable ordering during the ROBDD manipulations
— not necessary to test all n! orderings, best known algorithm in O(3"-n?)

© JPK 14

Advanced model checking

Variable swapping

© JPK

15

Advanced model checking

Sifting algorithm
[Rudell, 1993]

Dynamic variable ordering using variable swapping:

1. Select a variable z; in OBDD at hand

2. Successively swap z; to determine size(*5) at any position for x;
3. Shift z; to position for which size(®5) is minimal

4. Go back to the first step until no improvement is made

o Characteristics:

e a variable may change position several times during a single sifting iteration
e often yields a local optimum, but works well in practice

© JPK 16

Advanced model checking

Interleaved variable ordering

e Which variable ordering to use for transition relations?

e The interleaved variable ordering:

— for encodings x4, ...,x, and yq, ..., y, of state s and ¢ respectively:
T <Y1 < T2 < Y2 < ... < Ty < Yn

e This variable ordering yields compact ROBDDs for binary relations

— for transition relation with z; . . . z,, be the encoding of action «, take:

1<z <...<2Zpyp < Z1 <y <2< YyYy2<...< Ty <Yy
encoding of « interleaved order of states

© JPK 17

Advanced model checking

Symbolic model checking

e Take a symbolic representation of a transition system (A and)
e Backward reachability Pre*(B) ={s e S |sE3¢C B}

e Initially: fy = x5 characterizes the setT, = B

e Then, successively compute the functions f;.1 = xr,,, for:

Tj_|_1 :TjU{S€S|E|S/€S.S,EPOSt(S)/\S/ETj}

Second set is given by: 37’. (A(z. 7’ (7!
° g y: 37" (A, 7)) A f;(7))
s’ € Post(s) s'€T;

— f;(T") arises from f; by renaming the variables z; into their primed copies z;

© JPK 18

Advanced model checking

Symbolic computation of Sat(3(C' U B))

fo(Z) := xB(T);

7 :=0;

repeat
fi+1(@) = f;() V (xc(@) A 37 (A@,T) A £;(T)));
7:=7+1

until /;(z) = f;-1(%);

return f;(7).

© JPK 19

Advanced model checking

Symbolic computation of Saf(30 B)

Compute the largest set T' C B withPost(t) N'T # w@oforallt € T
TakeT(): Bande+1 = Tjﬂ{S eSS | Js’ c S. s c POSt(S) A s c TJ}
Symbolically this amounts to:
fo(T) := xB(T);
j =0
repeat
fi+1(T) := f;(x) A FT".(AZ,T) A f5(T));
J=73+1

until f;(7) = f;_1(7);
return f;(7).

Symbolic model checkers mostly use ROBDDs to represent switching functions

© JPK 20

Advanced model checking

Synthesis of ROBDDs

e Construct a o-ROBDD for f; op f> given o-ROBDDs for f; and f5

— where op is a Boolean connective such as disjunction, implication, etc.

e Idea: use a single ROBDD with (global) variable ordering ¢ to
represent several switching functions

e This yields a shared OBDD, which is:

a combination of several ROBDDs with variable ordering ¢
by sharing nodes for common g-consistent cofactors

e The size of p-SOBDD B for functions fi, ..., f is at most
Ny, + ...+ Ny, where N denotes the size of the p-ROBDD for f

© JPK 21

Advanced model checking

Shared OBDDs

A shared o-OBDD is an OBDD with multiple roots

Shared OBDD representing g1\ 123, 022,21 D zgand 2z Vo2
—— N ~ ——

f1 f2 f3 fa

Main underlying idea: combine several OBDDs with same variable ordering
such that common g-consistent co-factors are shared

© JPK 22

Advanced model checking

Using shared OBDDs for model checking @

Use a single SOBDD for:

e A(7,7') for the transition relation
e f.(Z), a € AP, for the satisfaction sets of the atomic propositions

e The satisfaction sets Saf(V) for every state sub-formula ¥ of ¢

In practice, often the interleaved variable order for A is used.

© JPK 23

Advanced model checking

Synthesizing shared ROBDDs

Relies on the use of two tables

e The unique table

— keeps track of ROBDD nodes that already have been created
— table entry (var(v), succ;(v), succy(v)) for each inner node v
— main operation: find_or_add(z, v1, vo) with v # vy
* return v if there exists a node v = (z, vy, vg) in the ROBDD
« if not, create a new z-node v with succy(v) = vg and succ; (v) = vy
— implemented using hash functions (expected access time is O(1))

e The computed table

— keeps track of tuples for which ITE has been executed (memoization)
=- realizes a kind of dynamic programming

© JPK

24

Advanced model checking

ITE normal form

The ITE (if-then-else) operator: ITE(g, f1, f2) = (gA fi1) V (mgA f2)

The ITE operator and the representation of the SOBDD nodes in the unique table:

Jo = ITE(Za fsuccl(v)7 fSUCCo(U))

Then:

- f ITE(f,0,1)
J1V f2 ITE(f1,1, f2)
finfo = ITE(f1, f2,0)
fl@f2 ITE(fla_‘f%fQ) — ITE(f17ITE(f27O71>7f2)

If g, f1, fo are switching functions for Var, = € Varand b € {0, 1}, then
ITE(g, fl; f2)|z:b = ITE(g|z:b7 fl|Z:ba f2|z:b)

© JPK 25

Advanced model checking -

ITE-operator on shared OBDDs

e A node in a p-SOBDD for representing ITE(g, f1, f2)
is a node w with info{z, w1, wg) where:

— z is the minimal (wrt. ©) essential variable of ITE(g, f1, f2)
— wy, is an SOBDD-node with f., = ITE(g|.—s, f1]:=b, f2|.=b)
e This suggests a recursive algorithm:

— determine z
— recursively compute the nodes for ITE for the cofactors of g, f1 and f»

© JPK 26

Advanced model checking

ITE(u,vq,v2) on shared OBDDs (initial version)
if u is terminal then
if val(u) = 1 then

w = V1 (" /TE(lafvlafvz) — f'ul *)
else
W = Vo (* ITE(Oafvl7fvz) — f'uz %)
fi
else
z := min{var(u), var(vy), var(vs) }; (* minimal essential variable *)
wy = ITE(uw| =1, v1]2=1, V2|2=1);
wo = ITE(u|.=0, V1|2=0, V2]2=0);
if wgo = w; then
w = wi; (* elimination rule *)
else
w := find_or_add(z, w1, wy); (* isomorphism rule *)
fi
fi
return w

© JPK 27

Advanced model checking

ROBDD size under ITE

The size of the -ROBDD for ITE(g, fi, f2) is bounded by N, - Ny, - Ny,
where N denotes the size of the -ROBDD for f

for some ITE-functions optimisations are possible, e.g., f ® g

© JPK

28

Advanced model checking

ROBDD size under ITE

The size of the ©-ROBDD for ITE(g, fi1, f2) is bounded by N, - Ny, - Ny,
where Ny denotes the size of the -ROBDD for f

Problem: for multiple paths from (u, v1, v2) to (u’, v, v5)
multiple invocations of ITE(u', v}, v}) occur.

= Store triples (u, vy, v2) for which ITE already has been computed

© JPK 29

Advanced model checking

Efficiency improvement by memoization

if there is an entry for (u, v, v, w) in the computed table then
return node w
else
if u is terminal then
if val(u) = 1 then w := v, else w := v fi

else
z := min{var(u), var(vi), var(vs)};
wy = ITE(u|,=1, v1|2=1, V2|2=1);
wo = ITE(u|.=0, v1]2=0, V2|2=0);

if wyg = w; then w := w; else w := find_or_add(z, w1, wy) fi;
insert (u, vi, va, w) in the computed table;
return node w
fi
fi

The number of recursive calls for the nodes u, v, v9 equals the -ROBDD size
of ITE(fu, foqs fvz), which is bounded by N, - Ny - No,

© JPK 30

Advanced model checking

Some experimental results

e Traffic alert and collision avoidance system (TCAS) (1998)

— 277 boolean variables, reachable state space is about 9.610°° states
— |B| = 124, 618 vertices (about 7.1 MB), construction time 46.6 sec
— checking VO (p — q) takes 290 sec and 717,000 BDD vertices

e Synchronous pipeline circuit (1992)

— pipeline with 12 bits: reachable state space of 1.510% states
— checking safety property takes about 10* — 10° sec

— |B_;| is linear in data path width

— verification of 32 bits (about 10'?" states): 1h 25m

— using partitioned transition relations

© JPK 31

Advanced model checking

Compositionality and ROBDDs

© JPK

32

Advanced model checking

Some other types of BDDs
e Zero-suppressed BDDs

— like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted

e Parity BDDs

— like ROBDDs, but non-terminals may be labeled with &; no canonical form

e Edge-valued BDDs

e Multi-terminal BDDs (or: algebraic BDDs)

— like ROBDDs, but terminals have values in R, or N, etc.

e Binary moment diagrams (BMD)

— generalization of ROBDD to linear functions over bool, int and real
— uses edge weights

© JPK 33

Advanced model checking

Further reading

R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986

R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
H.R. Andersen: Introduction to BDDs, Tech Rep, 1994

K. McMillan: Symbolic model checking, 1992

Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)

© JPK 34

