Symbolic Model Checking with ROBDDs

Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 14, 2016

Symbolic representation of transition systems

- let $TS = (S, \rightarrow, I, AP, L)$ be a "large" finite transition system
 - the set of actions is irrelevant here and has been omitted, i.e., $\rightarrow \subseteq S \times S$
- For $n \ge \lceil \log |S| \rceil$, let injective function $enc: S \to \{0, 1\}^n$
 - note: $enc(S) = \{0, 1\}^n$ is no restriction, as all elements $\{0, 1\}^n \setminus enc(S)$ can be treated as the encoding of pseudo states that are unreachable
- Identify the states $s \in S = enc^{-1}(\{0,1\}^n)$ with $enc(s) \in \{0,1\}^n$
- And $T \subseteq S$ by its characteristic function $\chi_T : \{0, 1\}^n \to \{0, 1\}$
 - that is $\chi_T(\mathit{enc}(s)) = 1$ if and only if $s \in T$
- And $\rightarrow \subseteq S \times S$ by the Boolean function $\Delta : \{0, 1\}^{2n} \rightarrow \{0, 1\}$
 - such that $\Delta \left(\textit{enc}(s), \textit{enc}(s') \right) = 1$ if and only if $s \to s'$

Switching functions

- Let $Var = \{z_1, \ldots, z_m\}$ be a finite set of Boolean variables
- An evaluation is a function η : $Var \rightarrow \{0, 1\}$
 - let $Eval(z_1, \ldots, z_m)$ denote the set of evaluations for z_1, \ldots, z_m
 - shorthand $[z_1 = b_1, ..., z_m = b_m]$ for $\eta(z_1) = b_1, ..., \eta(z_m) = b_m$
- $f : Eval(Var) \rightarrow \{0, 1\}$ is a *switching function* for $Var = \{z_1, \dots, z_m\}$
- Logical operations and quantification are defined by:

$$f_1(\cdot) \wedge f_2(\cdot) = \min\{f_1(\cdot), f_2(\cdot)\}$$

$$f_1(\cdot) \vee f_2(\cdot) = \max\{f_1(\cdot), f_2(\cdot)\}$$

$$\exists z. f(\cdot) = f(\cdot)|_{z=0} \vee f(\cdot)|_{z=1}, \text{ and }$$

$$\forall z. f(\cdot) = f(\cdot)|_{z=0} \wedge f(\cdot)|_{z=1}$$

Ordered Binary Decision Diagram

Let \wp be a variable ordering for *Var* where $z_1 <_{\wp} \ldots <_{\wp} z_m$ An \wp -OBDD is a tuple $\mathfrak{B} = (V, V_I, V_T, succ_0, succ_1, var, val, v_0)$ with

- a finite set V of nodes, partitioned into V_I (inner) and V_T (terminals)
 - and a distinguished root $v_0 \in V$
- successor functions $succ_0$, $succ_1 : V_I \to V$
 - such that each node $v \in V \setminus \{v_0\}$ has at least one predecessor
- labeling functions var: $V_I \rightarrow Var$ and val: $V_T \rightarrow \{0, 1\}$ satisfying

$$v \in V_I \land w \in \{ \mathit{succ}_0(v), \mathit{succ}_1(v) \} \cap V_I \Rightarrow \mathit{var}(v) <_{\wp} \mathit{var}(w)$$

Reduced OBDDs

A \wp -OBDD \mathfrak{B} is *reduced* if for every pair (v, w) of nodes in \mathfrak{B} : $v \neq w$ implies $f_v \neq f_w$

\Rightarrow in \wp -ROBDDs any \wp -consistent cofactor is represented by exactly one node

Reducing OBDDs

- Generate an OBDD (or BDT) for a switching function, then reduce
 - by means of a recursive descent over the OBDD
- Elimination of duplicate leafs
 - for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them
- Elimination of "don't care" (non-leaf) vertices
 - if $succ_0(v) = succ_1(v) = w$, delete v and redirect all its incoming edges to w
- Elimination of isomorphic sub-trees
 - if $v \neq w$ are roots of isomorphic sub-trees, remove w and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

Variable ordering

- ROBDDs are canonical for a fixed variable ordering
 - the size of the ROBDD crucially depends on the variable ordering
 - # nodes in ROBDD \mathfrak{B} = # of \wp -consistent co-factors of f
- Some switching functions have linear and exponential ROBDDs
 - e.g., the addition function, or the stable function
- Some switching functions only have polynomial ROBDDs
 - this holds, e.g., for symmetric functions (see next)
 - examples $f(\ldots) = x_1 \oplus \ldots \oplus x_n$, or $f(\ldots) = 1$ iff $\ge k$ variables x_i are true
- Some switching functions only have exponential ROBDDs
 - this holds, e.g., for the middle bit of the multiplication function

The ROBDD of $f_{stab}(\overline{x}, \overline{y}) = (x_1 \leftrightarrow y_1) \land \ldots \land (x_n \leftrightarrow y_n)$

has $3 \cdot 2^n - 1$ vertices under ordering $x_1 < \ldots < x_n < y_1 < \ldots < y_n$

The function stable with linear ROBDD

The ROBDD of $f_{stab}(\overline{x},\overline{y}) = (x_1 \leftrightarrow y_1) \land \ldots \land (x_n \leftrightarrow y_n)$

has $3 \cdot n + 2$ vertices under ordering $x_1 < y_1 < \ldots < x_n < y_n$

Another function with an exponential ROBDD

ROBDD for $f_3(\overline{z}, \overline{y}) = (z_1 \wedge y_1) \vee (z_2 \wedge y_2) \vee (z_3 \wedge y_3)$ for the variable ordering $z_1 < z_2 < z_3 < y_1 < y_2 < y_3$

And an optimal linear ROBDD

- ROBDD for $f_3(\cdot) = (z_1 \wedge y_1) \vee (z_2 \wedge y_2) \vee (z_3 \wedge y_3)$
- for ordering $z_1 < y_1 < z_2 < y_2 < z_3 < y_3$
- as all variables are essential for *f*, this ROBDD is optimal
- that is, for no variable ordering a smaller ROBDD exists

Symmetric functions

 $f \in Eval(z_1, \ldots, z_m)$ is symmetric if and only if

$$f([z_1 = b_1, \dots, z_m = b_m]) = f([z_1 = b_{i_1}, \dots, z_m = b_{i_m}])$$

for each permutation (i_1, \ldots, i_m) of $(1, \ldots, m)$

E.g.: $z_1 \lor z_2 \lor \ldots \lor z_m$, $z_1 \land z_2 \land \ldots \land z_m$, the parity function, and the majority function

If f is a symmetric function with m essential variables, then for each variable ordering \wp the \wp -ROBDD has size $\mathcal{O}(m^2)$

The even parity function

 $f_{even}(x_1, \ldots, x_n) = 1$ iff the number of variables x_i with value 1 is even

truth table or propositional formula for f_{even} has exponential size but an ROBDD of linear size is possible

The multiplication function

- Consider two *n*-bit integers
 - let $b_{n-1}b_{n-2}\ldots b_0$ and $c_{n-1}c_{n-2}\ldots c_0$
 - where b_{n-1} is the most significant bit, and b_0 the least significant bit
- Multiplication yields a 2n-bit integer
 - the ROBDD $\mathfrak{B}_{f_{n-1}}$ has at least 1.09^n vertices
 - where f_{n-1} denotes the (n-1)-st output bit of the multiplication

Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine \wp such that the ROBDD has minimal size?
 - to check whether a variable ordering is optimal is NP-hard
 - polynomial reduction from the 3SAT problem [Bollig & Wegener, 1996]
- There are many switching functions with large ROBDDs
 - for almost all switching functions the minimal size is in $\Omega(\frac{2^n}{n})$
- How to deal with this problem in practice?
 - guess a variable ordering in advance
 - rearrange the variable ordering during the ROBDD manipulations
 - not necessary to test all n! orderings, best known algorithm in $\mathcal{O}(3^n \cdot n^2)$

Variable swapping

Sifting algorithm

[Rudell, 1993]

Dynamic variable ordering using variable swapping:

- 1. Select a variable x_i in OBDD at hand
- 2. Successively swap x_i to determine $size(\mathfrak{B})$ at any position for x_i
- 3. Shift x_i to position for which $size(\mathfrak{B})$ is minimal
- 4. Go back to the first step until no improvement is made
- Characteristics:
 - a variable may change position several times during a single sifting iteration
 - often yields a local optimum, but works well in practice

Interleaved variable ordering

- Which variable ordering to use for transition relations?
- The interleaved variable ordering:
 - for encodings x_1, \ldots, x_n and y_1, \ldots, y_n of state s and t respectively:

 $x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n$

- This variable ordering yields compact ROBDDs for binary relations
 - for transition relation with $z_1 \dots z_m$ be the encoding of action α , take:

$$\underbrace{z_1 < z_2 < \ldots < z_m}_{\text{encoding of } \alpha} < \underbrace{x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n}_{\text{interleaved order of states}}$$

Symbolic model checking

- Take a symbolic representation of a transition system (Δ and χ_B)
- Backward reachability $Pre^*(B) = \{ s \in S \mid s \models \exists \Diamond B \}$
- Initially: $f_0 = \chi_B$ characterizes the set $T_0 = B$
- Then, successively compute the functions $f_{j+1} = \chi_{T_{j+1}}$ for:

$$T_{j+1} = T_j \cup \{s \in S \mid \exists s' \in S. \ s' \in \textit{Post}(s) \land s' \in T_j \}$$

• Second set is given by: $\exists \overline{x}' . (\underbrace{\Delta(\overline{x}, \overline{x}')}_{s' \in \textit{Post}(s)} \land \underbrace{f_j(\overline{x}')}_{s' \in T_j})$

- $f_j(\overline{x}')$ arises from f_j by renaming the variables x_i into their primed copies x'_i

Symbolic computation of $Sat(\exists (C \cup B))$

$$\begin{split} f_0(\overline{x}) &:= \chi_B(\overline{x});\\ j &:= 0;\\ \textbf{repeat}\\ f_{j+1}(\overline{x}) &:= f_j(\overline{x}) \lor \left(\chi_C(\overline{x}) \land \exists \overline{x}'. \left(\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}') \right) \right);\\ j &:= j + 1\\ \textbf{until } f_j(\overline{x}) &= f_{j-1}(\overline{x});\\ \textbf{return } f_j(\overline{x}). \end{split}$$

Symbolic computation of $Sat(\exists \Box B)$

Compute the largest set $T \subseteq B$ with $Post(t) \cap T \neq \emptyset$ for all $t \in T$

Take
$$T_0 = B$$
 and $T_{j+1} = T_j \cap \{s \in S \mid \exists s' \in S. s' \in \textit{Post}(s) \land s' \in T_j \}$

Symbolically this amounts to:

$$f_{0}(\overline{x}) := \chi_{B}(\overline{x});$$

$$j := 0;$$
repeat
$$f_{j+1}(\overline{x}) := f_{j}(\overline{x}) \land \exists \overline{x}'. (\Delta(\overline{x}, \overline{x}') \land f_{j}(\overline{x}'));$$

$$j := j + 1$$
until $f_{j}(\overline{x}) = f_{j-1}(\overline{x});$
return $f_{j}(\overline{x}).$

Symbolic model checkers mostly use ROBDDs to represent switching functions

Synthesis of ROBDDs

- Construct a \wp -ROBDD for $f_1 \text{ op } f_2$ given \wp -ROBDDs for f_1 and f_2
 - where op is a Boolean connective such as disjunction, implication, etc.
- Idea: use a single ROBDD with (global) variable ordering \wp to represent several switching functions
- This yields a shared OBDD, which is:

a combination of several ROBDDs with variable ordering \wp by sharing nodes for common \wp -consistent cofactors

• The size of \wp -SOBDD $\overline{\mathfrak{B}}$ for functions f_1, \ldots, f_k is at most $N_{f_1} + \ldots + N_{f_k}$ where N_f denotes the size of the \wp -ROBDD for f

Shared OBDDs

A shared p-OBDD is an OBDD with multiple roots

Main underlying idea: combine several OBDDs with same variable ordering such that common p-consistent co-factors are shared

Using shared OBDDs for model checking Φ

Use a single SOBDD for:

- $\Delta(\overline{x}, \overline{x}')$ for the transition relation
- $f_a(\overline{x})$, $a \in AP$, for the satisfaction sets of the atomic propositions
- The satisfaction sets $\textit{Sat}(\Psi)$ for every state sub-formula Ψ of Φ

In practice, often the interleaved variable order for Δ is used.

Synthesizing shared ROBDDs

Relies on the use of two tables

- The unique table
 - keeps track of ROBDD nodes that already have been created
 - table entry $\langle var(v), succ_1(v), succ_0(v) \rangle$ for each inner node v
 - main operation: *find_or_add*(z, v_1, v_0) with $v_1 \neq v_0$
 - * return v if there exists a node $v = \langle z, v_1, v_0 \rangle$ in the ROBDD
 - * if not, create a new *z*-node v with $succ_0(v) = v_0$ and $succ_1(v) = v_1$
 - implemented using hash functions (expected access time is $\mathcal{O}(1)$)
- The computed table
 - keeps track of tuples for which ITE has been executed (memoization)
 - \Rightarrow realizes a kind of dynamic programming

ITE normal form

The ITE (if-then-else) operator: $ITE(g, f_1, f_2) = (g \wedge f_1) \vee (\neg g \wedge f_2)$

The ITE operator and the representation of the SOBDD nodes in the unique table:

$$f_v = ITE(z, f_{succ_1(v)}, f_{succ_0(v)})$$

Then:

$$\neg f = ITE(f, 0, 1)$$

$$f_1 \lor f_2 = ITE(f_1, 1, f_2)$$

$$f_1 \land f_2 = ITE(f_1, f_2, 0)$$

$$f_1 \oplus f_2 = ITE(f_1, \neg f_2, f_2) = ITE(f_1, ITE(f_2, 0, 1), f_2)$$

If g, f_1, f_2 are switching functions for Var, $z \in$ Var and $b \in \{0, 1\}$, then $ITE(g, f_1, f_2)|_{z=b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$

ITE-operator on shared OBDDs

- A node in a \wp -SOBDD for representing $ITE(g, f_1, f_2)$ is a node w with $info\langle z, w_1, w_0 \rangle$ where:
 - z is the minimal (wrt. \wp) essential variable of $ITE(g, f_1, f_2)$
 - w_b is an SOBDD-node with $f_{w_b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$
- This suggests a recursive algorithm:
 - determine z
 - recursively compute the nodes for ITE for the cofactors of g, f_1 and f_2

$$\begin{array}{ll} \textit{ITE}(u,v_1,v_2) \text{ on shared OBDDs (initial version)} \\ \text{if } \textit{u} \text{ is terminal then} \\ \text{if } \textit{val}(u) = 1 \text{ then} \\ \textit{w} := v_1 & (*\textit{ITE}(1,f_{v_1},f_{v_2}) = f_{v_1} *) \\ \text{else} & (*\textit{ITE}(0,f_{v_1},f_{v_2}) = f_{v_2} *) \\ \text{fi} \\ \text{else} & (*\textit{ITE}(0,f_{v_1},f_{v_2}) = f_{v_2} *) \\ \textit{fi} \\ \text{else} & (*\textit{minimal essential variable } *) \\ \textit{w}_1 := \textit{ITE}(u|_{z=1},v_1|_{z=1},v_2|_{z=1}); \\ \textit{w}_0 := \textit{ITE}(u|_{z=0},v_1|_{z=0},v_2|_{z=0}); \\ \text{if } \textit{w}_0 = \textit{w}_1 \text{ then} \\ \textit{w} := \textit{w}_1; & (*\textit{elimination rule } *) \\ \text{else} & (*\textit{isomorphism rule } *) \\ \textit{fi} \\ \text{fi} \end{array}$$

 $\operatorname{return} w$

ROBDD size under ITE

The size of the $\wp\text{-ROBDD}$ for $\textit{ITE}(g,f_1,f_2)$ is bounded by $N_g\cdot N_{f_1}\cdot N_{f_2}$ where N_f denotes the size of the $\wp\text{-ROBDD}$ for f

for some ITE-functions optimisations are possible, e.g., $f\oplus g$

ROBDD size under ITE

The size of the \wp -ROBDD for $\mathit{ITE}(g, f_1, f_2)$ is bounded by $N_g \cdot N_{f_1} \cdot N_{f_2}$ where N_f denotes the size of the \wp -ROBDD for f

Problem: for multiple paths from (u, v_1, v_2) to (u', v'_1, v'_2)

multiple invocations of $ITE(u', v'_1, v'_2)$ occur.

 \Rightarrow Store triples (u, v_1, v_2) for which ITE already has been computed

Efficiency improvement by memoization

if there is an entry for (u, v_1, v_2, w) in the computed table then return node w

else

```
if u is terminal then

if val(u) = 1 then w := v_1 else w := v_2 fi

else

z := \min\{var(u), var(v_1), var(v_2)\};

w_1 := ITE(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1});

w_0 := ITE(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0});

if w_0 = w_1 then w := w_1 else w := find\_or\_add(z, w_1, w_0) fi;

insert (u, v_1, v_2, w) in the computed table;

return node w

fi
```

The number of recursive calls for the nodes u, v_1, v_2 equals the \wp -ROBDD size

of $ITE(f_u, f_{v_1}, f_{v_2})$, which is bounded by $N_u \cdot N_{v_1} \cdot N_{v_2}$

Some experimental results

- Traffic alert and collision avoidance system (TCAS) (1998)
 - 277 boolean variables, reachable state space is about 9.610^{56} states
 - |B| = 124,618 vertices (about 7.1 MB), construction time 46.6 sec
 - checking $\forall \Box \; (p \rightarrow q)$ takes 290 sec and 717,000 BDD vertices
- Synchronous pipeline circuit (1992)
 - pipeline with 12 bits: reachable state space of 1.510^{29} states
 - checking safety property takes about $10^4 10^5$ sec
 - $|B_{\rightarrow}|$ is linear in data path width
 - verification of 32 bits (about 10^{120} states): 1h 25m
 - using partitioned transition relations

Compositionality and ROBDDs

Some other types of BDDs

- Zero-suppressed BDDs
 - like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted
- Parity BDDs
 - like ROBDDs, but non-terminals may be labeled with \oplus ; no canonical form
- Edge-valued BDDs
- Multi-terminal BDDs (or: algebraic BDDs)
 - like ROBDDs, but terminals have values in $\mathbb R,$ or $\mathbb N,$ etc.
- Binary moment diagrams (BMD)
 - generalization of ROBDD to linear functions over bool, int and real
 - uses edge weights

Further reading

- R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986
- R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
- M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
- H.R. Andersen: Introduction to BDDs, Tech Rep, 1994
- K. McMillan: Symbolic model checking, 1992
- Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)