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Introduction

Summary of previous lecture

What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

» State residence times are geometrically distributed.
» Alternative: a DTMC D is a tuple (S, P, tin, AP, L) with:

» state space S
> transition probability function P
» initial distribution ¢;,;

What are transient probabilities?

» OP(s) is the probability to be in state s after n steps.
» These transient probabilities satisfy: @? = - P
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Introduction

Aim of this lecture

How to determine reachability probabilities?

Three major steps

1. What are reachability probabilities? | mean, precisely.

This requires a bit of measure theory. Sorry for that.
2. Reachability probabilities = unique solution of linear equation system.
3. Bounded reachability probabilities = transient probabilities?.

lin a slightly modified DTMC.
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Introduction

Recall Knuth’s die

Heads = “go left”; tails = “go right”. Does this DTMC model a six-sided die?
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Reachability Events

Paths

State graph

The state graph of DTMC D is a digraph G = (V/, E) with V the states of
D, and (s,s’) € E iff P(s,s’) > 0.

Let Pre(s) be the predecessors of s, Pre*(s) its reflexive and transitive
closure.
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Reachability Events

Paths

State graph

The state graph of DTMC D is a digraph G = (V/, E) with V the states of
D, and (s,s’) € E iff P(s,s’) > 0.

Let Pre(s) be the predecessors of s, Pre*(s) its reflexive and transitive
closure.

Paths in D are infinite paths in its state graph.
Paths(D) denotes the set of paths in D, and Paths*(D) its finite prefixes.
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Or “reach-avoid” properties where states in F C S are forbidden:
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More events of interest

Repeated reachability

Repeatedly visit a state in G; formally:

O0G = {m € Paths(D) |VieN.3j > i.n[j]e G}
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More events of interest

Repeated reachability

Repeatedly visit a state in G; formally:

O0G = {m € Paths(D) |VieN.3j > i.n[j]e G}

Persistence

Eventually reach in a state in G and always stay there; formally:

O0G = {m € Paths(D) | Ji e N.Vj > i.7w[j] € G}
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A Measurable Space on Infinite Paths

Recall: Measurable space

Sample space

A sample space Q of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.
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Recall: Measurable space

Sample space

A sample space Q of a chance experiment is a set of elements that have a 1-to-1
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o-algebra

A o-algebra is a pair (2, F) with Q # @ and F C 29 a collection of subsets of
sample space Q such that:

1. Qe F
2. Ae F = Q—-—AeF

complement

countable union
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Recall: Measurable space

Sample space

A sample space Q of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.

A o-algebra is a pair (2, F) with Q # @ and F C 29 a collection of subsets of
sample space Q such that:

1. Qe F
2. Ae F = Q—-AceF complement
3. (Viz0. A eF) = UsoA€EF countable union

The elements in F of a o-algebra (€2, F) are called events.
The pair (2, F) is called a measurable space.

Let Q be a set. F = {@,Q} yields the smallest o-algebra; F = 29 yields the
largest one.
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A Measurable Space on Infinite Paths

What'’s the probability of infinite paths?
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Probability space

Probability space

A probability space P is a structure (2, F, Pr) with:
» (Q,F) is a o-algebra, and
» Pr:F —[0,1] is a probability measure, i.e.:
1. Pr(Q) =1, i.e, Qis the certain event

& (U Af) =3 PrA) forany A € F with AN A = & for i#j

iel iel
The events in F of a probability space (2, F, Pr) are called measurable.
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Paths and probabilities

|
To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.
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A Measurable Space on Infinite Paths

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:

» Outcomes := set of all infinite paths starting in s.

> Events := subsets of these outcomes.
» These events are defined using cylinder sets.

» Cylinder set of a finite path := set of all its infinite continuations.
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path & = sp sy ...s, € Paths*(D) is defined by:

Cyl(7) = {m € Paths(D) | # is a prefix of 7 }
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Cyl(7) = {m € Paths(D) | # is a prefix of 7 }

The cylinder set spanned by finite path 7 thus consists of all infinite paths
that have prefix 7.
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path & = sp sy ...s, € Paths*(D) is defined by:
Cyl(7) = {m € Paths(D) | # is a prefix of 7 }
The cylinder set spanned by finite path 7 thus consists of all infinite paths

that have prefix 7.

Probability space of a DTMC

The set of events of the probability space DTMC D contains all cylinder
sets Cyl(7) where 7 ranges over all finite paths in D.
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path & = sy s1...s, € Paths*(D) is defined by:

Cyl(7) = {m € Paths(D) | # is a prefix of 7 }

Probability measure

Pr is the unique probability measure defined by:

Pr(Cyl(so . ..sn)) = timi(S0) - P(s051-..5n)
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path # = sp s ...s, € Paths*(D) is defined by:

Cyl(7) = {m € Paths(D) | # is a prefix of 7 }

Probability measure

Pr is the unique probability measure defined by:
Pr(Cyl(so . ..sn)) = timi(S0) - P(s051-..5n)
where P(sgsi...sp) = [I P(si,si+1) for n >0 and P(sp) = tinie(S0)-

0<i<n
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Proof for G

Which event does ¢ G exactly mean?
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the union of all cylinders Cyl(sp . . . s,) where
So...Sp is a finite path in D with sp,...,s,1 ¢ G and s, € G, i.e.,

O0G = U Cyl(so - .-sn)

50...s,€ Paths™ (D)n(S\G)* G

Thus OG is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

PHOG) = > Pr(Cyl(so . . . sn))

50...s,€ Paths™ (D)N(S\G)* G

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/38



A Measurable Space on Infinite Paths

Proof for G

Which event does ¢ G exactly mean?
the union of all cylinders Cyl(sp . . . s,) where
So...Sp is a finite path in D with sp,...,s,1 ¢ G and s, € G, i.e.,

O0G = U Cyl(so - .-sn)

50...s,€ Paths™ (D)n(S\G)* G

Thus OG is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:
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A Measurable Space on Infinite Paths

Proof for G

Which event does ¢ G exactly mean?
the union of all cylinders Cyl(sp . . . s,) where
So...Sp is a finite path in D with sp,...,s,1 ¢ G and s, € G, i.e.,

O0G = U Cyl(so - .-sn)

50...s,€ Paths™ (D)n(S\G)* G

Thus OG is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

POG) = Z Pr(Cyl(so ... sn))
50...sn€ Paths™ (D)n(S\G)* G
= Z Linit(so) : P(So - S,,)

s0...s,€ Paths” (D)N(S\G)*G

A similar proof strategy applies to the case FU G.
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Reachability probabilities: Knuth’s die

» Consider the event (4

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

> This yields:
P(5052S54) + P($0525652S54) + ...

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4
> Using the previous theorem we obtain:
02 o, 8} PO4)= > P(s...sn)
50-..5n€(S\4*)4

> This yields:
P(5052S54) + P($0525652S54) + ...

{init}

» Or: ZP(5052(5552)k554)
k=0
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

> This yields:
P(5052S54) + P($0525652S54) + ...

{init}

» Or: ZP(5052(5552)k554)

k=0

1 < 1.«
> or g3 (3)

5 20
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Reachability probabilities: Knuth’s die

» Consider the event (4
> Using the previous theorem we obtain:
02 o, 8} PO4)= > P(s...sn)
50-..5n€(S\4*)4

> This yields:
P(5052S54) + P($0525652S54) + ...

{init}

» Or: ZP(5052(5552)k554)

k=0
1 o, 1.«
> Or: —- -
5 2(3)
k=0
» Geometric series 1 1 L4 !
ri ries: —- = —= = —
81—% 8 3 6
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

> This yields:
P(5052S54) + P($0525652S54) + ...

{init}

» Or: ZP(5052(5552)k554)

k=0

1 < 1.«
» Or: —- ()

5 20

> G tri .1 4
eometric series: — ——— = —.—
81— % 83

There is however an simpler way to obtain reachability probabilities!
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Reachability Probabilities as Linear Equation Solution

Overview

@ Reachability Probabilities as Linear Equation Solution
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.
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Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs(0G)
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities in finite DTMCs
Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s
» if G is not reachable from s, then x; =0
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s

» if G is not reachable from s, then x; = 0
» if se G then x; =1
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s

» if G is not reachable from s, then x; = 0
» if se G then x; =1

» For any state s € Pre"(G) \ G:
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s

» if G is not reachable from s, then x; = 0
» if se G then x; =1

» For any state s € Pre"(G) \ G:

Xs = Z P(s,t) - xx + Z P(s, u)

teS\G ueG
%,_/
reach Gviat € S\ G reach G in one step
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Reachability probabilities: Knuth’s die

» Consider the event (4

{init}
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
obtain:

1
.D x1=x=x3=x5=xs=0and x, =1

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
obtain:

1
.D x1=x=x3=x5=xs=0and x, =1

Xey = Xs3 = X5, = 0

{init}
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

x1=x=x3=x5=xs=0and x, =1

{init} Xsp = Xs3 = Xsp = 0

_ 1 1
Xsy = 5Xs5 T 5Xs,

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems



Reachability Probabilities as Linear Equation Solution

Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

1
.D x1=x=x3=x5=xs=0and x, =1

{init} Xsp = Xs3 = Xsp = 0
_ 1 1
Xsy = 5Xs5 T 5Xs,

1 1
XSQ - EXS5 + §X56
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

x1=x=x3=x5=xs=0and x, =1

{init} Xsp = Xs3 = Xsp = 0
_ 1 1

Xsy = 5Xs5 T 5Xs,
1 1

XSQ - EXS5 + §X56

_ 1 1
Xss = 5X5 + 5Xa
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

1
.D x1=x=x3=x5=xs=0and x, =1

Xs; = X,

., =Xs, =0

{init}
Xsy = %Xsl + %XSQ
Xsy = %Xs5 + %xsﬁ
Xsg = %X5 + %x4

1 1
Xsg = 5Xs, + 5X6
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we

05 obtain:
1
.D x1=x=x3=x5=xs=0and x, =1
{init} Xsp = Xs3 = Xsp = 0

Xsy = %Xsl + %XSQ
Xs, = %ng, + %Xsr,
Xsg = %X5 + %x4
Xsg = %x52 + %X(;

> Gaussian elimination yields:
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Linear equation system

Reachability probabilities as linear equation system
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Linear equation system

Reachability probabilities as linear equation system

> Let S; = Pre"(G) \ G, the states that can reach G by > 0 steps

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/38



Linear equation system

Reachability probabilities as linear equation system

> Let S; = Pre"(G) \ G, the states that can reach G by > 0 steps

» A = (P(s,t) the transition probabilities in S;

s, teSy’
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Linear equation system

Reachability probabilities as linear equation system

» Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps
- A= (P(s,1))

» b = (bs)

tes,” the transition probabilities in S,

the probs to reach G in 1 step, i.e., bs = Z P(s, u)
ueG

SES;’
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Linear equation system

Reachability probabilities as linear equation system

» Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps
» A = (P(s,t)), s, the transition probabilities in S

» b = (bs)se&' the probs to reach G in 1 step, i.e., bs = Z P(s, u)
' ueG
Then: x = (xs)ses, with xs = Pr(s = 0G) is the unique solution of:
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Reachability Probabilities as Linear Equation Solution

Linear equation system

Reachability probabilities as linear equation system

» Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps
~ A= (P(s,1)

» b = (bs)

tes,” the transition probabilities in S,

the probs to reach G in 1 step, i.e., bs = Z P(s, u)
ueG
Then: x = (xs)ses, with xs = Pr(s = 0G) is the unique solution of:

SES;’

x=Ax+b o (I-A)x =b

where | is the identity matrix of cardinality |S7| x |Se|.
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Reachability probabilities: Knuth’s die

» Consider the event (4

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

.D] > S; ={5,5,55, %}

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

.D] > S; ={5,5,55, %}

, 1 - 0 o0 X
{init} 2 0
1 0 1 —% —% Xs,
0 O 1 0 Xss
0 -2 0 1 Xss
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Reachability probabilities: Knuth’s die

» Consider the event (4

.D] > S; ={5,5,55, %}

1
{init} L =3 01 01 X0 0
1 0 1 -3 -3 Xsp _ 0
0 O 1 0 Xss %
0 -2 0 1 Xs5 0
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Reachability probabilities: Knuth’s die

» Consider the event (4

.D] > S; ={5,5,55, %}

1
{init} l- 2 01 O1 o 0
0 1 -3 -3 Xsp _ 0
0 O 1 0 Xss %
0 -2 0 1 Xs5 0
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Constrained reachability probabilities

Problem statement
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Constrained reachability probabilities

Problem statement

Let D be a DTMC with finite state space S, s€ S and F,G C S.
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Reachability Probabilities as Linear Equation Solution

Constrained reachability probabilities

Problem statement

Let D be a DTMC with finite state space S, s€ S and F,G C S.

Aim: Pr(s = FUG) = Prs(FUG) = Pr{m € Paths(s) |t = FUG}

where Prs is the probability measure in D with single initial state s.
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Reachability Probabilities as Linear Equation Solution

Constrained reachability probabilities

Problem statement

Let D be a DTMC with finite state space S, s € Sand F, G C S.

Aim: Pr(s = FUG) = Prs(FUG) = Pry{m € Paths(s) |7 = FUG}

where Prs is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

» Let variable xs = Pr(s = F U G) for any state s
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Reachability Probabilities as Linear Equation Solution

Constrained reachability probabilities

Problem statement
Let D be a DTMC with finite state space S, s € Sand F, G C S.

Aim: Pr(s = FUG) = Prs(FUG) = Pry{m € Paths(s) |7 = FUG}

where Prs is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

» Let variable xs = Pr(s = F U G) for any state s
» if G is not reachable from s via F, then x; =0
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Reachability Probabilities as Linear Equation Solution

Constrained reachability probabilities

Problem statement
Let D be a DTMC with finite state space S, s € Sand F, G C S.

Aim: Pr(s = FUG) = Prs(FUG) = Pry{m € Paths(s) |7 = FUG}

where Prs is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

» Let variable xs = Pr(s = F U G) for any state s
» if G is not reachable from s via F, then x; =0
» if s€ G then x; =1
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Reachability Probabilities as Linear Equation Solution

Constrained reachability probabilities

Problem statement
Let D be a DTMC with finite state space S, s € Sand F, G C S.

Aim: Pr(s = FUG) = Prs(FUG) = Pry{m € Paths(s) |7 = FUG}

where Prs is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

» Let variable xs = Pr(s = F U G) for any state s
» if G is not reachable from s via F, then x; =0
» if s€ G then x; =1

» For any state s € (Pre*(G) N F) \ G:
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Reachability Probabilities as Linear Equation Solution

Constrained reachability probabilities
Let D be a DTMC with finite state space S, s € Sand F, G C S.
Aim: Pr(s = FUG) = Prs(FUG) = Pry{m € Paths(s) |7 = FUG}

where Prs is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

» Let variable xs = Pr(s = F U G) for any state s
» if G is not reachable from s via F, then x; =0
» if s€ G then x; =1

» For any state s € (Pre*(G) N F) \ G:
S = Z P(s, t)-x + ZP(S, u)

teS\G ueG
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Reachability Probabilities as Linear Equation Solution

|
In the previous characterisation we basically set:

| 4 S:]_ — G
> S = {seS|P{FUG)=0}
> S = S\ (S—0US)
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Reachability Probabilities as Linear Equation Solution

|
In the previous characterisation we basically set:

| 4 S:]_ — G
> S = {seS|P{FUG)=0}
> S = S\ (S—0US)

In fact any partition of S satisfying the following constraints will do:
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Reachability Probabilities as Linear Equation Solution

|
In the previous characterisation we basically set:

» S5, =G
» S o ={seS|P(FUG)=0}
» S5 =S \ (5:0 @] 5:1)
In fact any partition of S satisfying the following constraints will do:
» GCS_1C{seS|P(FUG)=1}
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Reachability Probabilities as Linear Equation Solution

|
In the previous characterisation we basically set:

» S5, =G
» S o ={seS|P(FUG)=0}
> S = S\ (S—0US)
In fact any partition of S satisfying the following constraints will do:
» GCS_1C{seS|P(FUG)=1}
» F\GCScC{seS|P(FUG)=0}
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Reachability Probabilities as Linear Equation Solution

|
In the previous characterisation we basically set:

» S5, =G
» S o ={seS|P(FUG)=0}
> S = S\ (S—0US)
In fact any partition of S satisfying the following constraints will do:
» GCS_1C{seS|P(FUG)=1}
» F\GCScC{seS|P(FUG)=0}
» S = S\ (S-0US.)
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Reachability Probabilities as Linear Equation Solution

|
In the previous characterisation we basically set:

» S5, =G
» S o ={seS|P(FUG)=0}
> S = S\ (S—0US)
In fact any partition of S satisfying the following constraints will do:
» GCS_1C{seS|P(FUG)=1}
» F\GCScC{seS|P(FUG)=0}
» S = S\ (S-0US.)

In practice, S—o and S_; should be chosen as large as possible, as then S is of
minimal size, and the smallest linear equation system needs to be solved.
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Reachability Probabilities as Linear Equation Solution

In the previous characterisation we basically set:
» S5, =G
» S o ={seS|P(FUG)=0}
> S = S\ (S—0US)
In fact any partition of S satisfying the following constraints will do:
» GCS_1C{seS|P(FUG)=1}
» F\GCScC{seS|P(FUG)=0}
» S = S\ (S-0US.)

In practice, S—o and S_; should be chosen as large as possible, as then S is of
minimal size, and the smallest linear equation system needs to be solved.

Thus S9 = {s€S|P(FUG)=0}and Sy = {s€S|P(FUG)=1}.

These sets can easily be determined in linear time by a graph analysis.
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Iteratively computing reachability probabilities

The vector x = (Pr(s EFU G)) cs is the unique solution of:
s€S

y = Ay+b

with A and b as defined before.
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Iteratively computing reachability probabilities

The vector x = (Pr(s EFU G)) cs is the unique solution of:
s€S

y = Ay+b

with A and b as defined before.

Furthermore, let:
X(O) =0 and x(i+1) = A-X(i) +b for 0 <.

Then:
1. x(N(s) = P(s=FUS"G) forse S,
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Iteratively computing reachability probabilities

The vector x = (Pr(s EFU G)) cs is the unique solution of:
s€S
= Ay+b

with A and b as defined before.

Furthermore, let:
x® =0 and xUt) = Ax() £ bfor0<

Then:
"(s) = Ps= FUS"G) forse S,
2. x(0) < x(1) < x () <...<x
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Iteratively computing reachability probabilities

The vector x = (Pr(s EFU G)) cs is the unique solution of:
s€S;
= Ay+b

with A and b as defined before.

Furthermore, let:

x©@ =0 and xU™D = Ax{) £bfor0<

Then:
"(s) = Ps= FUS"G) forse S,
2. x(0) < x(1) < x () <...<x

3. x=lim,_s x(m
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Iteratively computing reachability probabilities

The vector x = (Pr(s EFU G))ses? is the unique solution of:
= Ay+b
with A and b as defined before.
Furthermore, let:
x@ =0 and x(t) = Ax() 4 b for 0 €

Then:
"(s) = Ps= FUS"G) forse S,
2. x(0) < x(1) < x () <...<x
3. x=lim,_s x(m
where F U S"G contains those paths that reach G via F within n steps.
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Reachability Probabilities as Linear Equation Solution
Remark

Iterative algorithms to compute x
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Reachability Probabilities as Linear Equation Solution

Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.
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Reachability Probabilities as Linear Equation Solution

Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.

Then:
1. x((s) = Pr(sl=0S"G) forse S
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Reachability Probabilities as Linear Equation Solution

Remark
Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.

Then:
1. x((s) = Pr(sl=0S"G) forse S
2. x(0) < x(1) < x() <...<xand x= Iim,Hoox(”)
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Reachability Probabilities as Linear Equation Solution

Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.

Then:
1. x((s) = Pr(sl=0S"G) forse S
2. x(0) < x(1) < x() <...<xand x= Iim,Hoox(”)

The Power method computes vectors x(o), x(l), x(2), ... and aborts if:

max |x{m) — x| < ¢ for some small tolerance &
s€S>?

This technique guarantees convergence.
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Reachability Probabilities as Linear Equation Solution

Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.

Then:
1. x((s) = Pr(sl=0S"G) forse S
2. x(0) < x(1) < x() <... < xand x = limp—so x(m)
The Power method computes vectors x(o), x(l), x(2), ... and aborts if:

max |x{m) — x| < ¢ for some small tolerance &
s€S>?

This technique guarantees convergence.

Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).
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Reachability Probabilities as Linear Equation Solution

Example: Knuth’s die

> Let G={1,2,3,4,56}
> Then Pr(sp =0G) =1

» And Pr(sy = OSKG)
for k € IN is given by:

{init}

1.00 —

°
N
]

Probability
)
“n
S

25 5.0 75 10.0 125 15.0

ification of Probabilistic Systems
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Recall: transient probability distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.
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Reachability Probabilities as Linear Equation Solution

Recall: transient probability distribution

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

melt -P"(s, t) =

seS
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Reachability Probabilities as Linear Equation Solution

Recall: transient probability distribution

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

ZL,M -P"(s, t) =

seS
The function ©F is the transient state distribution at epoch n of D.

When considering ©F as vector (©P),cs we have:

P = ,w-P-P-....P = 4, -P".

n times

Computation: @ = Ly and @,,H = OP.P for n > 0.
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Reachability probabilities vs. transient probabilities
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Reachability probabilities vs. transient probabilities

Compute Pr(QS"G) in DTMC D.
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Reachability probabilities vs. transient probabilities

Compute Pr(0S"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important.
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Reachability probabilities vs. transient probabilities
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then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, t;c, AP, L) and G C S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/38
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities vs. transient probabilities

Compute Pr(0S"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (5,P, tyni, AP, L) and G C S. The DTMC
D[G] = (S, Pg, i, AP, L) with Pg(s, t) = P(s, t) if s ¢ G and
Ps(s,s)=1ifse G.

All outgoing transitions of s € G are replaced by a single self-loop at s.
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then the remaining behaviour along 7 is not important. This suggests to
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Let DTMC D = (5,P, tyni, AP, L) and G C S. The DTMC
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Reachability probabilities vs. transient probabilities

Compute Pr(0S"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (5,P, tyni, AP, L) and G C S. The DTMC

D[G] = (S, Pg, i, AP, L) with Pg(s, t) = P(s, t) if s ¢ G and
Ps(s,s)=1ifse G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma

Pr(OgnG) = Pr(O:nG) = linit ° P% =
——— —_——— ——
reachability in D reachability in D[G] in D[G]

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/38



Reachability probabilities vs. transient probabilities
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Let DTMC D = (5,P, tyni, AP, L) and G C S. The DTMC

D[G] = (S, Pg, i, AP, L) with Pg(s, t) = P(s, t) if s ¢ G and
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Constrained reachabilities vs. transient probabilities
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Constrained reachabilities vs. transient probabilities

Compute Pr(F US" G) in DTMC D.
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Constrained reachabilities vs. transient probabilities

Compute Pr(FUS" G) in DTMC D. Observe (as before) that once a path

7 reaches G via F, then the remaining behaviour along 7 is not important.
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Reachability Probabilities as Linear Equation Solution

Constrained reachabilities vs. transient probabilities

Compute Pr(FUS" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining

behaviour along 7 is not important.
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Constrained reachabilities vs. transient probabilities

Am
Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining
behaviour along 7 is not important. This suggests to make all states in G
and F \ G absorbing.

Lemma

P(FUS"G) =

~————
reachability in D
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Constrained reachabilities vs. transient probabilities

Am
Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining
behaviour along 7 is not important. This suggests to make all states in G
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Constrained reachabilities vs. transient probabilities

Am
Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining
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Lemma
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Reachability Probabilities as Linear Equation Solution

Spare time tonight? Play Craps!

PaysDo_uhlc 3 4 9 10 11 Pa}'s/lll!lﬂl]e
(2) Field (12)
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Reachability Probabilities as Linear Equation Solution
Craps

» Roll two dice and bet
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Reachability Probabilities as Linear Equation Solution
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» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
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Reachability Probabilities as Linear Equation Solution
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» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
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» any other outcome: roll again (outcome is “point”)
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Reachability Probabilities as Linear Equation Solution
Craps

RAPS GAMBIy, -

» Roll two dice and bet &

» Come-out roll (“pass line"” wager):
» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
» outcome 7: lose (“seven-out™)
» outcome the point: win
> any other outcome: roll again
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Reachability Probabilities as Linear Equation Solution

A DTMC model of Craps

» Come-out roll:
» 7 or 11: win
» 2,3, 0r12:
lose
> else: roll
again

» Next roll(s):
> 7: lose
> point: win
> else: roll
again
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Reachability Probabilities as Linear Equation Solution

A DTMC model of Craps

» Come-out roll:
» 7 or 11: win
» 2,3, 0r12:
lose
> else: roll
again

» Next roll(s):
> 7: lose
> point: win
> else: roll
again

What is the probability to win the Craps game?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/38



Reachability Probabilities as Linear Equation Solution
Summary

|
How to determine reachability probabilities?
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1. Probabilities of sets of infinite paths defined using cylinders.
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Reachability Probabilities as Linear Equation Solution
Summary

|
How to determine reachability probabilities?

|
1. Probabilities of sets of infinite paths defined using cylinders.
2. Events ¢ G, 00 G and F U G are measurable.

3. Reachability probabilities = unique solution of linear equation system.
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Reachability Probabilities as Linear Equation Solution
Summary

|
How to determine reachability probabilities?

|
. Probabilities of sets of infinite paths defined using cylinders.
. Events {0 G, 00 G and FU G are measurable.

1
2
3. Reachability probabilities = unique solution of linear equation system.
4. Bounded reachabilities = transient probabilities in a modified DTMC.
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