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Introduction

Summary of previous lecture

What are Markov chains?

I A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

I State residence times are geometrically distributed.
I Alternative: a DTMC D is a tuple (S,P, ιinit,AP, L) with:

I state space S
I transition probability function P
I initial distribution ιinit

What are transient probabilities?

I ΘDn (s) is the probability to be in state s after n steps.
I These transient probabilities satisfy: ΘDn = ιinit · Pn.
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Introduction

Aim of this lecture

How to determine reachability probabilities?

Three major steps

1. What are reachability probabilities? I mean, precisely.
This requires a bit of measure theory. Sorry for that.

2. Reachability probabilities = unique solution of linear equation system.
3. Bounded reachability probabilities = transient probabilities1.

1in a slightly modified DTMC.
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Introduction

Recall Knuth’s die

Heads = “go left”; tails = “go right”.

Does this DTMC model a six-sided die?
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Reachability Events

Overview

1 Introduction

2 Reachability Events

3 A Measurable Space on Infinite Paths

4 Reachability Probabilities as Linear Equation Solution
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Reachability Events

Paths

State graph
The state graph of DTMC D is a digraph G = (V ,E ) with V the states of
D, and (s, s ′) ∈ E iff P(s, s ′) > 0.
Let Pre(s) be the predecessors of s, Pre∗(s) its reflexive and transitive
closure.

Paths
Paths in D are infinite paths in its state graph.
Paths(D) denotes the set of paths in D, and Paths∗(D) its finite prefixes.
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Reachability Events

Some events of interest
Let DTMC D with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G ⊆ S. Formally:

♦G = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G }

Invariance, i.e., always stay in state in G :

�G = {π ∈ Paths(D) | ∀i ∈ N. π[i ] ∈ G } = ♦G .

Constrained reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UG = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G ∧ ∀j < i . π[j] 6∈ F }
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Reachability Events

More events of interest

Repeated reachability
Repeatedly visit a state in G ; formally:

�♦G = {π ∈ Paths(D) | ∀i ∈ N.∃j > i . π[j] ∈ G }

Persistence
Eventually reach in a state in G and always stay there; formally:

♦�G = {π ∈ Paths(D) | ∃i ∈ N.∀j > i . π[j] ∈ G }
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A Measurable Space on Infinite Paths

Overview

1 Introduction

2 Reachability Events

3 A Measurable Space on Infinite Paths

4 Reachability Probabilities as Linear Equation Solution

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/38



A Measurable Space on Infinite Paths

Recall: Measurable space
Sample space
A sample space Ω of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.

σ-algebra
A σ-algebra is a pair (Ω,F) with Ω 6= ∅ and F ⊆ 2Ω a collection of subsets of
sample space Ω such that:

1. Ω ∈ F

2. A ∈ F ⇒ Ω− A ∈ F complement

3. (∀i > 0. Ai ∈ F) ⇒
⋃

i>0 Ai ∈ F countable union

The elements in F of a σ-algebra (Ω,F) are called events.
The pair (Ω,F) is called a measurable space.

Let Ω be a set. F = {∅, Ω } yields the smallest σ-algebra; F = 2Ω yields the
largest one.
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A Measurable Space on Infinite Paths

What’s the probability of infinite paths?
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A Measurable Space on Infinite Paths

Probability space

Probability space
A probability space P is a structure (Ω,F ,Pr) with:

I (Ω,F) is a σ-algebra, and
I Pr : F → [0, 1] is a probability measure, i.e.:

1. Pr(Ω) = 1, i.e., Ω is the certain event

2. Pr
(⋃

i∈I
Ai

)
=
∑
i∈I

Pr(Ai ) for any Ai ∈ F with Ai ∩ Aj = ∅ for i 6=j

The events in F of a probability space (Ω,F ,Pr) are called measurable.
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The events in F of a probability space (Ω,F ,Pr) are called measurable.
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Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:
I Outcomes := set of all infinite paths starting in s.

I Events := subsets of these outcomes.

I These events are defined using cylinder sets.

I Cylinder set of a finite path := set of all its infinite continuations.
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A Measurable Space on Infinite Paths

Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}

The cylinder set spanned by finite path π̂ thus consists of all infinite paths
that have prefix π̂.

Probability space of a DTMC
The set of events of the probability space DTMC D contains all cylinder
sets Cyl(π̂) where π̂ ranges over all finite paths in D.
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}

Probability measure
Pr is the unique probability measure defined by:

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 s1 . . . sn)

where P(s0 s1 . . . sn) =
∏

06i<n
P(si , si+1) for n > 0 and P(s0) = ιinit(s0).
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A Measurable Space on Infinite Paths

Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event has to be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that �G = ♦G and ♦�G = �♦G .
It remains to prove the measurability for the remaining three cases.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/38



A Measurable Space on Infinite Paths

Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event has to be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that �G = ♦G and ♦�G = �♦G .
It remains to prove the measurability for the remaining three cases.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/38



A Measurable Space on Infinite Paths

Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event has to be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that �G = ♦G and ♦�G = �♦G .
It remains to prove the measurability for the remaining three cases.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/38



A Measurable Space on Infinite Paths

Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event has to be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that �G = ♦G and ♦�G = �♦G .

It remains to prove the measurability for the remaining three cases.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/38



A Measurable Space on Infinite Paths

Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event has to be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that �G = ♦G and ♦�G = �♦G .
It remains to prove the measurability for the remaining three cases.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/38



A Measurable Space on Infinite Paths

Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event has to be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that �G = ♦G and ♦�G = �♦G .
It remains to prove the measurability for the remaining three cases.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/38



A Measurable Space on Infinite Paths

Proof for ♦G
Which event does ♦G exactly mean?

the union of all cylinders Cyl(s0 . . . sn) where

s0 . . . sn is a finite path in D with s0, . . . , sn−1 /∈ G and sn ∈ G , i.e.,

♦G =
⋃

s0...sn∈Paths∗(D)∩(S\G)∗G

Cyl(s0 . . . sn)

Thus ♦G is measurable.
As all cylinder sets are pairwise disjoint, its probability is defined by:

Pr(♦G) =
∑

s0...sn∈Paths∗(D)∩(S\G)∗G

Pr
(
Cyl(s0 . . . sn)

)
=

∑
s0...sn∈Paths∗(D)∩(S\G)∗G

ιinit(s0) · P(s0 . . . sn)

A similar proof strategy applies to the case F UG .
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A Measurable Space on Infinite Paths

Proof for �♦G
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A Measurable Space on Infinite Paths

Reachability probabilities: Knuth’s die

I Consider the event ♦4

I Using the previous theorem we obtain:

Pr(♦4) =
∑

s0...sn∈(S\4∗)4

P(s0 . . . sn)

I This yields:
P(s0s2s54) + P(s0s2s6s2s54) + . . . . . .

I Or:
∞∑

k=0
P(s0s2(s6s2)ks54)

I Or: 1
8 ·

∞∑
k=0

(1
4
)k

I Geometric series: 1
8 ·

1
1− 1

4
= 1

8 ·
4
3 = 1

6
There is however an simpler way to obtain reachability probabilities!
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Reachability Probabilities as Linear Equation Solution
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities in finite DTMCs
Problem statement
Let D be a DTMC with finite state space S, s ∈ S and G ⊆ S.

Aim: determine Pr(s |= ♦G) = Prs(♦G) = Prs{π ∈ Paths(s) | π ∈ ♦G }
where Prs is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

I Let variable xs = Pr(s |= ♦G) for any state s
I if G is not reachable from s, then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ Pre∗(G) \ G :

xs =
∑

t∈S\G
P(s, t) · xt

︸ ︷︷ ︸
reach G via t ∈ S \ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities: Knuth’s die

I Consider the event ♦4

I Using the previous characterisation we
obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 = 1
2xs1 + 1

2xs2

xs2 = 1
2xs5 + 1

2xs6

xs5 = 1
2x5 + 1

2x4
xs6 = 1

2xs2 + 1
2x6

I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Reachability Probabilities as Linear Equation Solution

Linear equation system

Reachability probabilities as linear equation system

I Let S? = Pre∗(G) \ G , the states that can reach G by > 0 steps
I A =

(
P(s, t)

)
s,t∈S?

, the transition probabilities in S?

I b =
(
bs
)

s∈S?
, the probs to reach G in 1 step, i.e., bs =

∑
u∈G

P(s, u)

Then: x = (xs)s∈S? with xs = Pr(s |= ♦G) is the unique solution of:

x = A·x + b or (I− A)·x = b

where I is the identity matrix of cardinality |S?| × |S?|.
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities: Knuth’s die

I Consider the event ♦4

I S? = { s0, s2, s5, s6 } 1 − 1
2 0 0

0 1 − 1
2 − 1

2
0 0 1 0
0 − 1

2 0 1

·
 xs0

xs2
xs5
xs6

 =

 0
0
1
2
0


I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Reachability Probabilities as Linear Equation Solution

Constrained reachability probabilities
Problem statement

Let D be a DTMC with finite state space S, s ∈ S and F ,G ⊆ S.
Aim: Pr(s |= F UG) = Prs(F UG) = Prs{π ∈ Paths(s) | π |= F UG }
where Prs is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

I Let variable xs = Pr(s |= F UG) for any state s
I if G is not reachable from s via F , then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ (Pre∗(G) ∩ F ) \ G :

xs =
∑

t∈S\G
P(s, t) · xt +

∑
u∈G

P(s, u)
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Reachability Probabilities as Linear Equation Solution

In the previous characterisation we basically set:
I S=1 = G
I S=0 = { s ∈ S | Pr(F UG) = 0 }
I S? = S \ (S=0 ∪ S=1)

In fact any partition of S satisfying the following constraints will do:
I G ⊆ S=1 ⊆ { s ∈ S | Pr(F UG) = 1 }
I F \ G ⊆ S=0 ⊆ { s ∈ S | Pr(F UG) = 0 }
I S? = S \ (S=0 ∪ S=1)

In practice, S=0 and S=1 should be chosen as large as possible, as then S? is of
minimal size, and the smallest linear equation system needs to be solved.
Thus S=0 = { s ∈ S | Pr(F UG) = 0 } and S=1 = { s ∈ S | Pr(F UG) = 1 }.

These sets can easily be determined in linear time by a graph analysis.
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Reachability Probabilities as Linear Equation Solution

Iteratively computing reachability probabilities
Theorem
The vector x =

(
Pr(s |= F UG)

)
s∈S?

is the unique solution of:

y = A·y + b

with A and b as defined before.

Furthermore, let:

x(0) = 0 and x(i+1) = A·x(i) + b for 0 6 i .

Then:
1. x(n)(s) = Pr(s |= F U6n G) for s ∈ S?

2. x(0) 6 x(1) 6 x(2) 6 . . . 6 x
3. x = limn→∞ x(n)

where F U6nG contains those paths that reach G via F within n steps.
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Reachability Probabilities as Linear Equation Solution

Proof
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Reachability Probabilities as Linear Equation Solution

Remark
Iterative algorithms to compute x

There are various algorithms to compute x = limn→∞ x(n) where:

x(0) = 0 and x(i+1) = A·x(i) + b for 0 6 i .

Then:
1. x(n)(s) = Pr(s |= ♦6n G) for s ∈ S?

2. x(0) 6 x(1) 6 x(2) 6 . . . 6 x and x = limn→∞ x(n)

The Power method computes vectors x(0), x(1), x(2), . . . and aborts if:

max
s∈S?
| x (n+1)

s − x (n)
s | < ε for some small tolerance ε

This technique guarantees convergence.
Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).
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Reachability Probabilities as Linear Equation Solution

Example: Knuth’s die

I Let G = { 1, 2, 3, 4, 5, 6 }
I Then Pr(s0 |= ♦G) = 1
I And Pr(s0 |= ♦6kG)

for k ∈ IN is given by:
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Reachability Probabilities as Linear Equation Solution

Recall: transient probability distribution
Transient distribution
Pn(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

ΘDn (t) =
∑
s∈S

ιinit(s) · Pn(s, t) =

The function ΘDn is the transient state distribution at epoch n of D.
When considering ΘDn as vector (ΘDn )t∈S we have:

ΘDn = ιinit · P · P · . . . · P︸ ︷︷ ︸
n times

= ιinit · Pn.

Computation: ΘD0 = ιinit and ΘDn+1 = ΘDn ·P for n > 0.
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Reachability Probabilities as Linear Equation Solution

Reachability probabilities vs. transient probabilities
Aim

Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC
D[G ] = (S,PG , ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and
PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n
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Reachability Probabilities as Linear Equation Solution

Spare time tonight? Play Craps!
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Reachability Probabilities as Linear Equation Solution

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/38



Reachability Probabilities as Linear Equation Solution

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win

I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/38



Reachability Probabilities as Linear Equation Solution

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)

I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/38



Reachability Probabilities as Linear Equation Solution

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/38



Reachability Probabilities as Linear Equation Solution

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:

I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/38



Reachability Probabilities as Linear Equation Solution

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)

I outcome the point: win
I any other outcome: roll again

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/38



Reachability Probabilities as Linear Equation Solution

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win

I any other outcome: roll again

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/38



Reachability Probabilities as Linear Equation Solution

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/38



Reachability Probabilities as Linear Equation Solution

A DTMC model of Craps

I Come-out roll:
I 7 or 11: win
I 2, 3, or 12:

lose
I else: roll

again

I Next roll(s):
I 7: lose
I point: win
I else: roll

again

What is the probability to win the Craps game?
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Reachability Probabilities as Linear Equation Solution

Summary

How to determine reachability probabilities?

1. Probabilities of sets of infinite paths defined using cylinders.
2. Events ♦G , �♦G and F UG are measurable.
3. Reachability probabilities = unique solution of linear equation system.
4. Bounded reachabilities = transient probabilities in a modified DTMC.
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