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Theme of the course Overview

@ The Relevance of Probabilities

The theory of modelling and verification

of probabilistic systems
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The Relevance of Probabilities

More than five reasons for probabilities Spa

Randomised Algorithms
Reducing Complexity
Probabilistic Programming
Reliability

Performance

Optimization

No ok -

Systems Biology
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Distributed computing

[Fischer et al., 1985]

FLP impossibility result

In an asynchronous setting, where only one processor might crash, there is no
distributed algorithm that solves the consensus problem—getting a distributed
network of processors to agree on a common value.

Ben-Or’s possibility result [Ben-Or, 1983]

If a process can make a decision based on its internal state, the message
state, and some probabilistic state, consensus in an asynchronous setting is
almost surely possible.

The Relevance of Probabilities

Randomised algorithms: Simulating a die [knuth & Yao,
1976]

Heads = “go left"; tails = “go right”. Does this model a six-sided die?
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Reducing complexity: Matrix multiplication [Freivald,

1977]

Input: three O(N?) square matrices A, B, and C
Output: yes, if Ax B = C; no, otherwise

Deterministic: compute A x B and compare with C
Complexity: in O(N®), best known complexity O(N?37)

1. take a random bit-vector X of size N

2. compute A x (BX) — CX

3. output yes if this yields the null vector; no otherwise
4. repeat these steps k times

Randomised:

Complexity: in O(k-N?), with false positive with probability < 27
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The Relevance of Probabilities The Relevance of Probabilities

Big data analytics Air France flight AF-447

How Statisticians Found Air
France Flight 447 Two Years
After It Crashed Into Atlantic

MIT Technology Review, May 2014 Airbus A-330 flight AF-447
[ gy Review, May 2014} Irbus '8 June 1, 2009
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AF447: Failed search attempts Where is the wreckage?
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[Stone, et al., Statistical Science, 2013]

70,000 km? were searched, up to 4500 m depth
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The Relevance of Probabilities

How statisticians came into the play
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The Relevance of Probabilities

Two posteriors for location wreckage
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Posterior after sonar and UAV search (2010) Posterior pdf assuming pingers of black
assuming pingers black boxes function boxes failed
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The Relevance of Probabilities

The priors
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Fraction of Impact Locations within Distance D of Beginning of Emergency

Reverse drift prior (ocean and wind drift) @

Fraction of impact locations within

distance D of beginning of emergency
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The Relevance of Probabilities

Reliability engineering

NUREG0492

Fault Tree Handbook

U.S. Nuclear Regulatory
Commission
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The Relevance of Probabilities

Reliability: (Dynamic) Fault Trees  [Dugan et ai, 1990]
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The Relevance of Probabilities

Probabilities help

v

When modelling and analysing dependability and reliability

» to quantify arrivals, message loss, waiting times, time between failure, QoS, ...

v

When building protocols for networked embedded systems
» randomized algorithms

v

When problems are undecidable
» repeated reachability of lossy channel systems, ...

v

For obtaining a better performance
» Freivald’s matrix-mulitplication, random Quicksort ...

The Relevance of Probabilities

A fault tree example

Road trip fails

SE e e
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(D)FTs: one of —if not the— most prominent models for risk analysis

The Relevance of Probabilities

What is probabilistic model checking?

requirements @ @

up to 107 states
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Probabilistic models Properties

Nondeterminism Nondeterminism Logic Monitors
no yes

Discrete time || probabilistic | deterministic automata
Discrete time discrete-time Markov decision CTL (safety and LTL)

Markov chain (DTMC) | process (MDP)

Continuous time || probabilistic deterministic
Continuous time CTMC CTMDP timed CTL timed automata
Some other models: probabilistic variants of (priced) timed automata Core problem: computing (timed) reachability probabilities
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Overview Course topics

» measurable spaces, o-algebra, measurable functions
> geometric, exponential and binomial distributions
> Markov and memoryless property

» limiting and stationary distributions

What are probabilistic ?

» discrete-time Markov chains

© Course details

» continuous-time Markov chains
> extensions of these models with rewards
» Markov decision processes (or: probabilistic automata)

> interactive Markov chains
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Course topics Course topics

> reachability probabilities, i.e., G How to make probabilistic models smaller?

> long-run properties

. . » Equivalences and pre-orders
> linear temporal logic

A . . » Which properties are preserved?
» probabilistic computation tree logic

How to check ey How to probabilistic models?

. . : . » parallel composition and hiding
» graph analysis, solving systems of linear equations

N . . > compositional modelling and minimisation
» deterministic Rabin automata, product construction

> linear programming, integral equations

» uniformization, Volterra integral equations
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Course details Course details

Course material Other literature

» H.C. Tijms: A First Course in Stochastic Models. Wiley, 2003.

v

— . H. Hermanns: Interactive Markov Chains: The Quest for Quantified
Ch. 10, Principles of Model Checking Quality. LNCS 2428, Springer-Verlag, 2002.

CHRISTEL BAIER

TU Dresden, Germany » J.-P. Katoen. Model Checking Meets Probability: A Gentle
Introduction. 10S Press, 2013. (see course web-page for download)
JOOST-PIETER KATOEN
RV\'/TH.Aachen S R el » M. Stoelinga. An Introduction to Probabilistic Automata. Bull. of the
Principles of Model Checking University of Twente, the Netherlands ETACS 2002
Christel Baier and Joost-Pieter Katoen ! .
» M. Kwiatkowska et al.. Stochastic Model Checking. LNCS 4486,

Springer-Verlag, 2007.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Course details Course details

Lectures Exercises and exam
» Tue 14:15-15:45 (9U10), Wed 10:15-11:45 (5052) > Wed 14:15 - 15:45 in AH 6 (start: Oct 28)
» Oct 21, 27, 28

> Instructors: Christian Dehnert and Sebastian Junges

» Nov 3, 4, 10, 11, 17, 18, 24, 25
> Dec 2 8 9,15, 16 Weekly exercise series
> January 12, ......
. . > Intended for groups of 2 students
» Check regularly course web page for possible “no shows

> New series: every Wed on course web page (start: Oct 21)

- Solutions: Wed (before 1415) one week lte

> Lecture slides (with gaps) are made available on web page
Exam:

» Copies of the books are available in the CS library
» unknown date (written or oral exam)

> participation if > 40% of all exercise points are gathered

http://moves.rwth-aachen.de/teaching/ws-1516/movepl5/
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Course details Course details

Course embedding Questions?

Aim of the course

It's about the foundations of verifying and modelling probabilistic systems

» Automata and language theory

v

Algorithms and data structures
Probability theory
Introduction to model checking

Some related courses

» Advanced Model Checking (Katoen)
» Modelling and Verification of Hybrid Systems (Abraham)

v

v
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Overview Probability theory is simple, isn’t it?

]
In no other branch of mathematics

is it so easy to make mistakes
as in probability theory

Henk Tijms, “Understanding Probability” (2004)

@ Probability refresher
@ Probability spaces
@ Random variables
@ Stochastic processes
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Measurable space Probabilities

Sample space

A sample space €2 of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.

A o-algebra is a pair (Q, F) with Q # @ and F C 2% a collection of subsets of
sample space €2 such that:

1. Qe F
2. Ae F = Q—-AcF complement
3. (Viz0. A eF) = UsgAeF countable union

The elements in F of a o-algebra (2, F) are called events.
The pair (2, F) is called a measurable space.

|
Let Q be a set. F ={@,Q} yields the smallest o-algebra; F = 22 yields the
largest one.
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Probability refresher

Probability space

Probability space

A probability space P is a structure (2, F, Pr) with:
» (Q,F) is a o-algebra, and
» Pr:F —[0,1] is a probability measure, i.e.:
1. P(2) =1, i.e.,, Qis the certain event

2. Pr (U A,-) = Pr(A;) forany A; € F with A; N A; = @ for ij,

il icl
where { A; }ic; is finite or countably infinite.

The elements in F of a probability space (2, F, Pr) are called measurable

events.
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Probability refresher

Discrete probability space

Discrete probability space

Pris a discrete probability measure on (Q, F) if
> there is a countable set A C Q such that for a € A:

{a}leF and ZPr({a}):l
acA

> e.g., a probability measure on (£, 2%)

(Q, F, Pr) is then called a discrete probability space; otherwise, it is a
continuous probability space.

Example discrete probability space: throwing a die, number of customers in a
shop, ....

Example

Joost-Pieter Katoen
R

Modeling and Verification of Probabilistic Systems
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Probability refresher

Some lemmas

Properties of probabilities

For measurable events A, B and A; and probability measure Pr:
» Pr(A)=1—- Pr(Q— A)

v

PHAU B) = Pr(A) + Pr(B) — P{AN B)

» PHANB) = Pr(A| B) - Pr(B)

> A C B implies Pr(A) < Pr(B)

> Pr(Up>1An) = X ,51 Pr(As)  provided A, are pairwise disjoint
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Probability refresher

Random variable

Measurable function
Let (2, F) and (', ') be measurable spaces. Function f: Q — Q' is a
measurable function if

flA)={a|f(a) cAYcF forall AcF

Random variable

Measurable function X : Q — IR is a random variable.

The probability distribution of X is Prx = Pro X~! where Pris a
probability measure on (2, F).
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Probability refresher

Example: rolling a pair of fair dice
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Probability refresher

Discrete / continuous random variables

Distribution function

The distribution function Fx of random variable X is defined for d € IR by:
Fx(d) = Prx(X € (—o0,d])=Pr({ac Q| X(a)<d})
In the continuous case, Fx is called the cumulative density function.

Distribution function

» For discrete random variable X, Fx can be written as:

Fx(d) =Y Prx(X=dj)
di<d

» For continuous random variable X, Fx can be written as:

d
Fx(d) = / el dln it # e darsiny e

Probability refresher

Distribution function

Distribution function

The distribution function Fx of random variable X is defined by:

Fx(d) = Prx((—oo,d])=Pr({ac Q| X(a)<d}) forreald
{Xx<d}

» Fx is monotonic and right-continuous
» 0 < Fx(d) <1
> Iimd_>_oo Fx(d) =0 and

> Iimd_>oo Fx(d) =1.
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Probability refresher

Expectation and variance

Expectation

The expectation of discrete r.v. X with range I is defined by

E[X] = > xi-Prx(X=x;)

x;i €l
provided that this series converges absolutely, i.e., the sum must remain
finite on replacing all x;'s with their absolute values.

The expectation is the weighted average of all possible values that X can
take on.

Variance

The variance of discrete r.v. X is given by VarlX] = E[X?] — (E[X])?.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems
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Probability refresher

Stochastic process

Stochastic process

A stochastic process is a collection of random variables { X; |t € T }.
» casual notation X(t) instead of X
> with all X; defined on probability space P
» parameter t (mostly interpreted as “time") takes values in the set T

X; is a random variable whose values are called states. The set of all
possible values of X; is the state space of the stochastic process.

Parameter space T

State space Discrete \ Continuous

Discrete # jobs at k-th job departure # jobs at time t

Continuous waiting time of k-th job total service time at time t
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Probability refresher

Bernouilli process

Bernouilli random variable

Random variable X on state space { 0,1} defined by:
P(X=1)=p and P(X=0)=1-p

is a Bernouilli random variable.
The mass function is given by f(k; p) = p*-(1—p)'=* for k € {0,1}.
Expectation E[X] = p; variance Var{X] = E[X?] — (E[X])? = p-(1—p).

Bernouilli process

A Bernouilli process is a sequence of independent and identically
distributed Bernouilli random variables X, Xo, .. ..

Probability refresher

Example stochastic processes

v

Waiting times of customers in a shop

v

Interarrival times of jobs at a production lines

v

Service times of a sequence of jobs

v

Files sizes that are downloaded via the Internet

» Number of occupied channels in a wireless network
> .
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Probability refresher

Binomial process

Binomial process

Let X1, Xo, ... be a Bernouilli process. The binomial process S, is defined
by So =0 and S, = >_7_; Xi. The probability distribution of “counting
process” S, is given by:

P{S,=k}= (Z) pk-(1—p)" % foro<k<n

Moments: E[S,] = n-p and Var]S,] = n-p-(1—p).

Geometric distribution

Let r.v. T; be the number of steps between increments of counting process
S,. Then:

P{Ti=k}=00-p)ftp fork>1

This is a geometric distribution. We have E[T;] = /la and Var[T;] = 1—;}’.

Intuition: Geometric distribution = number of Bernoulli trials needed for one success.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems
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Probability refresher

Probability refresher

Geometric distribution Memoryless property

Geometric distribution

Let X be 3 discrterandom varible,ratural k> 0and 0.<p < 1. The
mass function of a geometric distribution is given by:

1. For any random variable X with a geometric distribution:
Pr{X=k}=(-p) p

P{X =k+m|X>m} = P{X =k} forany me T ,k>1
We have E[X] = % and Var[X] = 1?_’—’ and cdf PH{ X < k} =1— (1-p)~.

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically
distributed.

Geometric distributions and their cdf’s

On the black board.
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Probability refresher

Joint distribution function

Joint distribution function

The joint distribution function of stochastic process X = { X; |t € T } is
given for n, t1,...,t, € T and dy,...,d, by:

Fx(dl, e, dn; t1,..., t,,) = Pr{X(tl) < d1, A ,X(t,,) < d,,}
The shape of Fx depends on the stochastic dependency between X(t;).

Stochastic independence

Random variables X; on probability space P are independent if:

Fx(dl,...,dn;tl,...,tn) = HFx(d;;t,') = HPF{X(t,')gd;}.
i=1 i=1

A renewal process is a discrete-time stochastic process where X(t1), X(t2), ... are
independent, identically distributed, non-negative random variables.
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