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Recap: Fixed-Point Theory

Partial Orders

Definition (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example

1. (N,≤) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2N,⊆) is a (non-total) partial order
4. (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and v denotes prefix

ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v )
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Recap: Fixed-Point Theory

Upper and Lower Bounds

Definition ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T ).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T ).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T ).

Example

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty
2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T
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Recap: Fixed-Point Theory

Complete Lattices

Definition (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB
2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice
3. (2N,⊆) is a complete lattice
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Recap: Fixed-Point Theory

Application to HML with Recursion

Lemma

Let (S,Act,−→) be an LTS. Then (2S,⊆) is a complete lattice with
•
⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

•
d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

• ⊥ =
⊔
∅ =

d
2S = ∅

• > =
d
∅ =

⊔
2S = S

Proof.

omitted
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Recap: Fixed-Point Theory

Monotonicity of Functions

Definition (Monotonicity)

Let (D,v) and (D′,v′) be partial orders. A function f : D → D′ is called monotonic
(w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example

1. f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2. f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3. Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is monotonic w.r.t. (2N,⊆)
and (N,≤).

4. f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).
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Recap: Fixed-Point Theory

The Fixed-Point Theorem

Alfred Tarski (1901–1983)

Theorem (Tarski’s fixed-point theorem)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a least fixed
point fix(f ) and a greatest fixed point FIX(f ) given by

fix(f ) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f )

FIX(f ) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f )

Proof.

on the board
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Recap: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Theorem (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f ) = {0} for m = 2
• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)

=⇒ FIX(f ) = {0, 1} for M = 1
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Recap: Fixed-Point Theory

Application to HML with Recursion

Lemma

Let (S,Act,−→) be an LTS and F ∈ HMF X . Then
1. JFK : 2S → 2S is monotonic w.r.t. (2S,⊆)
2. fix(JFK) =

⋂
{T ⊆ S | JFK(T ) ⊆ T}

3. FIX(JFK) =
⋃
{T ⊆ S | T ⊆ JFK(T )}

If, in addition, S is finite, then
4. fix(JFK) = JFKm(∅) for some m ∈ N
5. FIX(JFK) = JFKM(S) for some M ∈ N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 5.7 and Theorem 5.12
3. by Lemma 5.7 and Theorem 5.12
4. by Lemma 5.7 and Theorem 5.14
5. by Lemma 5.7 and Theorem 5.14
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Applying the Fixed-Point Theorem for Finite Lattices

Outline of Lecture 6

Recap: Fixed-Point Theory
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Applying the Fixed-Point Theorem for Finite Lattices

Applying the Fixed-Point Theorem for Finite Lattices

Example 6.1

s

s1 s2 t1

t
a

a

b

b

a

b

Let S := {s, s1, s2, t, t1}.

1. Solution of X max
= 〈b〉tt ∧ [b]X : on the board

2. Solution of Y min
= 〈b〉tt ∨ 〈{a, b}〉Y : on the board
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Largest Fixed Points and Invariants
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Largest Fixed Points and Invariants

Largest Fixed Points and Invariants

• Remember (Example 4.7):
– Invariant: Inv(F) ≡ X for F ∈ HMF and X

max
= F ∧ [Act]X

– s |= Inv(F) if all states reachable from s satisfy F

• Now: formalize argument and prove its correctness (for arbitrary LTSs)
• Let inv : 2S → 2S : T 7→ JFK ∩ [·Act ·]T be the corresponding semantic function
• By Theorem 5.12, FIX(inv) =

⋃
{T ⊆ S | T ⊆ inv(T )}

• Direct formulation of invariance property:

Inv = {s ∈ S | ∀w ∈ Act∗, s′ ∈ S : s w−→ s′ =⇒ s′ ∈ JFK}

Theorem 6.2

For every LTS (S,Act,−→), Inv = FIX(inv) holds.

Proof.

on the board
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Mutually Recursive Equational Systems

Introducing Several Variables

Sometimes useful: using more than one variable

Example 6.3

“It is always the case that a process can perform an a-labelled transition leading
to a state where b-transitions can be executed forever.”

can be specified by

Inv(〈a〉Forever(b))

where
Inv(F)

max
= F ∧ [Act]F (cf. Theorem 6.2)

Forever(b)
max
= 〈b〉Forever(b)
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Mutually Recursive Equational Systems

Syntax of Mutually Recursive Equational Systems

Definition 6.4 (Syntax of mutually recursive equational systems)

Let X = {X1, . . . ,Xn} be a set of variables. The set HMFX of Hennessy-Milner
formulae over X is defined by the following syntax:

F ::= Xi (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where 1 ≤ i ≤ n and α ∈ Act . A mutually recursive equational system has the form

(Xi = FXi | 1 ≤ i ≤ n)

where FXi ∈ HMFX for every 1 ≤ i ≤ n.
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems I

As before: semantics of formula depends on states satisfying the variables

Definition 6.5 (Semantics of mutually recursive equational systems)

Let (S,Act,−→) be an LTS and E = (Xi = FXi | 1 ≤ i ≤ n) a mutually recursive
equational system. The semantics of E , JEK : (2S)n → (2S)n, is defined by

JEK(T1, . . . , Tn) := (JFX1K(T1, . . . , Tn), . . . , JFXnK(T1, . . . , Tn))

where
JXiK(T1, . . . , Tn) := Ti

JttK(T1, . . . , Tn) := S
JffK(T1, . . . , Tn) := ∅

JF1 ∧ F2K(T1, . . . , Tn) := JF1K(T1, . . . , Tn) ∩ JF2K(T1, . . . , Tn)
JF1 ∨ F2K(T1, . . . , Tn) := JF1K(T1, . . . , Tn) ∪ JF2K(T1, . . . , Tn)

J〈α〉FK(T1, . . . , Tn) := 〈·α·〉(JFK(T1, . . . , Tn))
J[α]FK(T1, . . . , Tn) := [·α·](JFK(T1, . . . , Tn))
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems II

Lemma 6.6

Let (S,Act,−→) be a finite LTS and E = (Xi = FXi | 1 ≤ i ≤ n) a mutually
recursive equational system. Let (D,v) be given by D := (2S)n and

(T1, . . . , Tn) v (T ′1, . . . , T
′
n)

iff Ti ⊆ T ′i for every 1 ≤ i ≤ n.

1. (D,v) is a complete lattice with⊔
{(T i

1, . . . ,T
i
n) | i ∈ I} =

(⋃
{T i

1 | i ∈ I}, . . . ,
⋃
{T i

n | i ∈ I}
)

d
{(T i

1, . . . ,T
i
n) | i ∈ I} =

(⋂
{T i

1 | i ∈ I}, . . . ,
⋂
{T i

n | i ∈ I}
)

2. JEK is monotonic w.r.t. (D,v)

3. fix(JEK) = JEKm(∅, . . . , ∅) for some m ∈ N
4. FIX(JEK) = JEKM(S, . . . ,S) for some M ∈ N

Proof.

omitted
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