Concurrency Theory WS 2015/2016

— Series 9 —

Hand in until January 25th before the exercise class.

Exercise 1 (Branching Bisimulation)

(2 + 1 + 1 Points)

A binary relation \mathcal{R} over the set of states of an LTS is a *branching bisimulation* if and only if it is symmetric and, whenever $P \mathcal{R} Q$ holds and $\alpha \in Act$ (including τ): if $P \xrightarrow{\alpha} P'$ then either $\alpha = \tau$ and $P' \mathcal{R} Q$ or there is a $k \geq 0$ and a sequence of transitions

$$Q = Q_0 \xrightarrow{\tau} Q_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} Q_k \xrightarrow{\alpha} Q'$$

such that $P \mathcal{R} Q_j$ holds for each $j \in \{0, \ldots, k\}$ and $P' \mathcal{R} Q'$.

Two states P and Q are *branching bisimilar* if and only if there is a branching bisimulation \mathcal{R} such that $P \mathcal{R} Q$. The largest branching bisimulation is called *branching bisimilarity*.

- 1. Show that branching bisimilarity is contained in weak bisimilarity.
- 2. Prove or disprove: If P and Q are branching bisimilar then P and Q are weakly bisimilar.
- 3. Prove or disprove: If P and Q are weakly bisimilar then P and Q are branching bisimilar.

Exercise 2 (τ -Laws)

Let \approx_{BB} denote the branching bisimilarly as introduced in the first exercise. Prove or disprove for $P, Q \in Prc$ and $\alpha \in Act$:

- 1. $\alpha.\tau.P \approx_{BB} \alpha.P.$
- 2. $P + \tau P \approx_{BB} \tau P$.
- 3. $\alpha . (P + \tau . Q) \approx_{BB} \alpha . (P + \tau . Q) + \alpha . Q.$

Exercise 3 (Characteristic HML Formula)

Consider the LTS provided below. Provide an HML formula F for each pair of states $s \neq s'$ such that $s \models F$ and $s' \not\models F$.

(3 Points)

(3 Points)