
2
Concurrency Theory WS 2013/2014

Chair for Software Modeling and Verification

Rheinisch-Westfälische Technische Hochschule Aachen

Prof. Dr. Ir. Joost-Pieter Katoen

apl. Prof. Dr. Thomas Noll

S. Chakraborty, B. Kaminski, H. Wu

Concurrency Theory WS 2013/2014

— 1st Exam —

First Name:

Second Name:

Matriculation Number:

Degree Programme (please mark):

◦ CS Bachelor
◦ CS Master
◦ CS Lehramt
◦ SSE Master
◦ Other:

General Information:

• Mark every sheet with your matriculation number.

• Check that your copy of the exam consists of 14 sheets (28 pages).

• Duration of exam: 120 minutes.

• No helping materials (e.g. books, notes, slides) are permitted.

• Give your solution on the respective sheet. Also use the backside if necessary. If
you need more paper, ask the assistants.

• Write with blue or black ink; do not use a pencil or red ink.

• Make sure all electronic devices are switched off and are nowhere near you.

• Any attempt at deception leads to failure for this exam, even if it is detected only
later.

Σ Points Points obtained
Task 1 16
Task 2 21
Task 3 28
Task 4 21
Task 5 23
Task 6 11

Σ 120

Matriculation Number:

Task 1 (Modelling with CCS) (10 + 6 Points)

The task is to model a car’s central locking system, which has following three components:

• a door can be either open or closed, if it is closed and locked, it cannot be opened.

• a locker for the door which can only be activated if the door is closed, otherwise it
will trigger an alarm;

• a key (has one button) which controls the locker (activate or deactivate).

(a) Give a CCS process for the system, which should be functionally correct and
deadlock–free!

2

Matriculation Number:

3

Matriculation Number:

(b) Give a partial LTS of your CCS definition which illustrates that the user first closes
the door, and then presses the button to lock the door! Additionally argue why the
user immediately afterwards cannot open the door!

4

Matriculation Number:

5

Matriculation Number:

Task 2 (Labeled Transition Systems) (15 + 6 + 6 Points)

(a) Consider the following CCS process definition:

A = (B ‖ C) \ {com}
B = D + E

D = com.B

E = a.com.B

C = com.C + b.nil

Derive all legal outgoing transitions A
α−→ A′ by giving their derivation tree!

(act)
a.com.B

a−→ com.B
(call)

E
a−→ com.B

(sum2)
D + E

a−→ com.B
(call)

B
a−→ com.B

(par1)
B ‖ C a−→ com.B ‖ C

(res)
(B ‖ C) \ {com} a−→ (com.B ‖ C) \ {com}

(call)
A

a−→ (com.B ‖ C) \ {com}

(act)
b.nil

b−→ nil
(sum2)

com.C + b.nil
b−→ nil

(call)
C

b−→ nil
(par2)

B ‖ C b−→ B ‖ nil
(res)

(B ‖ C) \ {com} b−→ (B ‖ nil) \ {com}
(call)

A
b−→ (B ‖ nil) \ {com}

(act)
com.B

com−→ B
(call)

D
com−→ B

(sum1)
D + E

com−→ B
(call)

B
com−→ B

(act)
com.C

com−→ C
(sum1)

com.C + b.nil
com−→ C

(call)
C

com−→ C
(com)

B ‖ C τ−→ B ‖ C
(res)

(B ‖ C) \ {com} τ−→ (B ‖ C) \ {com}
(call)

A
τ−→ (B ‖ C) \ {com}

6

Matriculation Number:

7

Matriculation Number:

(b) Reconsider the CCS process definition from Task 2 (a):

A = (B ‖ C) \ {com}
B = D + E

D = com.B

E = a.com.B

C = com.C + b.nil

Draw LTS(A) and label the nodes with the corresponding CCS processes!

A

(com.B ‖ C) \ {com} (B ‖ nil) \ {com}

(B ‖ C) \ {com} (com.B ‖ nil) \ {com}

τ

b

τ a
b

b

τ

a

a

8

Matriculation Number:

(c) Give the trace language Tr(A) of A!

Pref
(
a(ττ ∗a)∗(b+ τba) + τba+ ba

)
= ε+ a+ a(ττ ∗ + ττ ∗a)∗(ε+ b+ τ + τb+ τba) + (ε+ τ)(b+ ba)

9

Matriculation Number:

Task 3 (HML and Bisimulation) (15 + 7 Points)

Consider the following three CCS processes A, D and I.

A = a.E + a.b.C + b.C D = a.E + a.F + b.(G+H) I = a.J + b.K

B = b.C + a.b.C E = a.F + b.H J = a.L+ b.K

C = c.A F = b.G K = c.(I + L)

G = c.D L = b.M

H = c.E M = c.I

(a) Draw the LTS for A, D and I, respectively! Prove or disprove: A ∼ D, A ∼ I and
D ∼ I.

For proving or disproving that two processes are strongly bisimilar, you may use the
game characterization of bisimilarity. For disproving you may alternatively provide
an HML formula which is satisfied by only one of two processes.

10

Matriculation Number:

11

Matriculation Number:

(b) Express the property that action b will eventually occur after any occurrence of
action a in HML, and check whether D satisfies this property or not!

12

Matriculation Number:

13

Matriculation Number:

Task 4 (Preservation of Strong Bisimilarity) (6+15 Points)

(a) Let ◦ be a CCS operator with the following semantics:

(comp)
P [nil 7→ Q]

α−→ P ′

P ◦Q α−→ P ′
,

where P [nil 7→ Q] is the process P in which every occurrence of nil is replaced by
Q.

Prove or disprove: ◦ preserves strong bisimilarity, i.e. for any processes S, T and R
with S ∼ T it holds that both S ◦R ∼ T ◦R and R ◦ S ∼ R ◦ T .

◦ does not preserve strong bisimilarity. For that consider the two processes S =
nil ‖ a.nil and T = a.nil . These two processes are clearly bisimilar. Now consider
the process R = b.nil . Then the process S ◦ R can do a b transition to nil ‖ a.b.nil
since S[nil 7→ T] = b.nil ‖ a.b.nil b−→ nil ‖ a.b.nil . Process T ◦ R, however, cannot

mimic this b transition as T [nil 7→ R] = a.b.nil 6 b−→.

14

Matriculation Number:

15

Matriculation Number:

(b) Let ; be a CCS operator with the following semantics:

(seq1)
P

α−→ P ′

P ;Q
α−→ P ′;Q

(seq2)
P 6−→ Q

α−→ Q′

P ;Q
α−→ Q′

Prove or disprove: ; preserves strong bisimilarity, i.e. for any processes S, T and R
with S ∼ T it holds that both S;R ∼ T ;R and R;S ∼ R;T .

; preserves strong bisimilarity. For that consider any three processes S, T and R.
Now consider:

S ∼ T =⇒ ∃ strong bisimulation R : S R T

FromR we construct a relationR′ = {(U ;R, V ;R) | (U, V) ∈ R}∪{(Q, Q) | for any Q}.
We now show that R′ is a strong bisimulation: For (R, R) ∈ R′ the case is obvious.
For (U ;R, V ;R) ∈ R′ there are two cases.

Case 1: U
α−→ U ′. Then:

U R V

=⇒
[
U

α−→ U ′ =⇒ ∃V ′ : V α−→ V ′ ∧ U ′ R V ′
]

(R is strong bisimulation)

∧
[
V

α−→ V ′ =⇒ ∃U ′ : U α−→ U ′ ∧ U ′ R V ′
]

=⇒
[
U ;R

α−→ U ′;R =⇒ ∃V ′;R : V ;R
α−→ V ′;R ∧ U ′ R V ′

]
((seq1) rule)

∧
[
V ;R

α−→ V ′;R =⇒ ∃U ′;R : U ;R
α−→ U ′;R ∧ U ′ R V ′

]
=⇒

[
U ;R

α−→ U ′;R =⇒ ∃V ′;R : V ;R
α−→ V ′;R ∧ U ′;R R′ V ′;R

]
(Definition of R′)

∧
[
V ;R

α−→ V ′;R =⇒ ∃U ′;R : U ;R
α−→ U ′;R ∧ U ′;R R′ V ′;R

]
=⇒ R′ is a strong bisimulation

16

Matriculation Number:

Case 2: U 6−→ and R
α−→ R′ . Then:

U R V

=⇒
[
U

α−→ U ′ =⇒ ∃V ′ : V α−→ V ′ ∧ U ′ R V ′
]

(R is strong bisimulation)

∧
[
V

α−→ V ′ =⇒ ∃U ′ : U α−→ U ′ ∧ U ′ R V ′
]

=⇒
[
U ;R

α−→ U ′;R =⇒ ∃V ′;R : V ;R
α−→ V ′;R ∧ U ′ R V ′

]
((seq1) rule)

∧
[
V ;R

α−→ V ′;R =⇒ ∃U ′;R : U ;R
α−→ U ′;R ∧ U ′ R V ′

]
=⇒

[
U ;R

α−→ U ′;R =⇒ ∃V ′;R : V ;R
α−→ V ′;R ∧ U ′;R R′ V ′;R

]
(Definition of R′)

∧
[
V ;R

α−→ V ′;R =⇒ ∃U ′;R : U ;R
α−→ U ′;R ∧ U ′;R R′ V ′;R

]
=⇒ R′ is a strong bisimulation

17

Matriculation Number:

Task 5 (Semantics of Petri nets) (8 + 6 + 9 Points)

Consider the following Petri net N :

p1

p2
p3

p4 p5

p6 p7

t1

t2

t3

t4

t5

t5

t7

(a) Give the marking graph of N !

18

Matriculation Number:

19

Matriculation Number:

(b) Give at least three distributed runs which cover at least four transitions of N ! If N
admits an infinite distributed run, provide it!

20

Matriculation Number:

21

Matriculation Number:

(c) Compute the McMillan prefix of the Petri net N and the cut–off transitions in the
unfolding!

22

Matriculation Number:

23

Matriculation Number:

Task 6 (Petri net Acceptable Languages) (11 Points)

Let Σ be a finite alphabet and let N = (P, T, F, M0, λ) be a labelled Petri net in which
all transitions in T are labelled by a labeling function λ : T → Σ. Then the trace language
Tr(N) of N is defined as the following set:{

w = λ(a1) · · ·λ(ak)
∣∣∣ M0

a1−→M1
a1−→ · · · ak−→Mk is a complete sequential run of N

}
.

A language L ⊆ Σ is called Petri net recognizable, if there exists a labelled Petri net N
such that Tr(N) = L.

Provide a Petri net which recognizes the language anc bn!

24

