
Probabilistic Program Analysis with

Martingales

(Seminar Probabilistic Programs)

Frederik Zwilling 304314

January 26, 2015

Abstract

Verifying probabilistic programs is an important challenge because

randomized algorithms are used in many safety-critical domains, such

as robotics or networking. This report presents an approach to ana-

lyze probabilistic programs with the use of martingale theory. Loosely

speaking, martingales are expressions whose current value equals the

expected value after the next execution step. The approach includes

an automate synthesis of martingales in linear probabilistic programs,

verification of probabilistic assertions and proving almost sure termi-

nation with super martingales, an extension of the notation of mar-

tingales. The approach can handle continuous distributions but the

automated synthesis is limited to linear programs.

1 Introduction

Probabilistic programs are becoming increasingly important because ran-
domized algorithms are used in many emerging domains, such as robotics,
artificial intelligence and network protocols [1]. For instance in the domain
of robotics, a widely used example of probabilistic programs is the monte-
carlo localization of a mobile robot [2]. Here, randomization is used to create
position estimates and keep estimates with higher likelihood if the current
sensor data matches the expected data.
Probabilistic programs can be defined as ordinary programs that sample val-
ues form probability distributions. As for ordinary programs, it is desirable
to analyze probabilistic programs by investigating program termination and
verifying probabilistic assertions about the outcome of the program. In the

aforementioned example, verification is important to ensure the safety of the
robot, especially if the robot is deployed in industry or space, where the safety
requirements are high. Unfortunately, verification of probabilistic programs
can be hard [3] and many approaches, such as quantitative invariants pro-
posed by McIver and Morgan [4], are limited to discrete probabilistic choices
or specific probability distributions.
In this report, we present the approach of probabilistic program analysis with
martingales by Chakarov and Sankaranarayanan [5]. The approach is an
extension of quantitative invariants [4, 6] and allows continuous probability
distributions, such as the Gaussian or Poisson distribution. Simplified, a
martingale can be understood as an expression whose current value equals
its expected value after the next execution step of the probabilistic program.
Thus, the expected value of the expression does not change during the pro-
gram execution. We also use super martingales which are similar to martin-
gales, except that their value decreases during execution of the program. We
use these martingales and combine them with martingale theory, in particu-
lar with the Azuma-Hoe↵ding theorem, to derive probabilistic bounds of the
martingale value, which can be used to prove probabilistic assertions. Fur-
thermore, we use the notation of super martingale ranking functions to give
a sound, but incomplete, approach to prove almost sure termination. To be
able to automate the verification, we also provide a method to find (super)
martingales and super martingale ranking functions in linear probabilistic
programs.

1.1 Motivating Examples

The following two probabilistic programs are simple examples which accom-
pany us through the report and show what kind of probabilistic assertions
and termination property we want to prove.

Example 1.1. The probabilistic program in Figure 1 sums up 500 samples
from a uniform distribution in the interval [0, 1]. Because the sum is com-
puted in a bounded loop and the expected value of each random variable
that is added in each loop iteration is 0.5, the expected value of the sum af-
ter the loop terminates is 250. The sample paths shown on the right side of
Figure 1 show that the distribution of the resulting sum is clustered around
the expected value 250. Static analysis can use the invariant 0  x  i+1 in
the loop to derive that 0  x  501 is valid at the loop exit. In Section 4 we
use the approach provided in this report to prove the probabilistic assertion
Pr(x 2 [200, 300]) � 1� 9.1 ⇤ 10�5.

Figure 1: (Left) Probabilistic program of Example 1.1 which sums up random
variables. We want to analyze with which likelihood the sum is in a certain
interval around the expected sum. (Right) Each blue line represents a sample
path through the program where the variables i and x are plotted for each
step along the path. The read area represents the space of all theoretically
possible states [5].

Figure 2: (Left) Probabilistic program of Example 1.2 with a loop. The
termination depends on the probabilistic increment of the variable h and we
want to prove if the program terminates almost surely. (Right) Sample paths
of program executions as in Figure 1. The red area of possible states shows
that there can be executions which take arbitrary long [5].

Example 1.2. The probabilistic program shown in Figure 2 contains a loop
and two variables h and t that represent the positions of a hare and tortoise
playing a race . t starts with a lead of 30 and is incremented by 1 in every
loop iteration. h is increased by a random variable uniformly distributed in
the interval [0, 10] with probability 1

2

. The race ends if the hare surpasses
the tortoise, or equivalently if h > t. Ordinary static analysis can not show
that the program terminates because there are possible executions that take
arbitrary long. Because the expected increase of h per loop iteration is 2.5,
it is intuitive that the program terminates after a finite number of iterations,
which is also illustrated by the sample paths. This motivates the definition
of almost sure termination in the next section. To prove the almost sure
termination of this program, we use the super martingale expression t � h

which represents the distance between h and t and decreases in every iteration
in expected value.

2 Preliminary Definitions

Before describing the martingale approach to analyze probabilistic programs,
we need to introduce some preliminary definitions [5].

To describe the possible execution paths, actions and conditional branch-
ing of a probabilistic program we need a formalism to describe the program.
We model the program as a probabilistic transition system that comprises
among others a set of program variables, a set of program locations indi-
cated by the program line number and transitions between the locations.
The transitions going out from a location consist of a guard assertion which
determine the enabled transition at a given location and a list of probabilis-
tic forks, which represent a probabilistic branching. Each fork contains a
probability value (with which the fork is taken), an update function for the
program variables which represent the assignments of the program and a
target location.

Figure 3 shows the probabilistic transition system of the program in Ex-
ample 1.2. It contains two transitions outgoing from line 4 to model the
loop guard. The lower transition ⌧

1

models the loop iteration and contains
two forks for the coin-flip in line 5. The e↵ects of the two update functions,
with the increment of h and without, are also written next to the two forks.
On the loop exit, the upper transition ⌧

2

is used. Here, there is only one
fork because there is no probabilistic branching. Formally, the notion of
probabilistic transition systems is captured by the following definition:

Figure 3: Probabilistic transition system associated to the program in Ex-
ample 1.2.

Definition 2.1 (Probabilistic Transition System).
A Probabilistic Transition System (PTS) ⇧ is a tuple hX,R,L, T , l

0

, x

0

, l

f

i,
where

• X is a vector containing all program variables.

• R is a vector containing all random variables with joint distribution D.

• L is a finite set of locations in the program (indicated by the line
number).

• l

0

and x

0

are the initial location and values of the program variables.

• l

f

is the final location where the program is considered as terminated.

• T is a finite set of transitions. Each transition ⌧ 2 T is a tuple
hl,�, f

1

, ..., f

k

i with

– Source location l 2 L and guard assertion � over X,

– Forks f
1

, ..., f

k

where each fork f

i

is a tuple (p
i

, F

i

,m

i

) with fork
probability p

i

2 (0, 1],
P

k

i=1

f

i

= 1, an update function F

i

(X,R)
and a destination location m

i

2 L.

A state of a PTS is a tuple (l, x) where l 2 L is a location and x is a variable
valuation of the program variables X. The transition ⌧ = hl,�, f

1

, ..., f

k

i 2 T
is said to be enabled in state (l, x) if x |= �.

To make the transition choice in a PTS deterministic and simplify our
development, we consider only PTS where in every location with any variable
valuation x of X exactly one transition is enabled. This restriction is called

Figure 4: An almost sure terminating program and its PTS [5].

No Demonic Restriction and formally means that for each location l 2 L and
all outgoing transitions ⌧

1

, ..., ⌧

n

from l with guards �

1

, ...,�

n

, �
1

, ...,�

n

are
mutually exclusive and their conjunction is always valid. Therefore, every
state s is mapped to only one enabled transition denoted ⌧(s).

As shown in Figure 3, we add a transition labeled id of the form hl
f

, true,

(1, id, l
f

)i at the end of each program to satisfy the no demonic restriction.
The program is considered terminated when it reaches l

f

.
An execution step of a PTS in state (l

i

, x) uses the enabled transition
⌧ = hl

i

,�, f

1

, ..., f

k

i and chooses a fork f

j

= (p
j

, F

j

,m

j

) with probability
p

j

. The state is updated by ⌧ to (m
j

, F

j

(x, r)) where r is sampled from D.
The distribution of states after execution of a step from state s is denoted
Post-Distrib(s). Now, we are able to define sample executions, which mod-
els specific sample paths as shown in Figure 1 and 2.

Definition 2.2 (Sample Executions). A sample execution � of a PTS
hX,R,L, T , l

0

, x

0

i is a countably infinite sequence of states (l
0

, x

0

)
⌧1�!

(l
1

, x

1

)
⌧2�! (l

2

, x

2

)
⌧3�! ... with ⌧

i

being the enabled transition in state
(l

i�1

, x

i�1

) and (l
i

, x

i

) 2 Post-Distrib(l
i�1

, x

i�1

) for all i 2 N.
A sample execution is terminating if it reaches a state (l

f

, x) for some x.
The probability µ(�) 2 [0, 1] of a sample execution � is the product of all
fork probabilities used along the sequence of states.

With the PTS and sample executions we can now define the concept of al-
most sure termination informally presented in Example 1.2. For the program
in Example 1.1, every sample execution terminates after 500 loop iterations
and therefore the program terminates surely. For the program in Figure 4,
where the loop condition depends on a coin flip, the only non-terminating
sample execution �1 has the probability µ(�1) = lim

n!1
Q

n

1

1

2

= 0. There-
fore, the sum of all terminating sample executions is 1 and the program is
almost sure terminating. We formalize this in the following definition:

Definition 2.3 (Almost-Sure Termination). A PTS terminates almost
surely i↵ the probabilities of all terminating sample executions sums up to 1.

To compute the expected value of an expression e after the next execution
step we compute the expected values in all possible following states (with re-
spect to the random variables with joint distribution D) and weight them
with the probability of the used fork. In other words, we evaluate the ex-
pression over the Post-Distrib of the current state. We use e[x/F (x, r)] to
denote the substitution in e of every program variable with the corresponding
value given by the update function F .

Example 2.1. Continuing with Example 1.2, we are in state s = (l
4

, (h, t))
with h  t and want to investigate the expected value of the expression
e = 5t� 2h after the next step. At the end of the example we identify that
e is a martingale. Figure 3 shows that the enabled transition in s is ⌧

1

=
hl

4

, (h  t), f
1

, f

2

i with the two forks f
1

= (1
2

, F

1

: (h, t, r
1

) 7! (h, t + 1), l
4

)
for a failed coin-flip and f

2

= (1
2

, F

2

: (h, t, r
1

) 7! (h + r

1

, t + 1), l
4

) for a
successful one. That means that the a posteriori value of e when taking fork
F

1

is 5 ⇤ (t + 1) � 2h. If F
2

is taken instead, we get the a posteriori value
5 ⇤ (t+1)� 2 ⇤ (h+ r

1

). The expected value of e after applying ⌧

1

is the sum
of the expected values resulting from taking forks F

1

and F

2

weighted by the
fork probabilities:

E
⌧1(e | s) =

1

2
E(e[x/F

1

(h, t, r
1

)]) +
1

2
E(e[x/F

2

(h, t, r
1

)])

=
1

2
E(5(t+ 1)� 2h) +

1

2
E(5(t+ 1)� 2(h+ r

1

))

= 5t� 2h+ 5� E(r
1

)
(r1from unifRand(0,10))

= 5t� 2h = e

This idea of computing the expected value of an expression after the next
execution step is captured by the following definition:

Definition 2.4 (Post-Expectation). Given a state s = (l, x) with an
enabled transition ⌧ = hl,�, f

1

, ..., f

k

i, k � 1, f
i

= (p
i

, F

i

,m

i

), the Post-
Expectation E

⌧

(e | s) of an expression e over program variables is the ex-
pected value of e over Post-Distrib(s) under the distribution D for random
variables r:

E
⌧

(e | s) :=
kX

i=1

p

i

⇤ E(e[x/F
i

(x, r)])

3 Martingales and Martingale Expressions

In this section we introduce the notation of martingales and some extensions.
Thereof we need to analyze a probabilistic program. As calculated in Exam-
ple 2.1, the value of the expression e = 5t � 2h in the state s = (l

4

, (h, t))

equals E
⌧

(e | s), the expected value after the next execution step. This is
the martingale property we use later to analyze the PTS. It is easy to see,
that e has this property also for the other two transitions ⌧

2

and id. This is
because neither transition modifies the program variables. Now we continue
with the definition of martingales [5].

Definition 3.1 (Martingale and Super Martingale Expressions). An ex-
pression e over program variables X is called martingale for a PTS i↵ for
every state s = (l, x) with enabled transition ⌧(s), the Post-Expectation of
e equals the current value of e:

8s = (l, x) : E
⌧(s)

(e | s) = e .

Similarly, an expression is called a super-martingale i↵

8s = (l, x) : E
⌧(s)

(e | s)  e .

Example 3.1. We now show that e = t� h is a super martingale of Exam-
ple 1.2. This super martingale is interesting because it decreases across the
loop iterations making the guard eventually false and proving thus termina-
tion. Again, for the states (l

f

, x) and (l
4

, (h, t)) with h > t, the transitions
do not change the program variables and therefore the Post-Expectation of
e equals the current value of e. For the remaining states s = (l

4

, (h, t)) with
h  t, we have

E
⌧1(e | s) =

1

2
E(t+ 1� h) +

1

2
E(t+ 1� (h+ r

1

))

= t� h+ 1� 1

2
E(r

1

)
(r1from unifRand(0,10))

= t� h� 1.5  e ,

which shows that e is a super martingale.

In literature of probability theory, martingales are usually defined in the
context of stochastic processes {M

n

} which are sequences of random vari-
ables M

0

,M

1

,M

2

, ... with samples m

0

,m

1

, ... [7]. We introduce the formal
definition of such martingales to link the theorems in the probability theory
area with the martingale expressions we use to verify probabilistic programs:

Definition 3.2 (Martingales and Super Martingales). A discrete stochastic
process {M

n

} is a martingale i↵ for each n > 0, the expected value of the
next step equals the current value:

E(M
n

| m
n�1

, ...,m

0

) = m

n�1

Similarly, {M
n

} is a super martingale i↵ for each n > 0

E(M
n

| m
n�1

, ...,m

0

)  m

n�1

.

This implies that {M
n

} and {�M

n

} are super martingales whenever
{M

n

} is a martingale. To convert a (super) martingale expression e into
a (super) martingale, we set M

n

as the random variable capturing the value
of e in the n-th execution step, i.e. M

n

= (e)
n

.
The previous examples contain very simple martingales. For more com-

plex probabilistic programs it is usually di�cult to find simple martingale
expressions. In such cases it is useful to consider a di↵erent martingale ex-
pression for each location to reason about termination.

Example 3.2. The program shown in Figure 4 is simple but already shows
the di�culty to find a single linear martingale expression as in Example 2.1.
Every linear martingale of the form e = cx would be 0 because

E
⌧1(cx | (l

2

, x)) =
1

2
(c(x+ 1) + cx) = cx+

c

2
!

= cx .

If we consider instead the function

⌘(l, x) =

⇢
x , l = l

2

x� 1 , l = l

f

,

we get a map that satisfies a lifted version of the martingale property. For
an expression map ⌘, the Post-Expectation w.r.t. ⌧ is given by E

⌧

(⌘ | s) =P
k

i=1

p

i

⇤E(⌘(l
i

)[x/F
i

(x, r)]). The notation of Martingale Expression Map is
captured by the following definition:

Definition 3.3 (Martingale and Super Martingale Expression Maps).
A flow-sensitive expression map ⌘ of a PTS is a map from the locations L to
expressions over X.
A flow-sensitive expression map ⌘ is a martingale of a PTS i↵ 8s = (l, x) :
E
⌧(s)

(⌘ | s) = ⌘(l). Similarly, ⌘ is a super martingale of a PTS i↵ 8s = (l, x) :
E
⌧(s)

(⌘ | s)  ⌘(l).

Now, we show that the map proposed in Example 3.2 is actually such a
martingale expression map:

E
⌧1(⌘(l, x) | (l2, x)) =

1

2
(x+ 1| {z }
⌘(l2)[x/x+1]

) +
1

2
(x� 1| {z }
⌘(lf)[x/x]

) = x = ⌘(l
2

, x) .

Showing the same for l
f

and id is trivial again.

4 Probabilistic Assertions

With the preliminary definitions of the previous sections we can now use
martingale theory to derive probabilistic assertions. The main theorem we
use from martingale theory is the Azuma-Hoe↵ding Theorem. It uses a su-
per martingale process to provide a probabilistic statement that bounds the
deviation of the process from its initial value. The theorem consists in a
concentration of measure inequality and is proven e.g. in [8].

Theorem 4.1 (Azuma-Hoe↵ding Theorem). If {M
n

} is a super martingale
with |m

n

�m

n�1

| < c for some constant c, then for all n 2 N and t 2 R+

0

, it
follows that

Pr(M
n

�M

0

� t)  exp

✓
�t

2

2nc2

◆
.

If {M
n

} is a martingale with the same properties we can combine the upper
bound for {M

n

} and {�M

n

} to obtain

Pr(|M
n

�M

0

| � t)  2 ⇤ exp
✓

�t

2

2nc2

◆
.

Example 4.1. We apply the Azuma-Hoe↵ding theorem to the program in
Example 1.1 to bound the probability that x 2 [200, 300] after 500 iterations.
An easy to find martingale is 2x � i because in every iteration, we add an
expected value of 0.5 to x, therefore 2x coincides with the increment of i,
which is 1. The initial value of 2x � i is 0. To get the right interval we
observe that

Pr(|M
n

�M

0

| � t) = Pr(|(2x� i)
500

� (2x� i)
0

| � t)

= Pr(|2x� 500� 0| � t) = Pr(|x� 250| � t

2
) = 1� Pr(|x� 250| < t

2
)

and thus we choose t = 100. Because we add in each iteration a maximum of
1 to x, we can choose c = 1. Now, we can conclude from the Azuma-Hoe↵ding

theorem that

Pr(x 2 [200, 300]) = 1� Pr(|M
500

�M

0

| � 100)

� 1� 2exp

✓
�1002

2 ⇤ 500 ⇤ 1

◆
� 1� 9.1 ⇤ 10�5 .

Thus, it is very likely that x is in the interval [200, 300] after 500 iterations.

5 Almost Sure Termination

In this section, we present an approach to show almost sure termination by
using super martingales. The super martingales we use indicate, like the
expression t� h in Example 3.1, the termination of the program by getting
smaller than 0. To prove that an expression or expression map becomes neg-
ative, the monotonic decrease is not enough because the martingale could
converge to a value greater than 0. Therefore, we can only use those mar-
tingales with the property E(M

n+1

| m
n

, ...,m

0

)  m

n

� ✏ for some ✏ > 0
because those martingales become eventually negative. Because we also want
to verify complex probabilistic programs, we generalize our approach to ex-
pression maps which only become negative in the final location. This results
in the following definition of super martingale ranking functions:

Definition 5.1 (Super Martingale Ranking Function). A super martingale
ranking function (SMRF) ⌘ is a super martingale expression map of a PTS
⇧ = hX,R,L, T , l

0

, x

0

, l

f

i with the properties:

• ⌘(l) � 0 for all l 2 L\{l
f

}

• ⌘(l
f

) 2 [�K, 0) for some K > 0

• For some constant ✏ > 0 and all transitions ⌧ 2 T \{id}, the following
holds: 8s = (l, x) : E

⌧(s)

(⌘ | s)  ⌘(l)� ✏

Now, we can introduce the main theorem of the almost sure termination
analysis:

Theorem 5.1. Every PTS ⇧ that has a super martingale ranking function
⌘ terminates almost surely.

Intuitively, we already explained this theorem by using the unbounded
monotonic decrease of ⌘ until l

f

is reached. A proof can be found with a
slightly modified notation in [5].

Figure 5: A probabilistic program which terminates almost surely and has
no SMRF [5].

Example 5.1. We now find a SMRF for the PTS of the program in Exam-
ple 1.2. We already showed in Example 3.1 that t� h is a super martingale.
Therefore, also t� h+ 9 is a super martingale. From that, we can construct
a SMRF candidate ⌘ with ⌘(l

4

) = t � h + 9 and ⌘(l
f

) = t � h. The ’+9’
ensures that ⌘(l

4

) is non-negative, because the maximum di↵erence of ⌘(l
4

)
in each step is 9 and the program leaves l

4

if t� h+9 < 9. ⌘(l
f

) is negative,
because otherwise the program would not have left the loop. To also show
that the last restriction of Definition 5.1 holds, we can choose ✏ = 1 and have
for the transition ⌧

2

:

E
⌧2(⌘ | s) = ⌘(l

f

)[t/t, h/h] = t� h  t� h+ 9� 1 = ⌘(l
4

)� ✏

and for the transition ⌧

1

:

E
⌧1(⌘ | s) = E(⌘(l

4

)[t/t+ 1, h/h+ r

1

])
Ex.3.1

= t� h� 1.5  ⌘(l
4

)� ✏ .

Thus the PTS has a SMRF and is almost sure terminating.

Example 5.2. To show almost sure termination in Example 3.2, we can
use the expression map ⌘ with ⌘(l

2

) = 1 and ⌘(l
f

) = �1 and show that ⌘

is a SMRF. The first two properties of Definition 5.1 are satisfied because
⌘(l

2

) = 1 > 0 and ⌘(l
f

) = �1 < 0. For the third property, we only need to
check the transition ⌧

1

:

E
⌧1(⌘ | s) = 1

2
E(⌘(l

2

)[x/x+1])+
1

2
E(⌘(l

f

)[x/x]) =
1

2
�1

2
= 0 < 1�✏ = ⌘(l

f

)�✏

Therefore, we can choose ✏ = 1

2

and have shown that ⌘ is a SMRF and thus
the program is almost sure terminating.

Our approach of using Theorem 5.1 to prove almost sure termination is
sound, but not complete as the program in Figure 5 shows. The program
is almost sure terminating due to the recurrence properties of symmetric
random walks [5]. Because the expected value of x after every iteration
equals the current value of x and the same is valid for an expression over x,
there is no SMRF.

6 Discovering Martingales

So far we know what martingales are, how to check if an expression (map)
is a martingale and how to derive probabilistic assertions and prove almost
sure termination. The remaining problem is to find (super) martingales for
a given program. This section shows how to discover (super) martingales
for a�ne PTS. An a�ne PTS only uses conjunctions of linear inequalities
as transition guards and a�ne update functions F

i

(x, r) = A

i

x + B

i

r + a

i

with the vector of program variables x = (x
1

, ..., x

n

)T and random samples
r = (r

1

, ..., r

n

)T matrices A
i

and B

i

and vector a
i

. For example the fork F

1

that increments h by a random sample r

1

in Figure 3 could be written as:

F

1

(

✓
h

t

◆
,

✓
r

1

*

◆
) =

✓
1 0
0 1

◆

| {z }
A1

✓
h

t

◆

|{z}
x

+

✓
1 0
0 0

◆

| {z }
B1

✓
r

1

*

◆

| {z }
r

+

✓
0
1

◆

|{z}
a1

=

✓
h+ r

1

t+ 1

◆

For these a�ne PTS it is straightforward to state the restrictions for a mar-
tingale and apply some linear algebra.

Example 6.1. The PTS of the program from Example 1.2 is a�ne because
all update functions and guards are linear. The super martingale expression
we want to find has the form c

T

x+ d. Because for every (super) martingale
e, also e + k, for some constant k, is a (super) martingale, we can choose
d = 0. For a state s = (l

4

, (h, t)) with h  t the martingale has to satisfy the
formula

E
⌧1(e | s) =

1

2
E(c

1

h+ c

2

(t+ 1)) +
1

2
E(c

1

(h+ r

1

) + c

2

(t+ 1)) = c

1

h+ c

2

t

, c

1

h+ c

2

t+ c

2

+
1

2
c

1

E(r
1

) = c

1

h+ c

2

t

E(r1)=5, c

2

+
5

2
c

1

= 0 .

The other constraints resulting from the other two transitions are always valid
because the transitions do not change the program variables. Therefore, we
get p(5

2

t � h) + q as martingales for any p, q 2 R. To get super martingales
we need to satisfy c

2

+ 5

2

c

1

 0, what we can derive as before. This yields
the super martingales p(5

2

t� h)� kh+ q for any p, q, k 2 R with k � 0.

Example 6.2. To derive linear constraints from Example 6.1, we need to
encode the implication 8x(�(x))) E

⌧

(⌘ | (l, x))  ⌘(l) which states that
c

T

x is a super martingale. For simplicity, we only investigate ⌧

1

that results
in the following linear constraint:

(1,�1)

✓
h

t

◆
 0

| {z }
�1=ht

) 1

2
c

T

F

1

(x, r) +
1

2
c

T

F

2

(x, r) = c

T

✓
h+ r1

2

t+ 1

◆
 c

T

x

By using Farkas Lemma we can ensure that the resulting constraints are
linear inequalities [5]:

Theorem 6.1 (Farkas Lemma). The linear constraint Ax  b) c

T

x  d

is valid i↵ its alternative is satisfiable A

T

� = c ^ b

T

� � d ^ � � 0.

To find a SMRF ⌘, we need state the linear inequalities for all transitions
to introduce more variables ✏ and c

l

, because every location l 2 L can have a
di↵erent linear expression, and more constraints to satisfy the requirements
of Definition 5.1: ⌘(l

f

) < 0, ✏ > 0 and ⌘(l) � 0 for all l 2 L\{l
f

}. The
constraints for the transitions ⌧ 2 T \{id} and states s = (l, x) have to be
modified to E(⌘ | s)  ⌘(l)� ✏.

7 Related Work

The work by Chakarov and Sankaranarayanan presented in this paper is re-
lated to various other publications [5]. It is closely related to the deductive
approach with probabilistic invariants proposed by McIver and Morgan [4, 6].
There are two types of probabilistic invariants, namely exact and quantitative
invariants, that are similar to martingales and super martingales. Quantita-
tive invariants are expressions whose post-expectations after a loop iteration
is greater or equals than their values at the beginning of loop iteration. They
are also used to prove almost sure termination and correspond to super mar-
tingales if the expression is negated. Similarly, exact invariants correspond to
martingales because their post-expectations after a loop iteration equals their
values at the beginning of loop iteration. To prove almost sure termination,
they use the probabilistic variant rule which can be seen as a specialization
of the technique based on SMRF. However, there are some di↵erences, be-
cause in contrast to probabilistic invariants, the approach presented in this
paper allows continuous probability distributions and program variables but
no demonic non-determinism and has no deductive proof system.

There are also other publications which use martingale theory to derive
probabilistic guarantees for randomized algorithms. For example [9] also
uses the method of bounded di↵erences provided by the Azuma-Hoe↵ding
Theorem. However, our approach extends that method by the automatable
discovery of martingales.

In a later work by Chakarov and Sankaranarayanan, they generalize the
approach presented in this report with the notation of inductive expectation
invariants to analyze probabilistic program loops [10]. In terms of this report,
inductive expectation invariants are expressions whose post-expectation is
non-negative in every loop iteration if the current value is non-negative. By

characterizing these inductive expectation invariants as fixed points of a loop,
they discover the invariants automatically.

8 Conclusion

This report presents an approach by Chakarov and Sankaranarayanan to
analyze probabilistic programs with the use of martingale theory, especially
to derive probabilistic assertions and prove almost sure termination. For a
given probabilistic program, we construct the corresponding PTS ⇧. If ⇧ is
a�ne, we can automatically find (super) martingales and SMRF by solving
some linear equations. If we can find a SMRF, the program terminates almost
surely. By using the Azuma-Hoe↵ding Theorem, martingales can be used to
derive probabilistic assertions about the program outcome and intermediate
states.

The main advantages of the presented approach, in contrast to the com-
parable approaches, are partly automation of the program analysis and the
possibility to use continuous distributions and not being limited to a fixed
set of distributions. The main disadvantage, which limits the usage of the
approach in practice, is the restriction to a�ne PTS in the discovery of
martingales. For the example of the monte-carlo localization of a mobile
robot mentioned in the introduction, this means that we can only analyze
simple versions of the monte-carlo localization, e.g. when we only want to
determine the coordinates of the robot but not its orientation. If we also
want to determine the orientation of the robot and use a distance sensor,
we would need trigonometric functions that violate the necessary linearity
of the update functions. Furthermore, even a simple multiplication of two
program variables hinders us from using the discovery approach, thus many
programs can not be analyzed automatically. Another disadvantage is that
we can not investigate arbitrary probabilistic assertions directly, because the
approach derives the assertion bounds with the Azuma-Hoe↵ding Theorem
from a (super) martingale that has to be found first. For example, if we
want to investigate the Pr(x 2 [300, 400]) in Example 1.1, we would have to
manually discover what martingales to use, with which parameter t and how
to manipulate the obtained bounds to get the required bounds.

Chakarov and Sankaranarayanan also provide an implementation of the
automated martingale discovery. The implementation takes an input file
which describes an a�ne PTS very similar to the definition in this report
and generates the corresponding c++ program as well as a list of linear
(super) martingale expression maps. These can be used to manually derive
probabilistic assertions or find a SMRF to prove almost sure termination.

Although the approach has some limitations for practical use, e.g. due
to non-linear update functions, it is an important step towards automated
verification of probabilistic programs, especially because of the automated
discovery of martingales.

References

[1] Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An
Energy-E�cient Coordination Algorithm for Topology Maintenance in
Ad Hoc Wireless Networks. Wireless networks 8(5) (2002) 481–494

[2] Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo
localization for mobile robots. Artificial intelligence 128(1) (2001) 99–
141

[3] Courcoubetis, C., Yannakakis, M.: The Complexity of Probabilistic
Verification. Journal of the ACM (JACM) 42(4) (1995) 857–907

[4] McIver, A., Morgan, C.C.: Abstraction, Refinement and Proof for Prob-
abilistic Systems. Springer (2006)

[5] Chakarov, A., Sankaranarayanan, S.: Probabilistic Program Analysis
with Martingales. In: Computer Aided Verification, Springer (2013)
511–526

[6] McIver, A., Morgan, C.: Developing and Reasoning about Probabilistic
Programs in pGCL. In: Refinement Techniques in Software Engineering.
Springer (2006) 123–155

[7] Williams, D.: Probability with Martingales. Cambridge university press
(1991)

[8] Chung, F., Lu, L.: Complex Graphs and Networks. Volume 107 of
CBMS-NSF regional conference series in mathematics. American Math-
ematical Society (2006)

[9] Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Anal-
ysis of Randomized Algorithms. Cambridge University Press (2009)

[10] Chakarov, A., Sankaranarayanan, S.: Expectation Invariants for Prob-
abilistic Program Loops as Fixed Points. In: Static Analysis. Springer
(2014) 85–100

