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Motivation

@ Aim: Verify claims regarding the variables of a program

@ For non-probabilistic programs:

Hoare Logic (1969)

e Formulate Hoare triples of the form
{ precondition } program { postcondition }

where the conditions are first order predicate formulae
o Check whether a Hoare triple holds, i.e.:

@ For every variable assignment satisfying the precondition
o ...the resulting assignment after executing the program
o ...satisfies the postcondition

o The derivation system H can be used for this purpose

Tim Quatmann



Motivation
The derivation system H:

ki oy Arnrcts{a} {pA-chs{q}
{p)skip {p} (Skie) {p}if cthenselses fi{q} (1)

plz/e]} v =e {] ssign {prels{p} ile
(plefelyeime (n) (Assign) -l IS (While)

{p}s{p’}. ;{p’}s'{q} (Seq) P =p {[:}s{q/} qg=q (Cons)
{p}sis’{a} {r'}s{d}
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Motivation

(xmody=0A(y=2Vy=23))

if (y=2) then
Tri=3
else
r=2-x
fi
(x mod 6 = 0)
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(xmody=0A(y=2Vy=23))
if (y=2) then
(rmody=0A(y=2Vy=3)Ay=2)

r=3-x
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else

(xmody=0A(y=2Vy=3)Ay #2)

r=2-x
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fi
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(rmody=0A(y=2Vy=3))

f (y =2) then
(rmody=0A(y=2Vy=3)Ay=2)
(3 -2 mod 6 = 0)

r=3-x
(x mod 6 = 0)
else

(xmody=0A(y=2Vy=3)Ay #2)
(2 -2 mod 6 = 0)
r=2-x
(x mod 6 = 0)
fi
(x mod 6 = 0)
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Motivation

Is this feasible for probabilistic programs?

The value of variables depends on probabilistic choices

Preconditions and postconditions are only satisfied with a
certain probability

Hence, it is not clear whether a Hoare triple holds

We need to extend the occuring notions!

This is the topic of this talk
Based on the paper of den Hartog (1999):
Verifying Probabilistic Programs using a Hoare like Logic

Tim Quatmann



Overview

@ Probabilistic Programs
@ The Language Ly
@ Probabilistic States
@ Semantics for Ly

@ Probabilistic Predicates

© Hoare Logic for Probabilistic Programs
@ Hoare Triples
@ The Derivation System pH
@ Loops

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

The Language L,

@ The language of probabilistic programs (L) is given by:

s u=skip | x :=e | s;s | s®, s | if ¢ then s else s fi

| while ¢ do s od

@ s @, s’ can be seen as a (biased) coin flip

e s is executed with probability
o s’ is executed with probability 1 —r

@ Semantics will be discussed later

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Example: Probabilistic Program

Consider the Program s € Lyy:

(:E =0P®p3x = 1),
if (x =0) then

y=1
else
y=0

fi

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

@ The value of variables depends on probabilistic choices

@ The value of two variables might depend on each other
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Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

@ The value of variables depends on probabilistic choices

@ The value of two variables might depend on each other

Consider the program: After execution we obtain:
(];L =0 @0.3hx = 1); e x = 0 with probability 0.3
| (yr_— 10) e e y = 0 with probability 0.7
else
y=0

fi

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

@ The value of variables depends on probabilistic choices

@ The value of two variables might depend on each other

Consider the program: After execution we obtain:
(z =003z :=1); e = = 0 with probability 0.3
f (T_: 10) then e y = 0 with probability 0.7
eIsZ - @ But:

y:=0 x =y = 0 with probability 0

fi

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

@ The value of variables depends on probabilistic choices

@ The value of two variables might depend on each other

Consider the program: After execution we obtain:
(‘L =003z :=1); e x = ( with probability 0.3
f (T_: 10) then @ y = 0 with probability 0.7
eIsZ - e But:

y =0 x =y = 0 with probability 0

fi

We need a notion to capture this information!

Tim Quatmann
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Semantics for Ly

Probabilistic States

o A probabilistic state assigns a probability ratio to every
possible assignment of all variables

Tim Quatmann ifying . o ing Hoare Logic



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

o A probabilistic state assigns a probability ratio to every
possible assignment of all variables

Consider the program:

(x =0@p3x:=1);

if (z =0) then
y =

else
y =0

fi

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

o A probabilistic state assigns a probability ratio to every
possible assignment of all variables

Consider the program: After execution the variable assignment

is either o1 or o9, where
(x :=0@03 2 :=1); ! 2

if (z=0) then oi(z) =1 o1(y) =0 and
yi=1 o2(a) =0 oy(y) = 1
else
y =0
fi

Tim Quatmann



The Language Ly

Probabilistic Programs
Probabilistic States

Semantics for Ly

Probabilistic States

o A probabilistic state assigns a probability ratio to every
possible assignment of all variables

Consider the program: After execution the variable assignment
is either o1 or o9, where
(x :=0@03 2 :=1); ! 2

oi(x)=1 o1(y) =0 and

if (z =0) then

y =1 o2(z) =0 o2(y) =1
else

y =0 Yielding the probabilistic state 6 with
fi 9(0’1) = 0.7 9(0’2) =0.3

Tim Quatmann



Probabilistic Programs The Language Ly

Probabilistic States
Semantics for Ly

Probabilistic States

o A probabilistic state assigns a probability ratio to every
possible assignment of all variables

@ A variable assignment (= deterministic state) can be seen as a
mapping o: Var — Val

@ The set of all deterministic states is denoted by S

Tim Quatmann




Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

o A probabilistic state assigns a probability ratio to every
possible assignment of all variables

@ A variable assignment (= deterministic state) can be seen as a
mapping o: Var — Val

@ The set of all deterministic states is denoted by S

@ A probabilistic state is a mapping 0: S — [0, 1]
such that ) _s0(0) <1

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

A probabilistic state assigns a probability ratio to every
possible assignment of all variables

A variable assignment (= deterministic state) can be seen as a
mapping o: Var — Val

The set of all deterministic states is denoted by S

A probabilistic state is a mapping 0: S — [0, 1]

such that ) _s0(0) <1

Let: 8(c1) =0.7 6(o2) =0.3
O'1($)Zl 0'1( ):0
oa(x) =0 oa(y) =

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Probabilistic States

o A probabilistic state assigns a probability ratio to every
possible assignment of all variables

@ A variable assignment (= deterministic state) can be seen as a
mapping o: Var — Val

@ The set of all deterministic states is denoted by S

@ A probabilistic state is a mapping 0: S — [0, 1]
such that ) _s0(0) <1

Let: 6(o1) =0.7 0(o2) =0.3 6 can also be depicted by:
oi(z)=1 o1(y) =0 6(c:) | 0.7 03
oa(z) =0 oy(y) = oi(x) 0

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Operations on Probabilistic States

To define the semantics of L, as well as probabilistic predicates,
we need to define the following operations on probabilistic states:
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Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Operations on Probabilistic States

To define the semantics of L, as well as probabilistic predicates,
we need to define the following operations on probabilistic states:

Scaling
(r-6)(o)=r-0(c)

(040" (o) =0(c)+ 0 (o)

Restricting

?0(c) = {9(0) if ¢ is true with respect to o

0 otherwise

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Example: Scaling and Merging

o Consider the probabilistic states 6 and 6':

f(ci) | 03 0.2 0.1 ¢'(0:) | 0.2 0.2
oi(z) | 1 0 © oi(z) | 1 1
oi(y) ] 0 1 0 oily) | 10

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Example: Scaling and Merging

o Consider the probabilistic states 6 and 6':

f(ci) | 03 0.2 0.1 ¢'(0:) | 0.2 0.2
oi(z) | 1 0 © oi(z) | 1 1
oi(y) ] 0 1 0 oi(y) | 1

@ The scaled state 0.5 - 0’ is given by:
(0.5-6")(cy) | 0.1 0.1
oi(y) | 1 0

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Example: Scaling and Merging

o Consider the probabilistic states 6 and 6':

f(ci) | 03 0.2 0.1 ¢'(0:) | 0.2 0.2
oi(z) | 1 0 © oi(z) | 1 1
oi(y) ] 0 1 0 oi(y) | 1

@ The scaled state 0.5 - 0’ is given by:
(0.5-6")(cy) | 0.1 0.1
oi(y) | 1 0
@ The merged state 0 + ¢’ is given by:
(0+6)(0;) |02 05 02 0.1
oi(x) | 1 1 0 0
oi(y) | 1 0 1 0

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Example: Restricting

@ Consider the probabilistic state 6:
f(ci) | 03 0.2 0.1
oi(y) | 0 1 0

and the condition ¢ := (z = 1)

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Example: Restricting

@ Consider the probabilistic state 6:
f(ci) | 03 0.2 0.1
oi(y) | 0 1 0

and the condition ¢ := (z = 1)

@ The restricted states ¢?0 and —c?76 are given by:

c?0(oi) | 0.3 ~c?0(0;) | 0.2 0.1
oi(xz) | 1 oi(x) | 0 0
oi(y) | 0 oi(y) | 1 0

Tim Quatmann



Probabilistic Programs The Language Ly
Probabilistic States

Semantics for Ly

Example: Restricting

@ Consider the probabilistic state 6:
f(ci) | 03 0.2 0.1
oi(y) | 0 1 0

and the condition ¢ := (z = 1)

@ The restricted states ¢?0 and —c?76 are given by:

c?0(oi) | 0.3 ~c?0(0;) | 0.2 0.1
oi(xz) | 1 oi(x) | 0 0
oi(y) | 0 oi(y) | 1 0

@ It holds that ¢70 4+ —c?0 =6

Tim Quatmann



Probabilistic Programs The Language Lpw
Probabilistic States

Semantics for Lpw

Semantics for L,

@ The semantics for Ly, is given by a mapping
D: Lyw — (1T —1I)

where II is the set of all probabilistic states

e D(s)(#) € II is obtained when starting in § and executing s

Tim Quatmann



Probabilistic Programs The Language Lpw
Probabilistic States

Semantics for Lpw

Semantics for L,

@ The semantics for Ly, is given by a mapping
D: Lyw — (1T —1I)

where II is the set of all probabilistic states

e D(s)(#) € II is obtained when starting in § and executing s

D(skip)(0) =6
D(s;s)(0) = D(s')(D(s)(0))

D(s @, 8)(0) = (r-D(s)(0)) + (1= 1) - D()(0))

Tim Quatmann



Probabilistic Predicates

Probabilistic Predicates

@ We need to express conditions on probabilistic states
o Evaluation to either true or false is desired

@ Deterministic predicates as used for non-probabilistic programs
are not feasible
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Probabilistic Predicates

Probabilistic Predicates

@ We need to express conditions on probabilistic states
o Evaluation to either true or false is desired

@ Deterministic predicates as used for non-probabilistic programs
are not feasible

f(c;) | 0.7 0.2 0.1 @ fEx=0Ay<17?
oi(xy[ 1T 0 0
oi(y) | 0 1 0

Tim Quatmann



Probabilistic Predicates

Probabilistic Predicates

@ We need to express conditions on probabilistic states
o Evaluation to either true or false is desired

@ Deterministic predicates as used for non-probabilistic programs
are not feasible

f(c;) | 07 02 01 o fz=0Ay<1
oi(x) 0 0 ...only holds with probability 0.3

1
oi(y) | 0 1 0
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Probabilistic Predicates

Probabilistic Predicates

@ We need to express conditions on probabilistic states
o Evaluation to either true or false is desired

@ Deterministic predicates as used for non-probabilistic programs
are not feasible

f(c;) | 07 02 01 o fz=0Ay<1
oi(x) 0 0 ...only holds with probability 0.3

1
oi(y) | 0 1 0

Solution: Probabilistic predicates
o Consider the probability that a deterministic predicate holds
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Probabilistic Predicates

Probabilistic Predicates

@ We need to express conditions on probabilistic states
o Evaluation to either true or false is desired

@ Deterministic predicates as used for non-probabilistic programs
are not feasible

f(c;) | 07 02 01 o ffar=0Ay<1
oi(z) | 1 0 0 ...only holds with probability 0.3
oy)| 0 1 0 0 0 =Pz =0Ay < 1)=0.3

Solution: Probabilistic predicates
o Consider the probability that a deterministic predicate holds

Tim Quatmann



Probabilistic Predicates

Probabilistic Predicates

e P(dp)=r is a probabilistic predicate for <€ {<,<,=,>,>}

0 =P(dp)=<r < Y _ 0(c) <r
ok=dp
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Probabilistic Predicates

Probabilistic Predicates

e P(dp)=r is a probabilistic predicate for <€ {<,<,=,>,>}

0 =P(dp)=<r < Y _ 0(c) <r

ok=dp
More probabilistic predicates:
e —p, pAqg, TJi:p, ... (common logical operators)
e plx/e] (replace z € Var with e € Exp)
er-p, p+gq, cp (describe scaled, merged, restricted

versions of states satisfying p, ¢)

Tim Quatmann



Probabilistic Predicates

Scaled States

O = r-pif 0 is a scaled state r - §' for some state ¢ that satisfies p
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Probabilistic Predicates

Scaled States

O = r-pif 0 is a scaled state r - §' for some state ¢ that satisfies p

o Consider the state 6:
f(0;) | 0.2 0.1 0.2
o) [ 1 0 0
1

oi(y) 1 0
and the predicate p = (P(L = 0)20.6) A <P(y = 1):0.6>
e 0E=05-p7

Tim Quatmann



Probabilistic Predicates

Scaled States

O = r-pif 0 is a scaled state r - §' for some state ¢ that satisfies p

o Consider the state 6:
f(0;) | 0.2 0.1 0.2 0'(c;) | 04 02 04
oi(z)| 10 0 o) 1 0 0
oy | 1 1 0 oi(y) | 1

and the predicate p = (P(L = 0)20.6) A <P(y = 1):0.6>

@ 0=05-p sinced=0.5-0and 0 =p

Tim Quatmann



Probabilistic Predicates

Merged States

0 |=p+ qif 6 is a merged state 01 + 02 for some states 61, 6
with 61 = p and 02 E g
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Probabilistic Predicates

Merged States

0 |=p+ qif 6 is a merged state 01 + 02 for some states 61, 6
with 61 = p and 02 E g

@ Consider the state 6 and the predicates p and g:
3 2 . N 4
6(ci) | 02 03 01 0 p=Pla=0Ay=1)=0.1

oiz) | 1 1 v
el o 1 o 9=Pa=0=02
e fkEp+q?

Tim Quatmann



Probabilistic Predicates

Merged States

0 |=p+ qif 6 is a merged state 01 + 02 for some states 61, 6
with 61 = p and 02 E g

@ Consider the state 6 and the predicates p and g:
; 2 . N 4
6((0;; | 01 013 OO 00 p=Pax=0Ay=1)=0.1
7i ¢ =P(z = 0)=0.2

oi(y) | 1 0 1 0
@ 0 =p+q since 0 =6, + 02, 0 Epand Oy = ¢ with
61(ci) [ 02 03 0.1 0.2 02(0;) | 0.2
oi(x)y] 1 1 0 0 oi(z) | 0
oi(y) | 1 0 1 0 oi(y) | 0

Tim Quatmann



Probabilistic Predicates

Restricted States

0 |= c?p if 0 is a restricted state c?6’ for some state ¢’ that satisfies p
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Probabilistic Predicates

Restricted States

0 |= c?p if 0 is a restricted state c?6’ for some state ¢’ that satisfies p

@ Consider the states 0 and 6':

f(0;) | 0.2 0.1 ¢'(c;) | 0.2 03 01 04
oi(z) | 1 0 oi(z) | 1 1 0 0
oi(y) | 1 1 oi(y) | 1 0 1 0
@ For ¢ := (y =1) it holds that § = c?¢'

Tim Quatmann



Probabilistic Predicates

Restricted States

0 |= c?p if 0 is a restricted state c?6’ for some state ¢’ that satisfies p

@ Consider the states 0 and 6':

f(0;) | 0.2 0.1 ¢'(c;) | 0.2 03 01 04
oi(z) | 1 0 oi(z) | 1 1 0 0
oi(y) | 1 1 oi(y) | 1 0 1 0

@ For ¢ := (y =1) it holds that § = c?¢'
= 0 = ¢?p for all predicates p that are satisfied by ¢’
= 0 | P(-¢)=0

= 0 (P(true)zr) “~ (]P’(c)zr)

Tim Quatmann



Probabilistic Predicates

Shorthand Notations

e [dp] =P(dp)=1
e pD,q = (r-p) + ((177‘)4})
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Probabilistic Predicates

Shorthand Notations

e [dp] =P(dp)=1
e pD,q = (r-p) + ((177‘)~q>

@ Consider the state 6 and the predicate p:

i(?yi 0i3 067 p=[ly=1V[y=0]
° 0 p
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Probabilistic Predicates

Shorthand Notations

e [dp] =P(dp)=1
e pD,q = (r-p) + ((177‘)~q>

@ Consider the state 6 and the predicate p:

i(?yi 0i3 067 p=[ly=1V[y=0]
° 0 p

@ 0= p®ospsince 0 =01 + 6o
91(0'1') ‘ 0.3 92(0’1) ‘ 0.7
oi(y) | 1 oi(y) | 0

Tim Quatmann



Probabilistic Predicates

Shorthand Notations

o [dp| =P(dp)=
° pDyq = (7“29) + ((1*7‘)-(1)

@ Consider the state 6 and the predicate p:

i(?y; Oi3 067 p=[ly=1V[y=0]
° 0 p

@ 0 =pdpspsince § =01 + 60 =0.3-0] +0.7 - 0, where
01(0;) | 0.3 02(0;) | 0.7 0(0;) | 0(o;) | 1
oi(y) | 1 oi(y) | 0 oi(y) | oi(y) | 0

Note that: 61,6, = p

1
1

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

Hoare Triples for Probabilistic Programs

@ Almost similar to the non-probabilistic case

Tim Quatmann ifying . o ing Hoare Logic



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

Hoare Triples for Probabilistic Programs

@ Almost similar to the non-probabilistic case

e A Hoare triple is of the form {p} s {¢}
e p and ¢ are probabilistic predicates called precondition and
postcondition
e s is a probabilistic program
o {p}s{q} issaid to hold if:
o For all probabilistic states satisfying the precondition p
e ...the resulting state after executing the program s
o ...satisfies the postcondition ¢

o In this case we write ={p} s {q¢}

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

Example: Hoare triples

Consider the Program s:
(z =0dp3x:=1);
if (x =0) then
Y=

Tim Quatmann ifying . o ing Hoare Logic



Hoare Triples
The Derivation System pH

Loops

Hoare Logic for Probabilistic Programs

Example: Hoare triples

Consider the Program s:
(x =0@p3z:=1);
if (x =0) then
=1
else
y=0
fi

o [~ {[true]} s {P(x=0Ay=0)>0}

Tim Quatmann



Hoare Triples
The Derivation System pH

Loops

Hoare Logic for Probabilistic Programs

Example: Hoare triples

Consider the Program s:
(x =0@p3z:=1);
if (x =0) then
=1
else
y=0
fi

o [~ {[true]} s {P(x=0Ay=0)>0}
o [~ {P(true)>0} s {P(y =0)=0.7}

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

Example: Hoare triples

Consider the Program s:

(x =0@p3z:=1);
if (x =0) then

y=1
else
y=0

fi

o [~ {[true]} s {P(x=0Ay=0)>0}
o [~ {P(true)>0} s {P(y =0)=0.7}
o = {[true]} s {P(y =0)=0.7}

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

The Derivation System pH

@ The derivation system H needs to be adjusted to work for
probabilistic programs:
e Handling of probabilistic choices: s @, s’
e Handling of probabilistic states where a Boolean condition
¢ € BC evaluates to true (or false) with probability < 1

@ This yields the new derivation system pH

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

The Derivation System pH

- - {r}s{a} {»}s{q}
ski Ski Or
{p}skip {p} (Skip) VT s (D) (Or)
/el 2 e [ ssien {rlilys{q} Jié¢pa dists
e/l o= (p) (Asign) el JERL (e
(s ('} {0} s'{a} (g {pys{dil} jépa (Forall)
{p}sis’ {q} {p} s {vi:qli]}
v=p {pksla} 424 (50 (s {a} {2} s’} (g
{p'}s{d} {p}ifcthenselses fi{g+¢}
{p}ts{q} {p}s'{d} (Prob) P invariant for (c, s) (While)
{ptsa s {q@. ¢} {p} while cdo s od {p AP(c)=0}

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

The Derivation System pH

pH is correct:
@ Only valid Hoare triples can be derived from pH
@ This can be shown by induction on the depth of a proof tree

o Consider the last used rule and conclude that the obtained
Hoare triple holds

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

The Derivation System pH

pH is correct:
@ Only valid Hoare triples can be derived from pH
@ This can be shown by induction on the depth of a proof tree

o Consider the last used rule and conclude that the obtained
Hoare triple holds

Is pH complete?
e Can we derive every valid Hoare triple from pH?

@ This question is still open

Tim Quatmann



Hoare Triples
The Derivation System pH

Loops

Hoare Logic for Probabilistic Programs

Example: Proof

Consider again the Program s:
(x:=0@®g3 7 :=1);
if (x =0) then

yi=1
else
y:=20

fi

We want to show that

= {[true] } s {P(y =0)=0.7}

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

Example: Proof

Consider again the Program s:

(z=0®03 2 :=1);
if (x =0) then

yi=1
else
y:=20

fi
We want to show that
= {[true] } s {P(y =0)=0.7}
Auxiliary statement:

E{ltrue] } 2 :=0®032 =1 {(P(z = 0)=0.3) A (P(z # 0)=0.7) }

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

Example: Proof

{[true]} x :=0®p3 x =1 { (P(z = 0)=0.3) A (P(z # 0)=0.7) }

Recall the derivation rules: {plz/e]} x:=e {p} (Assign)

!

pP=p {pts{e} q=¢q ons {r}s{q} {p}s'{d} o
W) s(d) (Cons) o ean o {gmngy o)

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops
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{[true]} 2 :=0@ps3x =1 {[z =03z #0]}
{[true]} z :=0@®p3 x =1 { (P(z = 0)=0.3) A (P(z # 0)=0.7) }

(Cons)

Recall the derivation rules: {plz/e]} x:=e {p} (Assign)
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pP=p {pts{e} q=¢q ons {r}s{q} {p}s'{d} o
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Show that
[z = 0] @03 [z # 0] implies (P(z = 0)=0.3) A (P(z # 0)=0.7)
Proof:

0 & [z =0]Gos [z # 0]
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Show that
[z = 0] @03 [z # 0] implies (P(z = 0)=0.3) A (P(z # 0)=0.7)
Proof:

0 | [z =0]@os [z # 0]
— 003 [z=0]+0.7-[z#0]
= 0 = 601 + 65 with 6, = 0.3 ([z = 0])
02 = 0.7 ([z #0])
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Example: Proof

Show that
[z = 0] @03 [z # 0] implies (P(z = 0)=0.3) A (P(z # 0)=0.7)
Proof:

0 | [z =0]@os [z # 0]
— 003 [x=0]+0.7[z#0]
= 0 = 601 + 65 with 6, = 0.3 ([z = 0] AP(z # 0)=0)
02 |= 0.7 ([x # 0] AP(z = 0)=0)
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Example: Proof

Show that

[z = 0] @03 [z # 0] implies (P(z = 0)=0.3) A (P(z # 0)=0.7)
Proof:

0 & [z =0]Gos [z # 0]
— 0=03-[x=0]+0.7 [z # 0]
= 0 = 601 + 65 with 6, = 0.3 ([x = 0] AP(z # 0)=0
02 = 0.7 ([z # 0] AP(z
= 0 = 601 + 05 with 6, = (P(z = 0)=0.3) A (P(c
02 |= (P(z # 0)=0.7) A (P(z =0
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Example: Proof

Show that

[z = 0] @03 [z # 0] implies (P(z = 0)=0.3) A (P(z # 0)=0.7)
Proof:

0 & [z =0]Gos [z # 0]
0 03[ =0] 407 [¢£0]

= 0 = 601 + 65 with 6, = 0.3 ([z = 0] AP(z # 0)=0)
02 |= 0.7 ([x # 0] AP(z = 0)=0)
= 0 = 01 + 0> with 61 |= (P(z = 0)=0.3) A (P(z # 0)=0)
02 = (P(x # 0)=0.7) A (P(z = 0)=0)

= 0 = (P(z = 0)=0.3) A (P(z # 0)=0.7)

Tim Quatmann
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Example: Proof

{[true]} 2 :=0@ps3x =1 {[z =03z #0]}
{[true]} z :=0@®p3 x =1 { (P(z = 0)=0.3) A (P(z # 0)=0.7) }

(Cons)

Recall the derivation rules: {plz/e]} x:=e {p} (Assign)
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Example: Proof

{[true] } x =0 {[z=0]} {[true] } x =1 {[x #0] }
{[true]} 2 =0@ps3x =1 {[z =0]®os3[z #0]}
{[true]} x = 0@p3 x =1 { (P(z = 0)=0.3) A (P(z # 0)=0.7) }

(Prob)
(Cons)

Recall the derivation rules: {plz/e]} x:=e {p} (Assign)

pP=p A{pts{q} q=¢ ons {r}s{q} {p}s'{d} o
W) s(d) (Cons) o ean o {gmngy o)
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Example: Proof

(0=0)r=0{=0)
{[true] } x =0 {[z=0]} {[true] } x =1 {[x #0] }
{[true]} 2 =0@ps3x =1 {[z =0]®os3[z #0]}
{[true]} x = 0@p3 x =1 { (P(z = 0)=0.3) A (P(z # 0)=0.7) }

(Prob)
(Cons)

Recall the derivation rules: {plz/e]} x:=e {p} (Assign)

pP=p A{pts{q} q=¢ ons {r}s{q} {p}s'{d} o
W) s(d) (Cons) o ean o {gmngy o)
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Example: Proof

{l0=0]}z:=0{[z=0]} Ei\:iif)n)

{[true] } x =0 {[z=0]} {[true] } x =1 {[x #0] }
{[true]} 2 =0@ps3x =1 {[z =0]®os3[z #0]}
{[true]} x = 0@p3 x =1 { (P(z = 0)=0.3) A (P(z # 0)=0.7) }

(Prob)
(Cons)

Recall the derivation rules: {plz/e]} x:=e {p} (Assign)

pP=p A{pts{q} q=¢ ons {r}s{q} {p}s'{d} o
W) s(d) (Cons) o ean o {gmngy o)
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Example: Proof

{0=0}2=0{[z=0]} Ei:sf)) A0} =14l 7201} (o
{{true]} 2 :==0{[z=0]} {[true]} = =1{[z#0]} (Prob)
{[true]} z :=0&p3z:=1{[z=0]@p3[x #0] } (Cons)

{[true]} x = 0@p3 x =1 { (P(z = 0)=0.3) A (P(z # 0)=0.7) }

Recall the derivation rules: {plz/e]} x:=e {p} (Assign)

!

pP=p {pts{e} q=¢q ons {r}s{q} {p}s'{d} o
W) s(d) (Cons) o ean o {gmngy o)
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Example: Proof

(Assign) (Assign)

{0=0}z=0{fe=0} = {0#£0}z=1{z£0}
{[true] } o= 0 {[z = 0]} {lrue]y o= 1 {lz 201} o,
{[true]} z :=0&p32:=1{[z =0]@o3[x #0] } (Cons)

{[true]} x :=0@p3 x =1 {(P(z = 0)=0.3) A (P(z # 0)=0.7) }

Recall the derivation rules: {plz/e]} x:=e {p} (Assign)

pP=p A{pts{q} q=¢ ons {r}s{q} {p}s'{d} o
W) s(d) (Cons) o ean o {gmngy o)

Tim Quatmann
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Example: Proof

else
(:L' =0F®g32 = 1);
y:=0
if (x =0) then
fi
y=1
Recall the derivation rules: {plz/e]} x :=e {p} (Assign)
P=p A{p}s{e} q=¢ {ctpys{a}  {~c?p}s"{d}

(Cons) (1)

{p}s{qd} {p}ifcthenselses fi{qg+¢}

Tim Quatmann
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Example: Proof

([true]) else
(:L' =0F®g32 = 1);
y =0
if (x =0) then
fi
y =1 (P(y = 0)=0.7)
Recall the derivation rules: {plz/e]} x :=e {p} (Assign)
P=p A{p}s{e} q=¢ {ctpys{a}  {~c?p}s"{d}

(Cons) (1)

{p}s{qd} {p}ifcthenselses fi{qg+¢}

Tim Quatmann
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Example: Proof

([true]) else
(x =0@03z =1);
((P(z = 0)=0.3) A (P(z # 0)=0.7))
y=20
if (x =0) then
fi
y =1 (P(y = 0)=0.7)
Recall the derivation rules: {plz/e]} x :=e {p} (Assign)

P=p A{r}s{e} q=¢ (Cons) {ctpys{q} {~ctp}s'{q}

{p}s{qd} {p}ifcthenselses fi{qg+q¢} ()

Tim Quatmann
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Example: Proof

[true]) else

P(x # 0)=0.7) y =0
if (x =0) then
fi
y =1 (P(y = 0)=0.7)
Recall the derivation rules: {plz/e]} x :=e {p} (Assign)

!

P=p A{pr}ts{a}t a=g¢ {ctp}s{a} {-etp}s'{d}
{p}s{qd} (Cons) {p}ifcthenselses fi{qg+q¢} ()
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Example: Proof

([true]) else
(x :=0®03z:=1); ((z #0)?(P(z # 0)=0.7))
((P(z = 0)=0.3) A (P(z # 0)=0.7))
(P(x + 0)=0.7) yi=0
if (x =0) then
((z =0)?7(P(z # 0)=0.7)) fi
y=1 (P(y = 0)=0.7)
Recall the derivation rules: {plz/e]} x :=e {p} (Assign)

r=pr A{ptsfe} q=¢ (Cons) {ctpys{a}  {~c?p}s"{d} (1)
{p}s{qd} {p}ifcthenselses fi{qg+q¢}

Tim Quatmann
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Example: Proof

([true]) else
(x =0@03z =1); ((z #0)?(P(z # 0)=0.7))
((P(z = 0)=0.3) A (P(z # 0)=0.7))
(P(x # 0)=0.7) y =0
if (x =0) then
((z =0)?7(P(z # 0)=0.7)) fi
(P(1 = 0)=0)
y=1 (P(y = 0)=0.7)
Recall the derivation rules: {plz/e]} x :=e {p} (Assign)

P=p A{r}ts{a}t a=¢ {ctp}s{a} {-etp}s'{d}
{p}s{qd} (Cons) {p}ifcthenselses fi{qg+q¢} ()
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Example: Proof
([true]) else
(x =0@03z =1); ((z #0)?(P(z # 0)=0.7))
((P(z = 0)=0.3) A (P(z # 0)=0.7))
(P(x # 0)=0.7) y =0
if (x =0) then
((z =0)?7(P(z # 0)=0.7)) fi
(P(1 = 0)=0)
yi=1 (P(y = 0)=0.7)
(P(y = 0)=0)

Recall the derivation rules:

{plz/e]} x :=e {p} (Assign)

P=p A{r}ts{a}t a=¢ {ctp}s{a} {-etp}s'{d}
{p}s{qd} (Cons) {p}ifcthenselses fi{qg+q¢} ()
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Example: Proof
([true]) else
(z:=0®03x :=1); ((z #0)?(P(x # 0)=0.7))
((P(z = 0)=0.3) A (P(z # 0)=0.7)) (P(0 = 0)=0.7)
(P(x # 0)=0.7) y =0
if (x =0) then
((z =0)?7(P(z # 0)=0.7)) fi
(P(1 = 0)=0)
yi=1 (P(y = 0)=0.7)
(P(y = 0)=0)

Recall the derivation rules:

{plz/e]} x :=e {p} (Assign)

r=pr A{ptsfe} q=¢ (Cons) {ctpys{a}  {~c?p}s"{d} (1)
{p}s{qd} {p}ifcthenselses fi{qg+q¢}
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Example: Proof

([true]) else
(x =0@p3z:=1); ((z #0)?(P(z # 0)=0.7))
((P(z = 0)=0.3) A (P(z # 0)=0.7)) (P(0 = 0)=0.7)
(P(x # 0)=0.7) y =0
if (x =0) then (P(y = 0)=0.7)
((z =0)?7(P(z # 0)=0.7)) fi
(P(1 =0)=0)
y=1 (P(y = 0)=0.7)
(P(y = 0)=0)
Recall the derivation rules: {plz/e]} x :=e {p} (Assign)
r=pr A{ptsfe} q=¢ {etpysfa}r  {=c?p}s'{d}

(Cons)

{p}s{qd} {p}ifcthenselses fi{qg+q¢} ()

Tim Quatmann




Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs

Example: Proof

([true]) else
(x =0@p3z:=1); ((z #0)?(P(z # 0)=0.7))
((P(z = 0)=0.3) A (P(z # 0)=0.7)) (P(0 = 0)=0.7)
(P(x # 0)=0.7) y:=0
if (x =0) then (P(y = 0)=0.7)
((z =0)?(P(z # 0)=0.7)) fi
(P(1 = 0)=0) ((P(y = 0)=0) + (P(y = 0)=0.7))
y=1 (P(y = 0)=0.7)
(P(y = 0)=0)
Recall the derivation rules: {plz/e]} x:=e{p} (Assign)
r=p {rtsfe} a=¢ {efpys{ay  {-cW}s'{d}

(Cons)

(If)

{p}s{qd} {p}ifcthenselses fi{qg+¢}

Tim Quatmann
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While Loops

p invariant for (c, s)
{p} while cdo s od {p AP(c)=0}

Recall:

(While)

When is a predicate p invariant for (¢, s)?
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While Loops

p invariant for (c, s)
{p} while cdo s od {p AP(c)=0}

Recall:

(While)

When is a predicate p invariant for (¢, s)?

e If while ¢ do s od always terminates (independent of
probabilistic choices), it suffices to show

= {p} if c then s else skip fi {p}

Tim Quatmann



Hoare Triples
The Derivation System pH

Hoare Logic for Probabilistic Programs Loops

While Loops

p invariant for (c, s)
{p} while cdo s od {p AP(c)=0}

Recall:

(While)

When is a predicate p invariant for (¢, s)?

e If while ¢ do s od always terminates (independent of
probabilistic choices), it suffices to show

= {p} if c then s else skip fi {p}

@ Otherwise, it is additionally required that p is (c, s)-closed
(Definition not trivial and therefore omitted in this talk)

Tim Quatmann



Conclusion

@ The idea of Hoare triples can be applied to probabilistic

programs by using probabilistic states and probabilistic
predicates

@ Proving correctness of Hoare triples can be challenging

@ A new derivation system pH can be used for this purpose
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@ Proving correctness of Hoare triples can be challenging

@ A new derivation system pH can be used for this purpose

@ The approach uses already existing ideas

@ Increasing the potential for other approaches and tools to be
adapted to work on probabilistic programs
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Conclusion

@ The idea of Hoare triples can be applied to probabilistic
programs by using probabilistic states and probabilistic
predicates

@ Proving correctness of Hoare triples can be challenging

@ A new derivation system pH can be used for this purpose

@ The approach uses already existing ideas

@ Increasing the potential for other approaches and tools to be
adapted to work on probabilistic programs

Thank you for your attention!

Tim Quatmann



Semantics for L,

@ The semantics for Ly, is given by a mapping
D: Ly — (IT —1I)

where I is the set of all probabilistic states

@ D(s)() € II is obtained when starting in 6 and executing s
D(skip)(0) = 0

D(z = e)(0) = O[z/eval(e)]
D(s;s')(0) = D(S')(D(S)(Q))
D(s &, 8)(6) = (r-D(s)(0)) + (1= 1) - D()(0))
D(if ¢ then s else ' fi)(6) = ( )(c70) ) ( (s /)(—|c?0)>
(while ¢ do s od)(f) = the least fixed point of ¥
)(0) =9

Tim Quatmann



(c,s)-closeness: Intuition

o Consider sequences of states (6,,)nen Where
e 0, corresponds to the state reached after n iterations of
while ¢ do s od
e 0, | p for the considered predicate p
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(c,s)-closeness: Intuition

o Consider sequences of states (6,,)nen Where
e 0, corresponds to the state reached after n iterations of
while ¢ do s od
e 0, | p for the considered predicate p

@ Consider: while (z =0) do z = 1&g skip od
S—— —
=c =Is

On(oi) | 0.5 1—0.5"
ai(x)‘ 0 1

@ One of the sequences might be:
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e 0, | p for the considered predicate p

@ The limit of the sequence (—¢?6,,),cn also has to satisfy p

@ Consider: while (z =0) do z = 1&g skip od
S—— —
=c =Is
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ai(x)‘ 0 1

@ One of the sequences might be:

Tim Quatmann



(c,s)-closeness: Intuition

o Consider sequences of states (6,,)nen Where

e 0, corresponds to the state reached after n iterations of
while ¢ do s od
e 0, | p for the considered predicate p

@ The limit of the sequence (—¢?6,,),cn also has to satisfy p

@ Consider: while (z =0) do z = 1&g skip od
—_———

T ~
_ . bn(0s) | 05" 1-0.5"
@ One of the sequences might be: i) ‘ 0 1

~¢?0n (o) | 1—0.5" . 0(c;

@ The limit of o:(@) ‘ 1 sz

Tim Quatmann



(c,s)-closeness: Definition

Consider a program while ¢ do s od and a probabilistic predicate p
e A (c,s)-sequence within p is a sequence of probabilistic states
(0n)nen such that
e 0, EpforallneN
o (—¢?0,)nen is an ascending chain
e the probability for ¢ in the state 6, is at least the n-step

termination ratio, i.e.,
> On(0) 27y,
olE=-e

where r?c 5) is the minimum probability that, starting from a

state satisfying p, the loop terminates within n steps
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(c,s)-closeness: Definition

Consider a program while ¢ do s od and a probabilistic predicate p

e A (c,s)-sequence within p is a sequence of probabilistic states
(0n)nen such that
e 0, EpforallneN
o (—¢?0,)nen is an ascending chain
e the probability for ¢ in the state 6, is at least the n-step

termination ratio, i.e.,
> On(0) 27y,
olE=-e

where r?c 5) is the minimum probability that, starting from a

state satisfying p, the loop terminates within n steps
@ The predicate p is (¢, s)-closed if for all (c, s)-sequences
(01 )nen within p the least upper bound of the chain
(—¢?0,, ) nen satisfies p.

Tim Quatmann
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