Verifying Probabilistic Programs Using a Hoare like Logic

Tim Quatmann
Seminar on Probabilistic Programs WS 2014/15
RWTH Aachen, Lehrstuhl fiir Informatik 2
Supervisor: Nils Jansen

February 2, 2015

Abstract

Using Hoare logic is a common way to formally proof correct behavior of a computer
system. So-called Hoare triples of the form {p} s { ¢} are used to verify that the
postcondition ¢ holds after executing a program s, providing that the precondition
p was true at the beginning. The original Hoare logic is only applicable for deter-
ministic programs. However, this class of programs is not sufficient for certain tasks.
Various application areas like computer vision, cryptographic protocols, and biology
motivate the usage of probabilistic programs. In this work, we will discuss how the
idea of Hoare logic can be extended to verify claims regarding probabilistic pro-
grams. For this purpose, a language for probabilistic programs L, is introduced.
Probabilistic predicates are defined in order to make claims about the state of a
probabilistic program. Finally, a derivation system pH is introduced which can be
used to formally proof the correctness of a Hoare triple.

1 Introduction

Unexpected behavior of computer systems can have serious consequences, especially for
critical applications like airplanes or medical equipment. A method to formally proof
the correctness of a program is very helpful to rule out such situations. One common
approach to achieve this is the usage of Hoare logic. The idea is to express predicates
with respect to the variables of the considered program. Depending on the current
state (i.e., the assignment of the variables) these predicates evaluate to either true or
false. We then formulate so-called Hoare triples of the form {p} s {¢}, where p is a
predicate which is called the precondition, ¢ is a predicate called postcondition, and s
is a program. A Hoare triple is said to hold if for all states of the program where the
precondition p evaluates to true, the postcondition ¢ is also true after executing the
program s. Consider, for instance, the Hoare triples {true } x :=2z-3 {zx mod 6 =0}
and{zrmod2=0} 2 :=x-3 {xmod6=0}. While the first Hoare triple does not hold
(e.g., when initially = 1), the second one holds since every even number multiplied with

3 is divisible by 6. For more complex programs, a derivation system H can be used to
verify whether a Hoare triple holds.

The described approach is designed to work for deterministic programs, i.e., programs
where there is no choice between different program flows. However, various application
areas such as computer vision, cryptographic protocols, machine learning, and biology
make use of systems that exhibit probabilistic behavior. In such cases, probabilistic pro-
grams can be used to model the system. One advantage of probabilistic programs is that
they can be expressed in a way similar to widely known programming languages like C
or Java. Moreover, other famous models for probabilistic systems such as Markov Chains
[2] or Bayesian Networks [6] can be encoded as probabilistic programs [5]. Exemplary
applications like skill rating in online games, population models in biology, or sensitivity
analysis regarding erroneous test data in medicine are presented in [5].

In probabilistic programs, a (virtual) coin is flipped and the subsequent steps depend
on the outcome. Such a coin flip is denoted by s @, s’ with the interpretation that the
program s will be executed with probability r and the program s’ will be executed with
probability 1 — r. Consider, for instance, the following program:

T =002z =1

After this step x = 0 holds with probability 0.2 and x = 1 holds with probability 0.8.
Hoare logic is not directly applicable for probabilistic programs since a predicate like
z mod 2 = 0 only evaluates to true with a certain probability. In this work, we will deal
with this problematic.

The topics of this work originate from [3]. A more detailed description can also be found
in the PhD thesis of J.I. den Hartog [4]. However, we are going to focus on the actual
application of the described notions. Involved definitions that are of less importance for
our purposes will therefore be omitted in favor of comprehensive examples.

After a brief introduction to Hoare logic for non-probabilistic programs in Section 2, we
will introduce probabilistic choices for programs and the notion of probabilistic states in
Section 3. Section 4 presents predicates that evaluate to true or false on probabilistic
states. A derivation system to prove the correctness of Hoare triples for probabilistic
programs is given in Section 5. Finally, Section 6 concludes the presented ideas.

2 Hoare Logic for Deterministic Programs

Before we investigate the application of Hoare logic for probabilistic programs, we briefly
present the non-probabilistic case. An extensive treatment of Hoare logic can be found
in [1].

We make use of a simple, but seminal language for programs, so-called while programs.
Let Var be a fixed set of variables. For simplicity, we assume that the value of the

variables range over a fixed set Val (usually, non-negative integers). Expressions as well
as Boolean conditions are terms over the values in Val and the variables in Var. The set
of all Expressions is denoted by Exp, whereas the set of Boolean conditions is denoted
by BC. We want to abstract away from the internal details of expressions and Boolean
conditions. Therefore, we will not define a precise syntax of the elements in Exp and
BC. Instead of that, it is assumed that (given the value of the variables) an expression
evaluates to a value in Val and a Boolean condition evaluates to either true or false. We
can now define the syntax of while programs.

Definition 2.1 (While Program)
A while program is an element of the language £y, which is given by:

s u=skip | z ;=€ | s;s | if c then s else s fi | while ¢ do s od
where x € Var is a variable, e € Exp an expression, and ¢ € BC a Boolean condition. W

The elements of Ly, are also called statements and exhibit the well known semantics.
The statement skip denotes a program that does nothing. If we want to assign the value
of an expression e to some variable x, we write z :=e. A sequence of two statements
s; s’ denotes that s is executed first and after that s’ is executed. Executing a statement
of the form if ¢ then s else s’ fi means that s is executed providing that the condition ¢
evaluates to true. However, if ¢ evaluates to false, the statement s’ is executed. Finally,
while ¢ do s od denotes a while loop. As long as the condition ¢ evaluates to true, the
program s is repeatedly executed. Typically, we use x,y, 2z € Var as variables, e € Exp
as expression, and ¢ € BC as Boolean condition. Occasionally, parentheses will be added
to increase readability.

Ezample 2.2 (A While Program)
Consider the following while program:

if y=2thenz =3 -zelsex:=2-zfi

Assume that initially the value of x is 4 and the value of y is 2. Executing the given
program will change x to 12 and y remains 2. |

An assignment of the variables Var to values in Val is called a deterministic state.

Definition 2.3 (Deterministic State)
A deterministic state is a mapping o: Var — Val. The set of all deterministic states is
denoted by S. [|

In order to describe states in S, deterministic predicates can be used to formulate con-
straints with respect to the variable assignments. These predicates are first order pred-
icate formulae which evaluate to true or false, depending on the values of the variables

given by a deterministic state . We say that a state o € S satisfies a predicate p (written
o |E p) whenever p evaluates to true with respect to o.

Given a while program s for which we want to prove a claim, the idea of Hoare logic is
to formulate Hoare triples of the form {p} s {¢}. Deterministic predicates are used to
formulate a precondition p and a postcondition ¢. Assume that we start with a state
o € S that satisfies the precondition (o |= p). The Hoare triple {p} s { ¢} is said to hold
(written = {p} s {¢}) whenever the state o’ that is reached after executing s satisfies
the postcondition (¢’ = ¢). In this case, we also say that the Hoare triple is valid. Note
that a valid Hoare triple does not imply that the considered program terminates, i.e.,
that for all occurring statements of the form while ¢ do s od the condition ¢ becomes
eventually false. This has to be shown separately.

Exzample 2.4 (Predicates and Hoare Triples for a While Program)

Let us first consider the predicate p = (z mod y = 0) A (y = 2) over the integer variables
x and y. It evaluates to true at every point in the considered program, where the variable
x is even and y equals 2. After executing the program z = 3 - x, the new value of z is
divisible by 3 and still even. Therefore, the predicate ¢ = (x mod 6 = 0) A (y = 2) will
always hold in the resulting state. We can conclude that the following Hoare triple holds.

{pysfg}={(zmody=0A(y=2)}z=3-2{(zmod6=0)A(y=2)} =

In Example 2.4 it is easy to see that the Hoare triple { p} s { ¢} holds. However, if the
considered program is more complex, the derivation system H can be used to verify that
a Hoare triple holds.

Definition 2.5 (Derivation System H)
The derivation system H is given by the following set of rules.

: - {pncys{q} {pA-c}s'{q}
{p}skip {p} (Skip) {p}if cthenselse s’ fi {q} ()

_ ssiomn {pnc}s{p} e
{plz/e]} z:=e{p} (Assign) (o while c do s od {pA] (While)

()0} (0o {0} (o) vop Apksia} a=d (g
{p}sis’ {q} {r'ts{d}

The rule (Skip) states that every predicate that holds before executing the program skip
still holds after the execution. The rule (Assign) states that a predicate p is satisfied after

an assignment of the form z := e whenever the predicate p[z/e] was satisfied before the
assignation. Here, p[x/e] is obtained from the predicate p where all occurrences of x are
replaced by e. For a sequence of two statements s;s’ and a predicate p that is satisfied
before the execution, the rule (Seq) states that ¢ is satisfied after the execution, providing
that there is a predicate p’ which is satisfied after executing s and which is a sufficient
precondition such that ¢ holds after executing s’. The rule (If) handles if-statements
by considering the two cases where the condition c is true and false. Providing that
q is a valid postcondition in both cases, it can be obtained that ¢ is also a valid post
condition for the whole statement. To treat a statement of the form while ¢ do s od, the
rule (While) can be applied. Here, the precondition p has to be invariant; providing that
the condition cis true and after executing the program s, p still has to hold. In this case,
we know that c is false after the execution of the whole while-statement and the predicate
p still holds. The consequence rule (Cons) can be used to strengthen a precondition or
to weaken a postcondition.

Ezxzample 2.6 (Proof Using the Derivation System H)
Let s be the while program from Example 3.2. To verify that the Hoare triple

{zmody=0A(y=2Vy=3)}s{rmod6=0}

holds, the following proof is provided.

(xmody=0A(y=2Vy=23))
if (y=2) then
(zmody=0A(y=2Vy=3)Ay=2) (1)
(3-2mod 6 =0)
r=3 -z
(x mod 6 = 0) (1)
else
(zmody=0A(y=2Vy=3)Ay#2) ()
(2-x mod 6 =0)
r=2-
(x mod 6 = 0) (1)
fi
(x mod 6 = 0)

Note that a proof outline is provided instead of a proof tree to increase readability.
Predicates are depicted in (angle brackets). Whenever a predicate is followed by another
predicate, the rule (Cons) has been applied.

In the first step, we apply the rule (If) which yields the predicates marked with (f). The

application of the rule (Cons) in both cases is valid, since

zmody=0A(y=2Vy=3)Ay=2 zmody=0A(y=2Vy=3)Ay#2
=3-2mod3-y=0Ay=2 =2-zmod2-y=0Ay=3
=3-xmod 6 =0 =2-xmod 6=0

Finally, we apply the rule (Assign) in both cases to obtain the desired post condition
x mod 6 = 0. |

3 Introducing Probabilistic Choice

For many applications it is necessary to allow probabilistic choices in a program. For
this purpose we introduce the operator @, to the language of while programs L, from
Definition 2.1. We then obtain the language of probabilistic programs.

Definition 3.1 (Probabilistic Program)
A probabilistic program is an element of the language L, which is given by:

su=skip|z:=e|s;s|s®,s|if cthen s else s fi | while ¢ do s od

where x € Var is a variable, e € Exp an expression, r € (0,1) C R a probability ratio,
and ¢ € BC a Boolean condition. [|

Let s and s’ be statements in Ly, and r € (0,1) C R. A statement of the form s &, s’
can be interpreted as a (biased) coin flip. With probability r the coin shows “heads”,
which means that the statement s is executed. Analogously, the coin shows tails with
probability 1—r and in this case s’ is executed. Beside the new operator for probabilistic
choices, the ingredients of Ly are analogously defined to L, (including the sets Val,
Var, Exp and BC).

Exzample 3.2 (Two Simple Probabilistic Programs)
Consider the two probabilistic programs s; and s, over Var = {z,y} and Val = N
depicted below.

S1: So:
(x=0Do3 2 :=1); z = 0;
if (x =0) then y = 0;
y=1 while (y < N) do
else y =1y + 1;
y=20 (x =2+ 1 Dg skip)
fi od

In s; we start with flipping a biased coin: with probability 0.3 the value 0 is assigned to
the variable x. Otherwise, x gets the value 1. The contrary value is then assigned to the
variable y.

The probabilistic program s, simulates N coin flips of a (biased) coin that shows “heads”
with probability R. Note that N and R are constants and assumed to be specified before
execution. The number of already performed coin flips is counted by the variable y. The
variable = is used to count the number of times where the coin shows “heads”, as x is
incremented with probability R in every iteration. |

In the next section, we will discuss predicates for probabilistic programs which evaluate
to true or false, depending on the state of the program. In general, a deterministic state
o: Var — Val does not capture enough information to describe the state of a probabilistic
program as the value of a variable may depend on former probabilistic choices. For
instance, after executing the program s; from Example 3.2, the value of the variable x
is 1 only with a certain probability. The notion of probabilistic states is introduced to
describe all possible variable assignments together with the corresponding probabilities.
It is not sufficient to treat the possible assignments of every variable individually since
their values may depend on each other. After executing the program s; from Example
3.2, for instance, we have that x = 1 with probability 0.7 and y = 1 with probability
0.3. However, the probability that both, x = 1 and y = 1, hold is 0. To capture all
information, we will consider the probability that an assignment of all variables (i.e., a
deterministic state) holds.

Definition 3.3 (Probabilistic State)
A probabilistic state is a mapping 0: S — [0, 1] such that) __s60(c) < 1. The set of all
probabilistic states is denoted by II. |

Recall that according to Definition 2.3, S is the set of all deterministic states. Hence, a
probabilistic state assigns probabilities to deterministic states. (o) = r means that the
variable assignment corresponds to o € S with probability r € [0, 1].

The semantics for Ly can now be defined as a mapping D: Ly, — (II — II) that states
how a probabilistic state changes after a given program is executed. Assuming that 6 € 11
is the current state, then # = D(s)(#) is the new probabilistic state that is reached after
the program s has been executed. A formal definition of D is omitted in this work since
it is of less importance for the application of Hoare logic. For more information, we refer
to [3].

A probabilistic state § € II is substochastic, i.e., > .g0(c) < 1. The “missing” prob-
ability can intuitively be described as the probability of not reaching that part of the
program. An example for this is a statement of the form if ¢ then s else s’ fi. For the if
case, we only consider the deterministic states where the condition c is true. In this case,
the probabilities for the deterministic states where ¢ is false are missing. Another reason
for missing probabilities can be a loop which does not terminate with probability 1. The

difference between the sum of the probabilities before and after executing a statement of
the form while ¢ do s od corresponds to the probability of non-termination.

Ezample 3.4 (Probabilistic State)

Assume that for the current state 8 € I, the sum of the occurring probabilities is 1, i.e.,
Y oes (o) = 1. After executing the program s; from Example 3.2, the values of the
variables x and y correspond to one of the deterministic states 01,09 € S, where

o1(x) =1 o1(y) =0 and oo(x)=0 oa(y) = 1.
The corresponding probabilistic state ' € II is given by
9/(01) =0.7 and (9/(02) =0.3.

As a more compact notation, we can also depict a probabilistic state in form of a table:

0 (c:) | 0.7 0.3
oi(z) | 1 0
oi(y) | 0 1

Deterministic states o € S with §(c) = 0 are usually omitted whenever a probabilistic
state @ is depicted. [|

We will now define some operations on probabilistic states in order to ease the definition
of probabilistic predicates in the next section.

Definition 3.5 (Operations On Probabilistic States)
Restricting, scaling and merging of probabilistic states is defined as follows.

20(0) O(o) if ¢ is true with respect to o
c?(o) =
0 otherwise

(r-0)(o)=r-0(c) if > (r-6(c") <1
o’'eS
(O +06)(0)=0(0)+0(c) it Y (6(c')+0(c")) <1
o’'eS

where 0,6’ € I, ¢ € BC, r € (0,1), and o ranges over all deterministic states in S. W

A state ¢?70 € II is a restriction of 6 such that only the deterministic states ¢ € S
are considered, where ¢ evaluates to true. The deterministic states where c is false are
suppressed, i.e., their probability is set to 0. With r -6 € II we can express a scaled
version of 6 in terms of the probabilities 6(c). In 6 + 6’ € II, the probabilities occurring
in both probabilistic states 0,0" are added. This state can be considered if we want to
merge two probabilistic states.

Exzample 3.6 (Operations on Probabilistic States)
Consider the two probabilistic states 6,6 € I

f(c;) [03 0.2 0.1 ¢(0i) | 02 0.2
O’Z(l') 1 0 0 al(x) 1 1
oiy) | 01 0 oiy) | 10
Let ¢ = (x = 1) € BC. Applying the operations defined above yields:
c?0(o) | 0.3 —c?0(0;) | 0.2 0.1
oi(x) | 1 oi(z)] 0 0O
ai(y) | O oiy) | 10
(0.5-6")(03) | 0.1 0.1 (0+9’ Z) | 0 2 05 02 0.1
oi(x) | 1 1 (z) 1 0 0
oi(y) | 1 0 (y) 0 1 0
It is also easy to see that ¢?0 4+ —c?0 = 6. Note that this equation holds for arbitrary
f €11 and ¢ € BC. |

4 Probabilistic Predicates

We now discuss how predicates for probabilistic states can be formulated. We already
mentioned that we want to formulate predicates that, given a probabilistic state, evaluate
to either true or false. Another option is to consider deterministic predicates, i.e., first
order predicate formulae like it is done for deterministic programs. Such a predicate can
then be seen as a function which takes a probabilistic state # and maps it to a probability
ratio r € [0, 1]. The interpretation is that the predicate is satisfied in 6 with probability
r. Such an approach is used in e.g. |7, 8]. However, we will later see that the idea of
Hoare logic is almost directly applicable if we consider predicates that clearly evaluate
to either true or false. Such predicates will be called probabilistic predicates. The basic
idea is to use a construct of the form P(dp)<econst to express that the probability of the
deterministic predicate dp to hold is < econst, where <€ {<, <, =,>,>}.

Definition 4.1 (Probabilistic Predicate)
The syntax of probabilistic predicates is given by

pu=P(dp)<econss | p+p|r-plc?pl-plpVplpAp|lp—p|3iip|Vi:ip

where dp is a deterministic predicate (i.e., a first order predicate formula), <€ {<, <,
=,>,>}, €const 18 an expression without program variables that evaluates to a number
in [0,1], r € (0,1) C R, and ¢ € BC. Let 6 € II be a probabilistic state and p and ¢ two

probabilistic predicates. The satisfaction relation “=" is defined as follows.

0 k= P(dp)=econst Y 0(0) < econst
o dp
0 = p + q iff there are 61,05 € 1T with = 61 + 05, 61 = p, and 65 = ¢
Okr-piffthereisa @ el with@=7r-60 and 0 =p
0 = c?p iff there is a 6 € II with 6 = ¢?0’ and ¢’ |= p.

The remaining logical constructs are defined as usual. |

Substitution of a variable x by an expression e on a probabilistic predicate p (written
plz/e]) is passed down until a deterministic predicate is reached, e.g.:

(P(dp)<€C0HSt)[x/e] = IED(dp[l’/e])<econst
(p+a)lz/e] = plz/e] + q[z/€]
(c?p)lz/e] = clz/e]7plx/e]

We make use of the following shorthand notations:

pErg=r-p+(l=r)-q
[dp] = P(dp)=1
not ¢ = P(¢)=0
true = P(true)>0

Intuitively, a state satisfies a predicate of the form p+ ¢ if it is a merged states obtained
from two states that satisfy p and ¢, respectively. The predicate r - p is satisfied by
a state, whenever the state is a scaled version of another state satisfying p. The two
ideas are combined in the predicate p @, ¢, which is satisfied if the considered state is a
merged state obtained from two parts that are scaled versions of states satisfying p and
q, respectively. A predicate of the form ¢7p is satisfied by a state, whenever that state is
the restricted “c-part” of another state that satisfies p.,

Ezample 4.2 (Probabilistic Predicates)
Consider the following probabilistic states 6 € II.

f(c;) |02 03 01 04
oi(x)[1 1 0 0
oi(y) | 1 0 1 0

It holds that 6 = (P(z = 1)=0.5) A (P(z = 0)=0.5). For p; = (P(z =0Ay=1)=0.1)
and py = (]P’(:U = 0):0.2) it holds that 6 |= p1 + p2 as we can write 8 as 01 + 0 such that
01 = p1 and 0y [= pa:

61(c;) [02 0.1 0.2 02(ci) | 0.3 0.2
oi(z) | 1 0 oi(z) | 1 0
oi(y) | 1 1 0 oi(y) | O 0

10

It is easy to see that the state 0; satisfies 0.5- ((P(y =1)=0.6)A(P(x=0Ay = 0)20.4)).
Let us now consider the predicate g given by [y = 1] V [y = 0]. We can see that 6 £~ ¢
since the probability for y = 1 sums up to 0.3 < 1 and for y = 0 we obtain the probability
0.7 < 1. However, q @3 ¢ is satisfied by 6 as there are 0],6, € II such that 67,6, | q
and 6 can be split into 0.3 - 6] 4 0.7 - 6}:

01(cs) | 2/3 1/3 0(cs) | 3/7 47

ag; x) 1 0 g; l’) 1 0

oi(y) | 1 1 oi(y) | 0 0
0.3-601(c;) | 02 0.1 0.7-0(c;) | 03 04
oi(z) | 1 0 oi(z) | 1 0
oi(y) | 1 1 oi(y) | 0 0

Let 6. be the state 0.3 - 0] depicted above. For ¢ = (y = 1) € BC it holds that 6, = ¢?6
and therefore the predicate ¢?p is satisfied by 6. for all p with § = p. The reverse
direction, however, does not hold since there are other states 6’ for which 6. = ¢?6’. R

Up to our knowledge, it is not clear whether 6 |= p is decidable for arbitrary probabilistic
states 6 and probabilistic predicates p. Consider, for example, a predicate of the form
p+ q. As there are infinitely many possibilities to write a state 6 € 11 as a merged state
0 = 01+ 09, it is not trivial to prove that there are no 61, 02 for which 6 = p and 05 = q.
Note that [3] does not deal with this problem.

Working with probabilistic predicates frequently requires to show that a predicate p
implies another predicate ¢, i.e., V0 € II: § = p = 6 |= ¢. Such implications are not
always trivial, although they may seem clear at first sight. In Example 4.2, for instance,
we have already seen that, in general, p &, p does not imply p. It should also be noted that
not every probabilistic predicate implies [true] as we allow > ;.. 0(0) = > cs <1
and thus 0 = P(true)#1. Similar to the problem of deciding 6 = p, it is also not clear if
it is decidable whether p implies ¢ for two probabilistic predicates p and g. Some correct
implications are presented in the following example.

Ezxzample 4.3 (Implications for Probabilistic Predicates)
For a deterministic predicate dp, r,7’ € (0,1) and ¢ € BC' it holds that

r-P(dp)=r' implies P(dp)=r -1, (1)
[dp] ®, [~dp] implies (P(dp)=r) A (P(~dp)=1—r), and (2)
c?p implies P(—c)=0. (3)

11

Let 0 € II be an arbitrary probabilistic state. Implication (1) holds since:

0 r-P(dp)=r
— there is a @' such that § =7 - 60" and ¢’ |= P(dp)=r'
— there is a §' such that Z 0(o) = Z r-0'(c)=r- Z 0'(c)=1r-r
O"de O')de o'):dp
——

= 0 = P(dp)=r -7’ B
The implication (2) can be proven as follows:
0 &= [dp] &, [dp]
= there are 01, 03 such that 0 = 6, + 63, 61 =1 - [dp] and 6 = (1 —) - [=dp]
L there are 61,602 such that 6 = 61 + 02, 61 = P(dp)=r and 6 = P(—~dp)=(1—r)

We also know that 6, = P(—dp)=0 and 6 = P(dp)=0 because otherwise

YNoooy= > bo)= D> o+ D 60

ol=true oE=(dpVv-dp) oE=(dpVv—dp) ol=(dpVv—dp)
= (TJr Z 91(0)> + ((1 —r)+ Z 92(0)) >1
oE=—dp oE=dp

would hold. We can conclude that 0 |= (P(dp)=r) A (P(=dp)=1 —r).

Finally, implication (3) is correct since:

0= c?p

= there is a ' such that 6 = c?¢’

= 0(0) = 0if ¢ is false with respect to o € S

= > 0(0)=0 = 0 | P(~c)=0 |
obe

5 The Derivation System pH

In the previous section we presented probabilistic predicates which, given a probabilistic
state, evaluate to true or false. With this notion the idea of Hoare triples as introduced for
deterministic programs is directly applicable for the probabilistic case. A Hoare triple for
probabilistic programs is of the form {p } s { ¢ } where p and ¢ are probabilistic predicates
(called pre and postcondition) and s € Ly, is a probabilistic program. Analogous to the
deterministic case we write = {p} s {¢} to denote that a Hoare triple holds, i.e.,

E{p}s{q}iff VO eIl: 0 =p= D(s)(0) = q.

12

Recall that D(s)(0) is the resulting probabilistic state after executing the program s and
starting in 6. To make assertions for (parts of) probabilistic programs, Hoare triples can
be formulated. It then remains to prove that a Hoare triple holds.

Exzample 5.1 (Hoare Triples for Probabilistic Programs)
Counsider again the programs s; and sp from Example 3.2:

S1: Sa:
(x =0@p3z:=1); x = 0;
if (x =0) then y = 0;
y=1 while (y < N) do
else y=vy+1
y:=0 (x :=x 4+ 1 Dp skip)
fi od

Here N € N and R € [0, 1] are constants. The Hoare triples

= {[true] } s; {P(y =0)=0.7} and
= { [true] } s2 {P(z = N)>R" }

are valid. In both cases we start with a state where the probabilities sum up to 1. After
executing the probabilistic choice at the first line of the program s;, we know that x is 1
with probability 0.7. Therefore, the else case (i.e., y := 0) is executed with probability 0.7
and the program ends in a state which satisfies the stated postcondition. For the program
So, we consider the case where x will get the value N. Such a variable assignment is
only obtained if we execute x := x 4 1 in all of the N iterations of the while-loop. Basic
probability theory yields that this will occur with probability RY and therefore the given
postcondition holds. We will later formally proof the correctness of both Hoare triples.
Two examples for Hoare triples that do not hold are given by:

{ [true] } s; {P(x=0Ay =0)>0} and
{true} s; {P(x = N)>R" }.

There are two possible program flows for the program s;. Depending on the outcome of
the initial “coin flip” we either execute x := 1 or y := 1. Hence, it is not possible to end
with a variable assignment where x = y = 0. The precondition of the last Hoare triple
is satisfied for all states, including states 6 with 6 |= P(true) = 0. Starting from such a
state we can not “grow” the required probability to satisfy the postcondition. |

In the example above, it was more or less easy to see whether a Hoare triple holds or
not, as the considered programs were simple. In general, this task is not trivial. The
derivation system pH can be used to ease this task.

Definition 5.2 (Derivation System pH)
The derivation system pH is given by the following set of rules.

13

» i {pts{q} {r'}s{dq} -
{p}skip{p} (Skip) VT s (4] (Or)

x/el} zi=e ssign {rbil} s {a} jépa Xists
{plafel}ai=e{p} (Assign) e (Exists)

{r}s{r} /{p’}S’{q} (Seq) {p}s{dil} Jjénrg (Forall)
{p}sis’{q} {p}s {Vi:qli]}

P=p {pksia} 4240 o Atslad {=p}s'{d} g

{p}ys{d} {p}ifcthenselses fi {qg+q}
{r}s{q} {p}s'{d} (Prob) p invariant for {c, s) (While)
{pts®d, s {q&,q} {p} while cdo s od {p Anotc}

The rules (Skip), (Assign), (Seq), and (Cons) are similar to the rules of the derivation
system H for non-probabilistic Hoare logic given in Definition 2.5. It should, however, be
noted that we now consider probabilistic predicates instead of deterministic predicates.

The rules (Prob), (Or), (Exists) and (Forall) are new. Statements of the form s &, s’
can be handled with the help of the (Prob) rule. Here the postconditions ¢ and ¢ for the
statements s and s’ are combined to the predicate q &, ¢’ which considers the probability
of executing s or s’. The rules (Or), (Exists) and (Forall) can be used to handle the
logical constructs that occur in a predicate.

The rules (If) and (While) are different to the rules for non-probabilistic Hoare logic.
The intuition is that, given a probabilistic state, a condition ¢ € BC only evaluates to
true (or false) with a certain probability. For an if statement and a state that satisfies
a predicate p, we split the state into a part where c is true and a part where c is false.
Note that these parts satisfy ¢?p and —¢?p, respectively. The (If) rule then states that
these parts are the initial situation before executing s and s’. The postconditions ¢ and
¢’ can then be combined to g + ¢'.

For the rule (While) we need to define when a predicate p is invariant for (c,s). For now
let us assume that the considered program terminates, i.e., the program terminates for
all possible outcomes of the probabilistic choices. In this case, the probabilistic predicate

14

p is invariant for (c,s) if

= {p} if c then s else skip fi {p}.

Providing that p is invariant and satisfied before executing a while loop, the rule (While)
states that p is also satisfied after the loop and that the condition cis true with probability
0.

Exzample 5.3 (Verification of a Program without Loops)
Consider the program s; from Example 3.2 as well as the Hoare triple

{[true] } s1 {P(y =0)=0.7}

from Example 5.1. We want to use the derivation system pH in order to prove that the
Hoare triple holds. As an auxiliary statement we start with showing that

= {[true]} 2 :=0@®032z =1 {(P(z = 0)=0.3) A (P(z # 0)=0.7) }.

The following proof tree depicts how this statement can be derivated with using pH.

(Assign) (Assign)
0=0o=04=0 . - 020 e=11le#00) ,
{[truel} & =0 {[w = 0]} Hruel b o =1 {fz 201})

{[true] } =0@®g3z =1 {[x =0]Do3[x #0]}

(ltruel} o= 0805 0= 1 { (Bl = 0)=03) A (PG £0)=01) }

In the last application of the rule (Cons), we makes use of the fact that
[z = 0] @®o.3 [z # 0] implies (P(z = 0)=0.3) A (P(z # 0)=0.7)

which is a special case of the implication (2) which we already proved in Example 4.3. The
remaining steps are simple applications of the rules from pH. For the rest of the proof we
use an outline notation. Similar to the non-probabilistic case, we will use (angle brackets)
to depict predicates. Whenever a predicate is directly followed by another predicate, the
rule (Cons) has been applied.

([true])
(x :=0®p3 7 :=1); else
((P(z = 0)=0.3) A (P(z # 0)=0.7)) ((x #0)?(P(x # 0)=0.7))
(P(z #0)=0.7) (P(0 = 0)=0.7)
if (x =0) then y=0
((z =0)?7(P(x # 0)=0.7)) (P(y = 0)=0.7)
(P(1 = 0)=0) fi
yi=1 ((Bly = 0)=0) + (B(y = 0)=0.7))
(P(y = 0)=0) (P(y = 0)=0.7)

15

The validity of the Hoare triple for the first statement has already been shown above.
The implication after entering the if case relies on the fact that 6 = P(false) = 0 for all
0 € II. After entering the else case, we use the following statement. Whenever 6 |= ¢?p
it holds that 6(c) = 0 for all 0 = —c. Hence, the probability for true can not be larger
then the probability for ¢. Finally, the probabilities for y to equal 0 for the if and the
else cases are added. |

Ezxzample 5.4 (Verification of a Program with a Terminating Loop)
Consider the program s from Example 3.2 as well as the Hoare triple

= {[true] } so {P(z = N)ZRN}

from Example 5.1. It is assumed that N € N and R € [0, 1] are constants and fixed before
executing the program. We prove the validity of the Hoare triple using the derivation
system pH:

([true])
(0=0A0=0])
z = 0;

{
Y
([xr=0Ay=0])
(Ply=2=N)>RV)V (3i< N: P(y =2 =1i)>R"))
while (y < N) do
y=y+1
z:=x+ 1&g skip
od
<<(P(y:x:N)2RN) VEI<N:Ply== :i)ZRi)) Anot (y < N)>
(P(x = N)>RN)

Here it is assumed that the predicate p given by
(P(y=2=N)>RV)V (Ji< N: Py =2 =i)>R')

is invariant for (c, s), where ¢ = (y < N) and s is the program inside the while-loop. The
predicate p A not (y < N) implies the requested postcondition P(z = N)>R" since

forall eTl: O TFi<N:Ply=x=1i)>R Anot(y <N)

and P(y = z = N)>R" implies P(x = N)>R". (Note that proving the postcondition
P(x = N)=R" would require a stronger invariant).

To prove that p is invariant for (c, s), we first observe that s, always terminates. Hence,
we only need to show that {p} if ¢ then s else skip fi { p} holds. Applying the rule (Or)

16

yields that proving the validity of
{P(y =2 = N)>R" } if c then s else skip fi { p} and (%)
{3 < N:P(y=2=14)>R"} if cthen s else skip fi {p} (k)

suffices. This can be done the following way:

proof for (*): proof for (H*):
(P(y =2 = N)>R") (3i < N:P(y =z =1)>R")
if (y < N) then if (y < N) then
{((y < N)?(P(y =z = N)>RN)) {(y <N)?(3i < N:P(y =2 =1i)>R"))
(true) (J<N:Ply+l=z+1=14)>R"1)
y=y+1 y=y+1L
(true) (J<N:Ply=z+1=i)>R" 1)
z:=x+ 1&g skip r:=x+ 1Pk skip
true (B <N:Ply=z=1i)>R"") &g (true))
(< N:P(y=2=1i)>R")
else else
{(y=N)?(P(y =2 = N)>RN)) {((y=N)?(3i < N: P(y =2 =i)>R"))
(P(y =z = N)>RV) (true)
skip skip
(P(y =z = N)>RV) (true)
fi fi
((true) + (P(y =2 = N)>=RN)) ((3i < N:P(y==z=1)>R") + (true))
(P(y =2 =N)>RY) (3 < N:P(y=xz=1i)>R")
(p) (p)

In the proof for (x) we use that a predicate of the form ¢?q implies ¢, providing that ¢
only considers deterministic states for which the condition c is true. For the implication
after the if-statement, we use that a state § € 1I that satisfies a predicate of the form
true + P(dp)>r also satisfies P(dp)>r, since 6 can be split into 6; + 65 such that

Y bo)=> bi(o)+ > bafo) =

olE=dp ok=dp olE=dp

>0 >r

The proof for (xx) uses similar ideas. The probabilistic choice (z :=x + 1 @g skip) is
handled by using that the Hoare triples

{EIZ'SN:P(y:x—l—l:i)zRi*l}x::x—i—l{EligN:IP’(yzxzi)ZRifl}and
{FI<N:Ply=z+1=149)>R"1} skip { true}

are valid. This can easily be seen by applying the rules (Assign), (Skip) and (Cons) using
that every predicate implies true. |

17

Let ¢ € BC and s € L. To apply the rule (While) from pH on a program of the
form while ¢ do s od, we need to show that a predicate p is invariant for (c,s). In order
to do so, we have already seen that the Hoare triple { p } if ¢ then s else skip fi { p } has
to be valid. If the considered while-loop terminates for all possible outcomes of the
probabilistic choices, this condition suffices. Otherwise, the loop only terminates with a
certain probability. It is then additionally required to show that p is (e, s)-closed.

To clarify the idea of (c, s)-closeness, let us first consider sequences of probabilistic states
that we will call strong (c, s)-sequences within p.

Definition 5.5 (Strong (c, s)-sequence)
A strong (c, s)-sequence within a probabilistic predicate p is a sequence of probabilistic
states (0,)neny where

e every 0, satisfies p and

e 0, corresponds to the state that is reached after n iterations of the while-loop. W

Thus, the successor 0,11 of some state 6,, can be obtained by executing s on the c-part
of 0,, (the —c-part remains untouched), i.e., 0,41 = D(s)(c?0,,) + —c?0,,. We can directly
derive that —¢?0,,11(0) > —¢?0, (o) for all n € N and o0 € §. The sequence (—¢?0p,)neN
can therefore be seen as an ascending chain. The predicate p is (c, s)-closed if the least
upper bound of this chain satisfies p for all considered sequences.

Ezample 5.6 (Strong (c,s)-sequence)
Let us consider the following probabilistic program:

while (z = 0) do x := 1 @ 5 skip od
N—— —

As well as the predicate p = ([z # 0]) V Ji: ((IP’(Q: =0)=0.5") A (P(z # 0)=1 — 0.5i)>.

The sequence of states (0,,),cn depicted below is a strong (c, s)-sequence within p.

0,(0;) | 0.5 1-05" =c20,(0;) | 0 105" 0(ci) [0 1
oi(z) ‘ 0 1 oi(z) ‘ 0 1 oi(z) ‘ 0 1

The state 6 € II is the least upper bound of the ascending chain (—c?0,,)nen. As 6 = p,
the condition for (c, s)-closeness is satisfied for this particular sequence.]

However, for (c, s)-closeness, we do not only consider strong (c, s)-sequences. Doing so
would be challenging as finding exactly these sequences can be hard. Instead of that we
weaken the constraints and consider (c, s)-sequences.

Definition 5.7 ({c, s)-sequence)

A (¢, s)-sequence within a predicate p is a sequence of probabilistic states (6,)nen such
that

18

e every 0, satisfies p,
e (—¢?0,)nen is an ascending chain, and
e the probability for —c¢ in the state 6,, is at least the n-step termination ratio, i.e.,

> On(o) =7

okE=—c |

The n-step termination ratio 'r< s) is the minimum probability that, starting from a state
satisfying p, the loop terminates within n steps, formally

r?c,s> = inf {Zakﬁcﬁg(a)

(0!)nen is a strong (c, s)-sequence within p} :

The predicate p is (¢, s)-closed if for all (¢, s)-sequences (0,)nen Within p the least upper
bound of the chain (—¢?6,),cn satisfies p.

Exzample 5.8 (Verification of a Program Requiring {c,s)-Closeness)

Consider again the program while ¢ do s od as well as the predicate p from Example
5.6. Observe that [x = 0] implies p and p A not ¢ implies [x # 0]. Hence, it is easy to
prove that the Hoare triple { [xt = 0] } while ¢ do s od { [z # 0] } holds, assuming that p
is invariant for (¢, s). To prove = {p } if ¢ then s else skip fi { p } we apply the rules (Or)
and (Exists) and derive:

([x # 0]) ((P(x =0)=0.5") A (P(z # 0)=1 — 0.5))
if (x =0) then if (x =0) then
(@ = 0)?[# 0]) ((z=0)7((Plx = 0)=0.5) A (P(z £ 0)=1 — 0.5)))
(P(true)=0) ((P(z = 0)=0.5") A (P(z #)=0)>
z =1 @5 skip T =15 skip
(P(true)=0) ((P(z # 0)=0.5"T1) A (P(z = 0)=0.5""1))
else else
((z # 0)?[x # 0]) <(z 0)7<(IP’(90 = 0)=0.5") A (P(z # 0)=1 — o.5@'))>
([x # 0]) ((P(z =0)=0) A (P(z # 0)=1 — 0.5%))
skip skip
([x # 0]) ((P(z = 0)=0) A (P(z # 0)=1—0.5%))
fi fi

((Pirue)=0) + ([z £ 0)) | {((Ple #0)=05"1) A (P(z = 0)=0.5"1))
+((]P’(x = 0)=0) A (P(z # 0)=1 — 0. 5i)>>
([z #0]) ((P(z =0)=05"") A (P(z #0)=1-0.5"1))
(p) (p)

19

As the program does not terminate for all probabilistic choices, it remains to show that
p is (c,s)-closed. We first inspect the m-step termination ratio r?c,s)' To this end, let
(0],)nen be a strong (c, s)-sequence within p. The first case is that), satisfies [z # 0]. The
prove above can be used to see that then ¢}, |= [z # 0] and therefore >, 07,(0) = 1 for
every n € N. The second case is that) satisfies (P(z = 0)=0.5") A (P(z # 0)=1 — 0.5")
for some i > 0. Again, the prove above can be used to see that 0, = (P(z = 0)=0.5""") A
(P(z # 0)=1— 0.5"") for every n € N. Hence, D oopctnlo) =1- 0.5t" > 1 - 0.5",

Taking the minimum from both cases, we conclude that 7“23 5 = 1-0.5™

Let now (0,,)nen be an arbitrary (c, s)-sequence within p. We have to show that the least
upper bound of the ascending chain (—¢?6,),cn satisfies p. For a state #,, we know that
> obctn(o) = Tlesy = 1 —0.5" This implies that Yo €?0n(0) = 1 —0.5". For
the least upper bound 6 € IT of the chain (—¢?6n)nen We obtain }- 6(c) > 1. With
—¢ = (z #0), this yields 0 |= [z # 0] and therefore |= p holds. [|

It should be noted that whenever the termination of a loop while ¢ do s od is independent
of the probabilistic choices, a predicate p is always (c, s)-closed. This justifies that we do
not have to check for (c, s)-closeness in this case. To see this, let us consider an arbitrary
(c, s)-sequence (0)nen. We can observe that there is always an m € N such that the loop
has terminated after at most m iterations (m might depend on the state 8y). Therefore,
the least upper bound of the chain (—c?0,),cn always satisfies p as it is equal to 6,,.

6 Conclusion

In this work, we have seen how a Hoare like logic can be used to verify probabilistic
programs. For this purpose, a language for probabilistic programs, called L, has been
introduced. While executing such a program, the assignment of the occurring variables
depends on probabilistic choices. Probabilistic states have been considered in order to
reflect the probability that the variables adhere to a certain assignment. To make claims
about these states, one could use deterministic predicates (similar to the non-probabilistic
case) which evaluate to a probability ratio. This has been done in, e.g., |7, 8]. For our
purposes, however, we desired a notion of predicates which, given a probabilistic state,
evaluate to either true or false. Therefore, the idea of probabilistic predicates has been
introduced.

The presented notions allow us to adapt the idea of Hoare triples as known for non-
probabilistic programs. To verify claims regarding a probabilistic program s, a Hoare
triple {p} s { ¢} can be formulated. Here, p and ¢ are probabilistic predicates called
precondition and postcondition. The aim is to prove that whenever the precondition p is
satisfied by the current probabilistic state, the postcondition ¢ holds after executing the
program s. To this end, a derivation system called pH can be used.

Our examples have shown that the application of this procedure can be challenging. One

20

reason for this is that implications of probabilistic predicates are rarely trivial. Another
problem is the treatment of loops since a sufficiently strong invariant has to be found.
However, the basic idea of the discussed notions is very similar to the well-known Hoare
logic for non-probabilistic programs. Hence, this work presented a technique to verify
probabilistic programs by extending already existing approaches. This increases the
potential of other approaches and tools for standard Hoare logic to be adapted to work
on probabilistic programs.

References

1]

2]
3]

8]

K. R. Apt. Ten Years of Hoare’s Logic: A Survey — Part I. ACM Trans. Program.
Lang. Syst., 3(4):431-483, Oct. 1981.

C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

J. I. den Hartog. Verifying probabilistic programs using a hoare like logic. In P. Thi-
agarajan and R. Yap, editors, Advances in Computing Science — ASIAN’99, volume
1742 of Lecture Notes in Computer Science, pages 113-125. Springer Berlin Heidel-
berg, 1999.

J. I. den Hartog. Probabilistic Extensions of Semantical Models. PhD thesis, Vrije
Universiteit Amsterdam, 2002.

A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic
programming. In International Conference on Software Engineering (ICSE Future of
Software Engineering). IEEE, May 2014.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques
- Adaptive Computation and Machine Learning. The MIT Press, 2009.

D. Kozen. A probabilistic {PDL}. Journal of Computer and System Sciences,
30(2):162 — 178, 1985.

C. Morgan, A. Mclver, and K. Seidel. Probabilistic predicate transformers. ACM
Transactions on Programming Languages and Systems, 18:325-353, 1996.

21

	Introduction
	Hoare Logic for Deterministic Programs
	Introducing Probabilistic Choice
	Probabilistic Predicates
	The Derivation System pH
	Conclusion

