Probabilistic Programs
Expressing and Verifying Probabilistic Assertions

Dustin Hütter
Prof. Dr. Ir. Joost-Pieter Katoen

Winter term 2014/2015
Outline

Part I Introduction

Part II Verification

Part III Optimizations

Part IV Evaluation

Part V Final Judgement
Part I

Introduction
Classic Assertions

- Statements evaluating to a Boolean value
- Desired to hold at a certain point in a formal system e.g. in a Markov chain, code snippet, finite automaton...
- Huge bandwidth of techniques in formal verification to check them

Example (Assertion)

```c
float a = 0, b = 0;
a = some_calculation_1();
b = some_calculation_2();
assert b != 0;
return a/b;
```
Classic assertions have to hold in every execution of the considered formalism.

Algorithms in machine learning, approximate and quantum computing inherently don’t yield the exact same result for every execution.

→ Classic assertions would be too strict.

Solution? Probabilistic assertions `passert e p c` stating that the Boolean statement `e` has to hold with probability `p` and a confidence level `c`.
PROBCORE is a simple imperative probabilistic language whose grammar is given by:

\[
P \equiv \quad S \;; \text{ assert } C
\]

\[
C \equiv \quad E < E \mid E = E \mid C \land C \mid C \lor C \mid \neg C
\]

\[
E \equiv \quad E + E \mid E \cdot E \mid E \div E \mid R \mid V
\]

\[
S \equiv \quad V := E \mid V \leftarrow D \mid S; S \mid \text{skip} \mid \text{if } C S S \mid \text{while } C S
\]

\[
R \in \mathbb{R}, \quad V \in \text{Variables}, \quad D \in \text{Distributions (e.g. Gaussian, uniform...)}
\]

Why do the parameters for the probability and confidence level not occur in the grammar?

→ Handled one abstraction level higher
Big-step semantics
- Interpret syntactic constructs in an appropriate domain
- E.g. an arithmetic operation E evaluates to a real number R denoted by $E \Downarrow R \ (2 + 3 \Downarrow 5)$

Small-step semantics
- Models computation steps of a program
- Steps are transitions from one configuration say C_1 to another say C_2 denoted by $C_1 \rightarrow C_2$
- Configurations include variable valuations and the program fragment to be evaluated
- \rightarrow^* denotes the transitive and reflexive closure of the transition relation
Semantics

$$\begin{align*}
? \{ P & \equiv \ S \ ;
\text{; passert } C \\
\text{Big-steps } & \{ C \equiv E < E \mid E = E \mid C \land C \mid C \lor C \mid \neg C \\
E & \equiv E + E \mid E \ast E \mid E \div E \mid R \mid V \\
\text{Small-steps } & \{ S \equiv V := E \mid V \leftarrow D \mid S; S \mid \text{skip} \mid \text{if } C \ S \ S \mid \text{while } C \ S \\
R & \in \mathbb{R}, \ V \in \text{Variables}, \ D \in \text{Distributions}
\end{align*}$$

We will see a subset of the inference rules that model a concrete execution of a PROBCORE program
Concrete Semantics

What is \textit{concrete} at the following semantics?

- Take random draws when variables are assigned with probabilistic values and proceed straight-forward with control flow
- In contrast, we will later see a \textit{symbolic} approach
Expression Evaluation

Heap H for variable valuations

Arithmetic operations with $\circ \in \{+,*,/\}$:

\[
(H,e_1) \downarrow_c v_1 \quad (H,e_2) \downarrow_c v_2 \\
(H,e_1 \circ e_2) \downarrow_c v_1 \circ v_2
\]

Conditions with $\circ' \in \{\land,\lor\}$:

\[
(H,c_1) \downarrow_c b_1 \quad (H,c_2) \downarrow_c b_2 \\
(H,c_1 \circ' c_2) \downarrow_c b_1 \circ' b_2
\]
Sequence of draws Σ for generation of random samples

Sample statements:

$$\Sigma = \sigma : \Sigma'$$

$$(\Sigma, H, v \leftarrow d) \rightarrow_c (\Sigma', (v \mapsto d(\sigma)) : H, \text{skip})$$

If statements:

$$(H, c) \downarrow_c \text{true}$$

$$(\Sigma, H, \text{if } c \ s_1 s_2) \downarrow_c (\Sigma, H, s_1)$$
Loops:

\[(\Sigma, H, \text{while } c \ s) \rightarrow_c (\Sigma, H, \text{if } c \ (s \ ; \ \text{while } c \ s) \ \text{skip})\]

Passert:

\[
(\Sigma, H_0, s) \rightarrow^* (\Sigma', H', \text{skip}) \ (H', c) \downarrow_c b \\
(\Sigma, H_0, s \ ; \ ; \ \text{passert } c) \downarrow_c b
\]
Concrete Semantics

Naive decision procedure:

- Execute a PROBCORE program \(P \) under the concrete semantics several times.
- Compare the relative share \(r \) where the condition \(e \) of the `passert e p c` is met with \(p \).
- When \(r \geq p \) holds return true, otherwise return false.
Problems of this approach:

- Repetition of redundant deterministic computations
- We might only have to consider those parts of a program that contribute to the `assert`
- Possible reductions of a program not exploited
Part II

Verification
→ Implementation in a tool called **MAYHAP**
Idea:

- Instead of taking random draws, represent probabilistic values symbolically by their according distribution.
- Evaluate deterministic parts concretely and keep probabilistic parts symbolically.
- *Bayesian network* is extracted from *Expression DAG*.

→ How to generate the Expression DAG?
\begin{align*}
v_1 & := \text{detProc}(a) ; \\
v_2 & := \text{detProc}(b) ; \\
v_2 & := v_2 + v_1 ; \\
v_3 & := \text{Unif}(0, 2) ; \\
v_4 & := v_3 - v_2 ; \\
v_5 & := 0 ; \\
\textbf{if} & \ v_3 < 1 \quad v_5 := -1 \quad v_5 := 1 ; ; \\
\text{passert} & \ v_5 \geq 0
\end{align*}
- Bayesian network is obtained by reverting the direction of the edges of the Expression DAG
- Nodes model random variables
- Edges capture the dependencies between the random variables
- Constants are modeled by point-mass distributions
Problem:

Loops can induce cycles in the Bayesian network violating the DAG property

Example (Repeated coin flip)

\[
v_1 \leftarrow \text{Bernoulli}(0.5) ; \\
\text{while } v_1 = \text{HEAD} \; v_1 \leftarrow \text{Bernoulli}(0.5);
\]
Symbolic handling of loops:

- **Implementation:**
 - Distribution generation for loops with 'deterministic conditions' is often possible
 - Otherwise path pruning: Do not consider paths having a lower probability than some threshold

- **Formalization:**
 - Symbolic approach only handles terminating loops with deterministic conditions

→ Extension e.g. non-terminating loops is left to future work
Values in the symbolic semantics correspond to expression trees denoted by curly braces. Exemplary consider:

Arithmetic operations with $\circ \in \{+,*,#\}$:

$$
\frac{(H,e_1) \downarrow_s \{x_1\} (H,e_2) \downarrow_s \{x_2\}}{(H,e_1 \circ e_2) \downarrow_s \{x_1 \circ x_2\}}
$$

Sample statement:

$$
(n,H,v \leftarrow d) \rightarrow_s (n+1,(v \mapsto \{(d,n)\}) : H,\text{skip})
$$

$\{x_1 \circ x_2\}$ denotes an element in the expression tree where the curly braces indicate delayed evaluation.
Expression/Statement Semantics

If statements:

\[
\begin{align*}
(H,c) \downarrow_s \{x\} \quad (n,H,b_t) \rightarrow^* (m_t,H_t,\text{skip}) \\
(n,H,\text{if } c \ b_t \ b_f) \rightarrow_s (\{\text{if } x \ m_t \ m_f\}, \text{merge}(H_t,H_f,\{x\}), \text{skip})
\end{align*}
\]

While loops:

\[
\begin{align*}
(H,c) \downarrow_s \{x\} \quad \forall \Sigma (\Sigma,\{x\}) \downarrow_o \text{false} \\
(n,H,\text{while } c \ s) \rightarrow (n,H,\text{skip})
\end{align*}
\]
Expression/Statement Semantics

Passert:

\[(0,H_0,s) \xrightarrow{\ast}_s (n,H',\text{skip}) \quad (H',c) \Downarrow_s \{x\}\]

\[(H_0,s ; ; \text{passert } c) \Downarrow_s \{x\}\]
The symbolic semantics yields an expression tree \(\{x\} \) for the condition of the corresponding \(\text{assert} \)

\(\{x\} \) is evaluated by \(\downarrow_o \) for a given \(\Sigma \) denoted by \((\Sigma,\{x\}) \downarrow_o \nu\)

Exemplary consider \((\circ \in \{+,*,/\})\):

\[
\begin{align*}
(\Sigma,e_1) \downarrow_o \nu_1 & \quad (\Sigma,e_2) \downarrow_o \nu_2 \\
(\Sigma,e_1 \circ e_2) \downarrow_o \nu_1 \circ \nu_2
\end{align*}
\]

\[
(\Sigma,(d,k)) \downarrow_o d(\sigma_k)
\]
Concrete vs. Symbolic Evaluation

\[x \leftarrow \text{Gauss}(0, 1); \]
\[\text{if } x > 0.1 \quad x := 1 \quad x := -1 \quad ;; \]
\[\text{passert } x = 1 \]

Premise 1:
\[(\Sigma = \sigma_0 : \Sigma', \emptyset, x \leftarrow \text{Gauss}(0,1)) \rightarrow_c \]
\[(\Sigma', \{x \mapsto d_G(\sigma_0) = 0.2\}, \text{skip}) \rightarrow_c \]
\[(\Sigma', \{x \mapsto 0.2\}, \text{if } x > 0.1 \ x := 1 \ x := -1) \rightarrow_c \]
\[(\Sigma', \{x \mapsto 0.2\}, \text{if } 0.2 > 0.1 \ x := 1 \ x := -1) \rightarrow_c \]
\[(\Sigma', \{x \mapsto 0.2\}, \text{if } \text{true} \ x := 1 \ x := -1) \rightarrow_c \]
\[(\Sigma', \{x \mapsto 0.2\}, x := 1) \rightarrow_c \]
\[(\Sigma', \{x \mapsto 1\}, \text{skip}) \]

Premise 2:
\[(\{x \mapsto 1\}, x = 1) \Downarrow_c \text{true} \]
Concrete vs. Symbolic Evaluation

\[x \leftarrow \text{Gauss}(0, 1); \]
\[\text{if } x > 0.1 \quad x := 1 \quad x := -1 \quad ;; \]
\[\text{assert } x = 1 \]

Premise 1:
\[(0, \emptyset, x \leftarrow \text{Gauss}(0,1)) \rightarrow_s \]
\[(1, \{x \mapsto \{(d_G,0)\}\}, \text{skip}) \rightarrow_s \]
\[(1, \{x \mapsto \{(d_G,0)\}\}, \text{if } x > 0.1 \ x := 1 \ x := -1) \rightarrow_s \]
\[(\{\text{if } (d_G,0) > 0.1 \ 1 \ 1\}, \text{merge}(\{x \mapsto \{1\}\},\{x \mapsto \{-1\}\},\{(d_G,0) > 0.1\}), \text{skip}) \rightarrow_s \]
\[(\{\text{if } (d_G,0) > 0.1 \ 1 \ 1\}, \{x \mapsto \{\text{if } (d_G,0) > 0.1 \ 1 \ -1\}\}, \text{skip}) \]

Premise 2:
\[(\{x \mapsto \{\text{if } (d_G,0) > 0.1 \ 1 \ -1\}\}, \ x = 1) \downarrow_s \{\text{if } (d_G,0) > 0.1 \ 1 \ -1 = 1\} \]
\[\rightarrow (\Sigma, \{\text{if } (d_G,0) > 0.1 \ 1 \ -1 = 1\}) \downarrow_o \text{true} \]
Theorem

Let $(0, H_0, p) \downarrow_s \{x\}$, where x is a finite (terminating) program. Then $(\Sigma, H_0, p) \downarrow_c b$ if and only if $(\Sigma, x) \downarrow_o b$.

Proof by structural induction

Intuition:

Concrete evaluation of a program yields the same result as the evaluation of the extracted distribution.
Part III

Optimizations
Intention

- Exploit stochastic knowledge in order to reduce the Bayesian network
- Direct verification if possible
- Otherwise, sample the optimized Bayesian network
Arithmetic Operations on Common Distributions

\[X_1 + X_2 \]

\[X_1 \sim \mathcal{N}_1(\mu_{X_1} = 1, \sigma^2_{X_1} = 16) \wedge X_2 \sim \mathcal{N}_2(\mu_{X_2} = 5, \sigma^2_{X_2} = 9) \Rightarrow X_1 + X_2 = X_3 \sim \mathcal{N}_3(\mu_{X_1} + \mu_{X_2} = 6, \sigma^2_{X_1} + \sigma^2_{X_2} = 25) \]
Central Limit Theorem (CLT)

CLT: ”The sum of a large amount of independent random variables that are identically distributed and have a finite expected value and variance converges to a normal distribution.”
Sampling Approach

Idea:

- Given a passert $e p c$, its satisfaction can be modeled by a Bernoulli variable (either satisfied or not)
- Take n samples X_i with $i \in \{1,\ldots,n\}$ for the passert and estimate p by $p_{\sim} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Question:

How many samples n are needed in order to satisfy the desired accuracy ϵ and confidence α, respectively does $Pr(p_{\sim} \in [p - \epsilon, p + \epsilon]) \geq 1 - \alpha$ hold?

\rightarrow Using the two-sided Chernoff-bound yields $n \geq \frac{2+\epsilon}{\epsilon^2} ln\left(\frac{2}{\alpha}\right)$
Part IV

Evaluation
B: stress testing, N: unoptimized symbolic approach, O: optimized symbolic approach
Part V

Final Judgement
Advantages:
- Promising results on considered benchmarks
- Eliminating redundant deterministic computation & parts not contributing to a passert
- Reduction of the obtained model by applying stochastic knowledge

Disadvantages:
- Formalization of loop handling is very rough
- Soundness proof for the symbolic approach on the optimized Bayesian network is missing
- Partially sloppy formalization

Thanks for your attention!

Questions?