Expectation Invariants for Probabilistic Program Loops as
Fixed Points

Seminar on Probabilistic Programs

Phillip Florian (308704)

Informatik 2 RWTH Aachen

February 5, 2015

1 Introduction

Probabilistic programs have a large field of applications. They are used in security [4],
randomized algorithms [5], machine learning [?], for verification of matrix multiplications
[5] and basically in any application area that relies on probabilistic choices. A probabilistic
program is a program that may toss a (possibly unfair) coin or draw variables from random
distributions such that the further execution of the program is influenced by these prob-
abilistic choices [3]. This randomness of the programs behaviour makes it hard to verify
properties of such programs. This is where expectation invariants come into play. They
can be used as an abstract interpretation for analyzing probabilistic programs e.g., to prove
the correctness of such a program.

An example probabilistic program is shown in Figure 1. The function flip(3/4) denotes
a coin-flip where one side has a probability of % and the other one has a probability of i.
The function rand(—>5,3) is the function that draws an integer from the interval [—5, 3],
where all values have the same probability of being drawn. It is easy to see that there
are many different ways an execution of the program may look like. Running the program
multiple times and analyzing the value "count", which counts the number of loop iterations
until termination, it can be shown that the loop takes on average 5.1345 iterations until it
terminates [1]. In practice it is not always easy to execute a program loop a lot of times,
i.e., because of a very high run-time, to get an approximation on the expected values. That
is exactly where expectation invariants come into play.

real x := rand (—5,3)
real y := rand (-3,5)
int count := 0
while (x+y<=10){
if flip (3/4)
x:= x + rand (0,2)
yi=y + 2
count+4+

Figure 1: Example of a probabilistic program

This work is based on [1, 2] and it will explain how fixed points for expectation invariants
can be computed by an iteration over cones of expressions. We will first briefly explain
what probabilistic programs are and how a probabilistic loop in such a program is defined.
Afterwards, the concept of pre-expectations will be introduced for computing the expected
values in the next iteration. Finally we will show how to obtain expectation invariants fixed
points of a probabilistic loop by iterative algorithm.

2 Preliminaries

2.1 Probabilistic Programs

Any program that draws variables from random distributions, e.g. a uniform distribution
or a Gaussian distribution, is a probabilistic program [3]. In the following let P be a prob-
abilistic program written in an imperative language using random number generators like
choosing an integer from a uniform distribution. Further, let X = {x1,...,2,,} be a finite
set of real-valued program variables and let R = {r1,...,7;} be a finite set of real-valued
random variables occurring in P. In addition, let and r be vectors denoting the valua-
tions of all program and random variables respectively. The random variables in R have
a joint distribution Dg. Formally, the distribution is defined over an underlying o-algebra
with an appropriate measure pp.

In this seminar work, we are especially interested in analyzing the loops occurring in a
probabilistic program. Thus we only need to know the program values at the beginning of
the loop and the changes to these variables occurring inside the loop.

Definition 2.1 (Probabilistic loops). A probabilistic loop of P is a tuple (T, Dy, n), wherein
T :{71,..., 7} is a finite set of probabilistic transitions (from the loop head to itself). Dy is
the initial probability distribution of the program variables and n is a loop counter variable

real x := rand (—5,3)
while (true){

if (x<=10)

x:= x + rand (0,2)
else

do nothing

Figure 2: Simple example for a probabilistic loop

introduced to keep track of the number of loop iterations.

Each probabilistic transition 7; : (g;, F;) consists of a guard g;[X] over X, i.e. a Boolean
condition on X, and an update function F;(x,) such that for the program values x’ after
taking the transition it holds: o' = F;(x,r).

Note that the loop counter is not part of the program variables, but there can be variables
inside the loop counting the number of iterations. Also note that in every iteration r is
drawn from the joint distribution Dg of random variables.

Example: Consider the program code shown in Figure 2. The loop of the program can
be written as a probabilistic loop with a single transition 7 : (g, F), with g = 2 < 10 and
F(x,r) =z +r, where r = U(0,2) is drawn from the uniform distribution over the interval
[0,2]. Further, the initial program variables @ are drawn from Dy : (z) = U[-5,3] and
initially n = 0.

All methods explained in this seminar work are restricted to piecewise linear probabilistic
loops, where each transition 7; has a linear guard and piecewise linear transitions (defined
below). Furthermore, this seminar only covers expectation invariants over simple loops (no
nesting). For an explanation of how those methods can be used to compute expectation
invariants for nested loops we refer to [2].

A piecewise linear probabilistic loop is defined like a probabilistic loop except for the
probabilistic transitions which are now piecewise linear.

Definition 2.2 (Piecewise linear transitions). A piecewise linear transition 7 : (g, F(x,))
has the following structure:

e g is a linear guard over X

e F(x,r) is a piecewise linear function for X, i.e. all parts of the function are linear,
where 7 is decomposed into a vector of continuous random choices r. and a vector of
discrete Bernoulli choices 7. As a result the update function F(x,r) may be written

o f1:Aix + Bire. + dy, with probability p;
Flx,r) = :
fr: Agx + Bpr. + di, with probability pg
where fi,..., fr denote the different outcomes of the Bernoulli choices in 7, and
are used as indicators of the different forks. The values p1,...,pr represent the

probabilities with which the corresponding fork is chosen, where 0 < p; < 1 and
Zlepi = 1. Further, the matrices Aq,..., 4 € R™™ By,...,B; € R™*! and
vectors dy,...,d; € R™ are used to model the changes to the program variables
occurring in the loop.

Example: The piecewise linear transition 7 : (g, F) corresponding to the loop from Figure
3 (left) can be expressed as:

e g:(z+y<10)

T 2 00 1 0
fi: y +1 010 0 |+ ,p1=3
o Fla,r): cmxmt 8 0 1 0 1
o y |+ o P2 =7
count 1

where r; = U0, 2].
|

For a Piecewise linear loop we preclude non-determinism of a probabilistic loop (T, Dy, n)
by imposing two restrictions for all transitions 7 € T

1. Mutual exclusion: for all 7; : (g;, ;) and 7; : (g;, F;) in T with 7; # 7; it holds
g; N\ g; = false

2. Exhaustiveness: \/ g; = true
ET

These two restrictions guarantee that precisely one transition can be taken at any iteration
of the loop.

To guarantee that exactly one transition can be taken at every iteration we might have to
change the loop before so that it becomes infinitely looping. If the loop is not already able

real x := rand (—5,3)
real x := rand (—5,3) real y := rand (—3,5)
real y := rand (-3,5) int count := 0
int count := 0 while (true){
while (xty<=10){ if (x+y<=10)
if flip (3/4) if flip (3/4)
x:= x + rand (0,2) x:= x + rand (0,2)
yi=y + 2 yi=y + 2
count++ count-
} else
do nothing

}

Figure 3: Example of a probabilistic program (left) and its stuttering version (right)

to perform infinitely many iteration, it has to modified such that all program variables are
preserved in each iteration once the original loop condition is violated. We call this new
loop the stuttering version of the original loop. It is obtained by creating an infinite loop
with an if-statement inside. If the original loop-guard is satisfied, then the body of the
original loop is executed. Else, nothing happens.

Example: Cousider the code from Figure 3 (left). The corresponding stuttering code
Figure 3 (right) is obtained by transforming the loop to an endless loop with an if-statement
inside the loop. The first part is for the original loop that is taken if the original loop-guard
is valid. It executes the original loop body. The second part is used to preserve the program
variables once the loop-invariant is violated.

Example: (Taken from [2]) Take a look at the stuttering version of the program discussed
before (right side of Figure 3) where the initial values of the program variables reaching
the loop head are drawn from the initial distribution Dy : U[—5, 3] x U[—3,5] x {0}. The
stuttering adds a new path inside the loop that preserves the values of the program variables
once the loop guard z + y < 10 is violated. The probabilistic program now has two
transitions 71 = (g1, F1), 72 = (g2, F2), where 71 represents the loop body of the original
code and 7o preserves the program variables. Looking at the code we get:

g1 : (z+y <10) g2: (x+y > 10)
A =T+ i
fi: |y oy 4 2 w.p.% o s
count’ s count + 1 ,
Fi:) 3 Fo: Yy =Yy
x T ,
, 1 count’ +~ count
fai |y =y w.p.g
| count’ +— count +1 |

where 71 represents the uniform random variable over [0, 2].
|

To model an execution of a probabilistic loop we use tuples (x,,n) as states of the loop,
where x,, denotes the vector representing the program variables at loop-iteration n. Further,
let (@0, 0) be an initial state if ¢ is a sample drawn from the initial distribution Dy. (x;,1)
is a predecessor of (x;y1,7 + 1) if for a transition 7, @; = g and there exists a r € Dp s.t.
@i+1 = F(x;, 7). D; denotes the distribution of program values after ¢ iterations and can
be seen as the set of possible states after ¢ iterations.

Definition 2.3 (Sample path). A sample path (also referred to as an execution) of a loop
is an infinite sequence of states (g, 0) % (1,1) = (2,2) ..., where (X is a sample
from Dy and for each i > 0, (x;41,7 + 1) is obtained by executing the unique transition
7; ¢ (gi.Fi) that is enabled in the state (x;,7). This execution involves a sample from
the Bernoulli random variables to choose a fork of the transition 7; and a choice of the

continuous random variables 7. to obtain ;11 = Fi(x;, r;).

Example: One possible execution of the PWL loop discussed in the previous example
would be

((3,3,07,0) =5 ((4,5,1)7, 1) 21
((6,7,2)7,2) 2 ((6,7,2)7,3) 2 ...

2.2 Pre-Expectations

In this section we define the concept of pre-expectations for an affine expression e over
program variables across a fixed transition 7. We will then refine this definition for PWL
transitions and use this to define the pre-expectation operator with respect to all transi-
tions of a probabilistic loop. In the next section this will be lifted to pre-expectations of
cones over affine expressions and later on be used to define the operator used for finding
expectation invariants as fixed points of this operator.

We are going to reason only about affine expressions e, i.e. linear expressions plus a constant
term, where e = co+> ", Ai- T4, o, \i € R. Further, e[x;] denotes the expression involving
the program variables at step .

Given any state (x, %) of the loop and an affine expression e[x],involving the program vari-
ables, we want to compute the expected value of the expression e[z'] evaluated over all
possible successor states (@’,n + 1) that can be reached in one loop iteration starting from
(z,n). The function that maps « to the expectation of the expression e in the next step is
called the pre-expectation of e.

Definition 2.4 (Pre-expectation for fixed transitions). Let 7 : (g, F) be a transition and
elx] be an affine expression involving the set of program variables @ of a probabilistic
program P. The pre-expectation operator preE; is an expression transformer that asso-
ciates each expression e[x| with the expectation of the expression e[x’] obtained by taking
transition 7. Formally

preE, (e[z']) : Eg(e[z’ — F(zx,7r)] | x)
where Eg is taken over the distribution Dg.

If we now consider a PWL transition 7 with forks fi,..., fi and with fork probabilities
P1,---,Pr k>0, we are able to simplify the computation of preE..

Definition 2.5 (Pre-expectation for fixed PWL transitions). For a PWL transition 7 the
pre-expectation operator can be written as

k
preE, (¢') = ijER(pre(e/, fi) |)
j=1

where pre(€’, f;) denotes the expression obtained by substituting all variables of &’ occurring
in ¢ with their corresponding values obtained by applying f;. The expectation Ex(d)
denotes the expectation of d over the joint distribution Dg of the random variables.

Example: We again consider the program from Figure 3 (right) and will demonstrate the
notion of a pre-expectation by considering the expression e : 1 + 2z — 3y across transition
71 : (g1, F1) with g1 : z +y < 10 and

- ’ -

T =T+
fi: |V —y+2 w.p.3
count’ +— count + 1
Fi: =, -
x —
fo: | v/ =y w.p%
| count’ — count+1 |

For preE,, (e) it follows:

2
preEr (1 +2z — 3y) = ij Epg(pre(1+ 2z -3y, f;) | z)
j=1

1
=5 Epp(142-(z+71) =3 (y+2) + ;Ep, - (1422 3y)

Nooq;\oo

(1 42-Ey (z4m)—3- (y+2))+£(1+2x—3y)

7 3
= —§+2x—3y—i—§ By (1)

We remember from the program code that r; was drawn from the uniform distribution
[0,2], thus the expected value E, (r;) = 1. Using this we obtain

preE; (1 + 2z — 3y) = =2 + 2z — 3y
|

Now we will use these definitions of pre-expectations with respect to a transition to
formulate pre-expectations over all transitions inside a loop.

Definition 2.6 (Pre-expectation over all transitions). Let e’ be an affine expression involv-
ing the program values . Then:

preE(e Z lg, (z) - preEr,(¢')
€T
where 14(x) is the indicator function:

ng(m):{ 1 ifelg

0 otherwise

Given that the current state is (xy,n) we now want to find out the expectation of an
expression e over the distribution of all possible successor states (€,+1,n+1). The following
lemma follows directly from the definition of the pre-expectation operator.

Lemma 2.1. The expected value of e over the post-state distribution starting from state
(xn,n) is the value of the pre-expectation preE(e’) evaluated over the current state @,:

E(e(xnt1) | ©n,n) = preE(e Z lg, (z) - preEq,(¢')
€T

We can now extend this lemma to the full distribution D,, from which x,, is drawn.

Lemma 2.2. Let e be an affine program expression. Then:

Ep,.,(e) =Ep, (preE(e)) =Ep, | Y 1g. (a) - prelr(¢)
TET

3 Expectation Invariants

Expectation invariants are inequalities on the expected values of expressions on each loop
iteration. These can be used to prove properties of a loop. We are now going to define
expectation invariants and in the next chapter we will show how we can compute fixed
points of expectation invariants

3.1 Expectation Invariants

Let (T, Dy, n) be a probabilistic loop. We define the expectation of an affine expression e at
iteration n as E(e | n) = Ep, (e), where D,, denotes the state distribution after n iterations.

Definition 3.1 (Expectation invariants). An affine expression e over the program variables
X is called an expectation invariant (ET) if and only if E(e | n) > 0 for all n > 0.

In other words, expectation invariants are exactly those expressions for which the expected
values are non-negative over the initial distribution and remain non-negative for all itera-
tions of the probabilistic loop.

Example: We again consider the program from Figure 3 and show that the expression
e = 2y — x is an expectation invariant. Initially it holds E(2y — z | 0) = Ep,(2y — x) =
2Ep,(y) —Ep,(z) =2—(—1) =3 > 0. Further, E(2y—x | i) = 2E(y | i) —E(z | i) > 0 holds
at any step i the expected value of y grows faster than the expected value of x. Therefore,
e is an expectation invariant of P.

We are now going to determine whether an expression e is an expectation invariant, i.e.
show that the expected value is non-negative for all steps. To do this we are going to
approximate the distribution D,, for all n. Alternatively one could find an argument based
on mathematical induction to prove that an expression e is an EI.

Definition 3.2 (Admissible distribution). A distribution D over the set of program vari-
ables X is admissible if and only if Ep(p(x)) exists and is finite for any polynomial p(z)
over the program variables.

We assume that for any program P that we attempt to analyse, Dy is admissible, and
for each transition 7, the distribution of random variables Dy is admissible. Under these
assumption it can be shown that the following holds [2].

Lemma 3.1. For all n € N, the distribution D,, is admissible.

In practice the explicit construction of D,, for each n is quite expensive. Thus, we will
use the principle of inductive expectation invariants.

Definition 3.3 (Inductive expectation invariants). Let F = {e1,...,en} be a set of ex-
pressions where each e; is a linear or polynomial expression involving the program variables.
Then the set E forms an inductive expectation invariant of the program P if and only if
for each e;, j € [1,m], the following holds:

1. Ep,(ej) >0, i.e., the expectation at the initial step is non-negative.
2. For every admissible distribution D over the set of program variables X,
(ED(€1> >0A...A Ep(em) > 0) = Ep(preE(ej)) >0

This way of defining inductive expectation invariants follows the Floyd-Hoare approach to
abstract away the distribution at the n-th step by usage of the inductive invariant itself to
show that the invariant continues to hold in the next step. As we are using any admissible
distribution D we are also not bound to a specific D,,. It can be shown that the following
theorem holds.

Theorem 3.1. Let £ : {ey,...,e,} be an inductive expectation invariant. It follows that
each e; € F is an expectation invariant.

In practice, Definition 3.3 is unhandy, as the quantification over all possible admissible
distributions D over the set of program variables X is a higher-order quantifier. Due to the
fact that reasoning with this quantifier is not practical, we are going to refine the approach.
This will be done by applying the facts from the following theorem [2].

Theorem 3.2 (Facts about expectations over admissible distributions). The following facts
hold for all admissible distributions D over a o-algebra X, linear assertion ¢ : A7_; a;fr y <
b, a;,y € R™, b € R and linear or polynomial expressions e, eq, ..., €x.

1. Linearity of expectations: Ep(Ajeq +...+ Agex) = MEp(e1) +... + AxEp(eg), for all
N eER

2. Indicator functions: Ep(le>gxe) > 0, and in general, if ¢ = e > 0 then Ep(1,xe) >
0, provided that [¢] is measurable

3. Ep(lye + 1-,e) = Ep(e), provided that [¢] is measurable
where [] means the set of solutions for ¢.

The central idea now is to use the facts from the theorem and reformulate the second
part of Definition 3.3 to a simple quantified statement in first-order linear arithmetic. To
do so, we express the pre-expectation preE(e;) for each e; € E as:

m
preE(e;) = Z Ajiei + Z Pip X (L, 9p)
i=1 p

10

where Aj; > 0 and p;,, > 0 are real-valued multipliers, g, is a boolean expression over
the program variables and ¢, is an assertion such that ¢, = g, > 0. The origin of the
expressions g, and assertion ¢, will be made clear shortly. It can be shown that this way
of computing preE(e;) can be derived from Definition 2.6 by reformulation. By usage of
Theorem 3.2 it can be shown that the following holds [2].

Lemma 3.2. Let £ = {ej,..., ey} be a finite set of expressions. If preE(e;) > 0 for all e;
(with preE(e;) as defined above), then E satisfies condition 2. of Definition 3.3.
3.2 Conic Inductive Expectation Invariants

Let P be a probabilistic program with transitions 71,...,7,. Let g; be a linear assertion
representing the guard of the transition ;. We express g; as /\;”:1 9i; => 0, wherein g; ;
are affine boolean expressions. Let g; : (gi1 ... gi,m)T be a vector representing g;. Further,

let £ = {e1,...,en} be a finite set of expressions, we denote the vector representing these
expressions as e : (e1,...,em)’.
Definition 3.4 (Conic inductive expectation invariants). The finite set E = {e1,...,en}

is a conic inductive invariant of the program P if and only if for each e; € I the following
holds:

1. Ep,(ej) > 0 for the initial distribution Dy

2. There exists a vector of multipliers A; > 0, such that for each transition 7; : (g, Fi)
and expression e;, preE, (e;) can be expressed as a conic combination of expressions
in F and the expressions in g;:

AN >0,¥7 € T, 3y > 0 (preEq (e;) = Ale + ul &)

Note that the order of quantifications in this equation is important to ensure that the first
part of Theorem 3.2 is applicable.

Example: Consider the program from Figure 3 (right) again. Theset £ = {e] : y—2z, €2 :
—2x +y — 3,e3 : 2 — y + 3} is a conic inductive invariant for the program. Consider e;.
We have:

3
preE, (e1) = E,, (

4(—2(:1:—1—7“1) +(y+2)+ i(—2x+y)> =y—2z

Likewise, preE,,(e1) = e1, as T2 is a stuttering transition. Setting A = (1,0,0) and p = 0
yields preE(e;) = e+ pT x Layty<i0

It can be shown that preE., (e2) and preE, (e3) can be expressed in a similar way, thus E
is a conic inductive expectation invariant.

11

3.3 Pre-Expectation of Closed Cones

Until now we only reasoned about finite sets of expressions F = {e1, ..., ey}, satisfying the
conditions in definition 3.3. We are now going to transfer the notion from a finite set of
expressions to a finitely generated cone of these expressions and later on use these cones
for the fix point characterization given in the next section.

Definition 3.5 (Cones). Let E' = {ey, ..., ek} be a finite set of affine program expressions
over the program variables . The set of conic combinations (the finitely generated cone)
of E is defined as

k
CODQ(E) = {)\U +Z)\161 ‘ A € R+, 0<1< k}

i=1
Expressions e; are called the generators of the cone.

For a non-empty linear assertion ¢ : /\f:1 Ep, (e;) > 0 and any n > 0, it is easy to show
that ¢ = Ep, (e) > 0 if and only if e € Cone(ey,...,ex). Moreover, if E is an inductive
expectation invariant, then e € Cone(FE) is an expectation invariant of the program P.

Example: Consider the finite set of expressions E = {e; : y — x,ea : 2y + count} over
the program from Figure 3 (right) and take without proof ej,es are EI. Now consider
e =4y — 2z + count = 2-e; + ea. e € Cone(E) as it is a linear combination of elements
of the generators of the cone. Ep, (e) = 4-Ep,(y) — 2 Ep,(x) + Ep,(count) > 0 as
Ep, (count) = n, and for all n Ep, (y) > Ep, (z) explained in a previous example. Therefore
e is also an expectation invariant of the program.

4 Expectation Invariants as Fixed Points

In the following we will show that the notion of conic inductive expectation invariants can
be expressed as a fixed point of a monotone operator over finitely generated cones. This
monotone operator will allow us to start from the cone that represents all expressions and
perform iterations until convergence. As this computation might take a lot of iterations
(up to infinitely many), we are going to define a dualized widening operator to ensure a fast
convergence. With usage of this dualized widening operator the iteration is guaranteed to
converge to the fixed point in finitely many steps.

In the following let P be a probabilistic program over variables x with transitions 7T :

{71,..., 7} and initial distribution Dy. Further, we will describe affine expressions of the
form ¢y + cT'x for ¢y € R, ¢ € R™. Let A(x) be the set of all affine expressions over .

12

Example: Consider the expression e : 2z + 5y — 3. This can be written as:
x
e:(2,5) x -3
(2.5) < Y >

As stated above, the approach uses finitely generated cones I = Cone(E) where E =
{e1,--- ,ex} is a finite set of affine expressions over . Once a fixed point is found by the
technique explained below, we obtain a cone I'* : Cone(E*), wherein E* is a conic inductive
invariant according to definition 3.4.

A finitely generated cone of affine expressions I = Cone(F) can be represented by a
polyhedral cone of its coefficients C(I) : {(co, ¢) | co + c'x € I}, where the generators of
C(I) are coeflicient vectors (cp;, ¢;) representing the expression e; : cp; + cl-Tw.

We now lift the notion of the pre-expectation operator prelE, from expressions to cones.

Definition 4.1 (Pre-expectations over cones). Let E = {e1,...,en} be a set of affine
expressions, and let 7 : (g, F) be a transition, wherein g : AI_; ¢/ > 0.
The pre-expectation of a cone [: Cone(E) with respect to 7 is defined as:

m p
preE, (1) = {(e,\) € A(z) x R™ | A > 0 A Ju > 0(preE,(e) = Z)\jej + ZM@‘Q@')}
j=1 i=1

The set preE, (/) contains all affine program expressions e, such that e belongs to the
conic hull of I and the cone generated by the guard assertion. The parameter A can be
seen as a certificate, which is attached to each expression to show its membership back in
the cone. This is done to ensure the proper order of quantifications in definition 3.4.

Lemma 4.1. For every cone C, preE;(C) is a cone.

For a more detailed explanation of how to compute the pre-expectation of a cone as well
as the fixed point computation across multiple transitions we refer to [2].

Now, we will look at the pre-expectation operator not only for single transitions but over
all transitions at once.

Definition 4.2. Let I be a finitely generated cone of affine expressions. The pre-expectation

over all transitions in 7 = {7,..., 7} can be computed as:
k
preE(I) = {e € A(x) | IX > 0(e, \) € m preE,, (1)}
j=1

13

An expression e belongs to preE([) if for some A > 0 (e, \) € preE,, (I) for each transition
Tj € T. . . .

For a cone C'(I), we first compute the cones C(I1),...C(I;) with C(1;) : preE,, (1) for all
T1,...,Tk € T respectively. We then compute C(I') : (3 > 0) U§:1 C(fj) representing
I’ : preE(I), by intersecting the cones C/(I ;) and projecting the dimensions corresponding
to A

For simplicity, we assume that Ep,(z) is computable and Dy is known. The initial cone
for the iteration steps is given as

Iy : Cone({1,z1 — Ep,(z1),Ep,(x1) — z1,...,2n — Ep,(zn), Ep, (2n) — 20 })
where the cone Ij represents the invariant candidates z; = Ep,(x;).

Example: The initial cone for the probabilistic program from Figure 3 is:

Ip: Cone({1l,z — Ep,(z),Ep,(x) — x,Ep,(y) — v,y — Ep, (v),
Ep,(count) — count, count — Ep, (count)})
= Cone({1l,z+ 1,y — 1,1 — y, count, —count})

Definition 4.3. Let G(I) = Iy(\preE(I), where Iy is the initial cone.

Example: We again consider the program in Figure 3 (right), Iy as in the previous
example. It follows

preE., (Ip) = {(1,(1,0,0,0,0,0)"), (x + 1, (0.75,1,0,0,0,0)7),
(y—1,(2.5,0,1,0,0,0)7), (1 —y,(1.5,0,0,1,0,0)"),
(count, (1,0,0,0,1,0)7)}

prelE;, is trivially obtained by attaching certificates to each expression that correspond to
the identity of the expression. We now compute preE(ly) = preE,, . Further,

I = G(Io) = Io[|preE(lo) = {1,z + 1,y — 1,1 — y, count}

It can be shown that I; = G(I;) thus I; represents the cone containing only fixed points of
the probabilistic loop.

Theorem 4.1. The operator G satisfies the following properties:

14

1. G is a monotone operator over the lattice of cones ordered by set-theoretic inclusion

2. A finite set of affine expressions F is a conic inductive invariant if and only if
I : Cone(F) is a pre-fixed point of G, i.e. I C G(I).

We can now use this theorem to compute the greatest fixed point of G, which represents
the largest cone of expressions whose generators satisfy definition 3.4. This can be imple-
mented by iterating until a pre-fixed point is obtained which, in the ideal case, is also the
greatest fixed point of G [1]. In each step it holds

Note that there might be chains that are infinite, e.g., alternating between two elements of
the initial cone, and therefore it is possible that the greatest fixed point can not be found
in finitely many steps by the Kleene iteration. To force the downward iteration to converge
we will use a dual widening operator.

Definition 4.4 (Dual widening). Let I1, Is = G(I1) be two successive cone iterates satis-
fying Iy O I5. The operator V(I1, I2) is a dual widening operator if:

o V(I1,I) CI,,V(I1,I5) C I,

e For every infinite descending sequence Jy 2 G(Jo) 2 G*(Jy) 2 -+, the sequence

Jb=Jo,J), =V (J] _1,Jn) converges in finitely many steps.

I' =V(I, 1) again is a cone, thus it can be used for further computations.

Definition 4.5 (Standard dual widening). Let I; = Cone(e,...,e) and

I, = Cone(gy, . .., gr) be two finitely generated cones such that I; O I. The dual widening
operator VI, is defined as [= Cone(g; | ¢; € I3). Cone I is the cone generated by
generators of I; that are also in Iy

It can be shown that the standard dual widening is a dual widening following Definition
4.4.

A popular method to compute an approximation of the greatest fixed point when using dual

widening is to delay widening for a fixed number of iterations. This way the inaccuracy can
be greatly reduced to fulfill the requirements.

5 Experimental Results

The table below shows a summary of the results from the experiments of [2]: |X] is the
number of program variables, | 7| the number of transitions, # the number of iterations to

15

Name | X| [|T] | # | V | Time
MOT-EXAMPLE 3 2 | 2| No | <¢
MOT-EX-LOOP-INV | 3 2 | 2| No | 0.10
MOT-EX-POLY 9 2 | 2 | No | 0.18
2D-WALK 4 4 7 | Yes | <e
AGGREGATE-RV 3 2 | 2| No| <¢
HARE-TURTLE 3 2 | 2| No| <¢
COUPON5 2 5 2 | No <e
HAWK-DOVE-FAIR 6 2 | 2| No| <¢
HAWK-DOVE-BIAS 6 2 | 2| No | <¢
FAULTY-INCR 2 2 7 | Yes | <e

convergence, V - an indicator if the dual widening was used and time (in seconds) the time
needed to compute the fixed points, where all runs that took less than € = 0.05s are not
monitored.

All examples except MOT-EX-LOOP-INV and MOT-EX-POLY run in under 0.05 seconds.
The usage of the widening operator was delayed by at least 5 iterations to force convergence
only if necessary.

6 Conclusion

We have shown how pre-expectations over single transitions of a probabilistic loop can be
computed for affine expressions as well as for sets of affine expressions. Further, we showed
how to compute pre-expectations over all possible transitions and how to compute pre-
expectations of finitely generated sets of expressions. We then used these pre-expectations
to formulated an operator that can be applied iteratively and yields a set of fixed points for
the expectation invariants once it converges. Then we introduced the widening operator to
ensure the convergence of the iterations. The experimental results show that the invariants
for most of the tests could be found in less than 3 iterations and the computation was quite
fast.

References

[1] A. Chakarov and S. Sankaranarayanan. Expectation invariants for probabilistic program
loops as fixed points. In Static Analysis - 21st International Symposium, SAS 2014,
Munich, Germany, September 11-13, 2014. Proceedings, pages 85-100, 2014.

[2] A. Chakarov and S. Sankaranarayanan. Expectation invariants for probabilistic program
loops as fixed points (extended version). Technical report, University of Colerado, 2014.

16

[3] D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328-350,
1981.

[4] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforcement of knowledge-
based security policies. In Proceedings of the 24th IEEFE, Computer Security Foundations
Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, pages 114-128, 2011.

[5] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

17

