
Static Program Analysis
Lecture 8: Dataflow Analysis VII

(Narrowing & DFA with Conditional Branches)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Outline

1 Recap: Interval Analysis

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Static Program Analysis Winter Semester 2014/15 8.2

The Domain of Interval Analysis

The domain (Int,⊆) of intervals over Z is defined by

Int := {[z1, z2] | z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {+∞}}, z1 ≤ z2} ∪ {∅}
where

−∞ ≤ z and z ≤ +∞ (for all z ∈ Z)
∅ ⊆ J (for all J ∈ Int)
[y1, y2] ⊆ [z1, z2] iff y1 ≥ z1 and y2 ≤ z2

(Int,⊆) is a complete lattice with (for every I ⊆ Int)⊔
I =

{
∅ if I = ∅ or I = {∅}
[Z1,Z2] otherwise

where
Z1 :=

d
Z∪{−∞}{z1 | [z1, z2] ∈ I}

Z2 :=
⊔

Z∪{+∞}{z2 | [z1, z2] ∈ I}
(and thus ⊥ = ∅, > = [−∞,+∞])
Clearly (Int,⊆) has infinite ascending chains, such as

∅ ⊆ [1, 1] ⊆ [1, 2] ⊆ [1, 3] ⊆ . . .

Static Program Analysis Winter Semester 2014/15 8.3

The Complete Lattice of Interval Analysis

∅

[−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2]

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−2, 1] [−1, 2]

[−2, 2]

[−∞,−1]

[−∞, 0]

[−∞, 1] [−1,+∞]

[0,+∞]

[1,+∞]

[−∞,+∞]

Static Program Analysis Winter Semester 2014/15 8.4

Formalising Interval Analysis I

The dataflow system S = (Lab,E ,F , (D,v), ι, ϕ) is given by

set of labels Lab := Labc

extremal labels E := {init(c)} (forward problem)

flow relation F := flow(c) (forward problem)

complete lattice (D,v) where

D := {δ | δ : Var c → Int}
δ1 v δ2 iff δ1(x) ⊆ δ2(x) for every x ∈ Var c

ι := >D : Var c → Int : x 7→ >Int (with >Int = [−∞,+∞])

ϕ: see next slide

Static Program Analysis Winter Semester 2014/15 8.5

Formalising Interval Analysis II

Transfer functions {ϕl | l ∈ Lab} are defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := [z , z]

valδ(a1+a2) := valδ(a1)⊕ valδ(a2)
valδ(a1-a2) := valδ(a1)	 valδ(a2)
valδ(a1*a2) := valδ(a1)� valδ(a2)

with
∅ ⊕ J := J ⊕ ∅ := ∅ 	 J := . . . := ∅

[y1, y2]⊕ [z1, z2] := [y1 + z1, y2 + z2]
[y1, y2]	 [z1, z2] := [y1 − z2, y2 − z1]
[y1, y2]� [z1, z2] := [

d
{y1z1, y1z2, y2z1, y2z2},

⊔
{y1z1, y1z2, y2z1, y2z2}]

Remarks:
Possible refinement of DFA to take conditional blocks bl into account

essentially: b as edge label, ϕl(δ)(x) = δ(x) \ {z ∈ Z | x = z =⇒ ¬b}
(cf. “DFA with Conditional Branches” later)

Important: soundness and optimality of abstract operations, e.g., ⊕:
soundness: z1 ∈ J1, z2 ∈ J2 =⇒ z1 + z2 ∈ J1 ⊕ J2

optimality: J1 ⊕ J2 as small as possible

Static Program Analysis Winter Semester 2014/15 8.6

Widening Operators

Definition (Widening operator)

Let (D,v) be a complete lattice. A mapping ∇ : D × D → D is called
widening operator if

for every d1, d2 ∈ D,
d1 t d2 v d1∇d2

and

for all ascending chains d0 v d1 v . . ., the ascending chain
d∇0 v d∇1 v . . . eventually stabilises where

d∇0 := d0 and d∇i+1 := d∇i ∇di+1 for each i ∈ N

Remarks:

(d∇i)i∈N is clearly an ascending chain as
d∇i+1 = d∇i ∇di+1 w d∇i t di+1 w d∇i

In contrast to t, ∇ does not have to be commutative, associative,
monotonic, nor absorptive (d∇d = d)

The requirement d1 t d2 v d1∇d2 guarantees soundness of widening

Static Program Analysis Winter Semester 2014/15 8.7

Applying Widening to Interval Analysis

A widening operator: ∇ : Int × Int → Int with
∅∇J := J∇∅ := J

[x1, x2]∇[y1, y2] := [z1, z2] where

z1 :=

{
x1 if x1 ≤ y1

−∞ otherwise

z2 :=

{
x2 if x2 ≥ y2

+∞ otherwise

Widening turns infinite ascending chain
J0 = ∅ ⊆ J1 = [1, 1] ⊆ J2 = [1, 2] ⊆ J3 = [1, 3] ⊆ . . .

into a finite one:
J∇0 = J0 = ∅
J∇1 = J∇0 ∇J1 = ∅∇[1, 1] = [1, 1]
J∇2 = J∇1 ∇J2 = [1, 1]∇[1, 2] = [1,+∞]
J∇3 = J∇2 ∇J3 = [1,+∞]∇[1, 3] = [1,+∞]

In fact, the maximal chain size arising with this operator is 4:
∅ ⊆ [3, 7] ⊆ [3,+∞] ⊆ [−∞,+∞]

Static Program Analysis Winter Semester 2014/15 8.8

Worklist Algorithm with Widening

Goal: extend Algorithm 5.3 by widening to ensure termination

Algorithm (Worklist algorithm with widening)

Input: dataflow system S = (Lab,E ,F , (D,v), ι, ϕ)
Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W
for l ∈ Lab do % Initialise AI

if l ∈ E then AIl := ι else AIl := ⊥D ;
while W 6= ε do

(l , l ′) := head(W);W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′∇ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ Lab}, denoted by fix∇(ΦS)

Remark: due to widening, only fix∇(ΦS) w fix(ΦS) is guaranteed
(cf. Thm. 5.6)

Static Program Analysis Winter Semester 2014/15 8.9

Outline

1 Recap: Interval Analysis

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Static Program Analysis Winter Semester 2014/15 8.10

Another Widening Example

Example 8.1

[x := 1]1

while [. . .]2

[x := 2]3

[x := x + 1]4

Transfer functions (for δ(x) = J):

ϕ1(J) = [1, 1]

ϕ2(J) = J

ϕ3(J) = [2, 2]

ϕ4(∅) = ∅
ϕ4([x1, x2]) = [x1 + 1, x2 + 1]

Application of worklist algorithm

1 without widening (omitted):
terminates with expected result for AI2 ([1, 3])

2 with widening (on the board):
terminates with unexpected result for AI2 ([1,+∞])

Static Program Analysis Winter Semester 2014/15 8.11

Idea of Narrowing

Observation: widening can lead to unnecessarily imprecise results

Solution: improvement by iterating again from the result obtained by
widening (i.e., from fix∇(ΦS))
=⇒ compute Φk

S(fix∇(ΦS)) for k = 1, 2, . . .

Soundness: fix∇(ΦS) w fix(ΦS) (cf. Alg. 7.7)
=⇒ Φk

S(fix∇(ΦS)) w Φk
S(fix(ΦS)) = fix(ΦS)

(since ΦS and thus Φk
S monotonic)

Static Program Analysis Winter Semester 2014/15 8.12

Narrowing Example

Example 8.2 (cf. Example 8.1)

[x := 1]1

while [. . .]2

[x := 2]3

[x := x + 1]4

Transfer functions (for δ(x) = J):

ϕ1(J) = [1, 1]

ϕ2(J) = J

ϕ3(J) = [2, 2]

ϕ4(∅) = ∅
ϕ4([x1, x2]) = [x1 + 1, x2 + 1]

Narrowing:

AI1 AI2 AI3 AI4
fix∇(ΦS) [−∞,+∞] [1,+∞] [1,+∞] [2, 2]

ΦS(fix∇(ΦS)) [−∞,+∞] [1, 3] [1,+∞] [2, 2]
Φ2
S(fix∇(ΦS)) [−∞,+∞] [1, 3] [1, 3] [2, 2]

Φ3
S(fix∇(ΦS)) [−∞,+∞] [1, 3] [1, 3] [2, 2]

Static Program Analysis Winter Semester 2014/15 8.13

Narrowing in Practice

Problem: narrowing may not terminate
(due to infinite descending chains)

But: possible to stop after every step without losing soundness

In practice: termination often ensured by using narrowing operators
(≈ counterpart of widening operator; definition omitted)

Static Program Analysis Winter Semester 2014/15 8.14

Outline

1 Recap: Interval Analysis

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Static Program Analysis Winter Semester 2014/15 8.15

Taking Conditional Branches into Account I

So far: values of conditions have been ignored in analysis

Essentially: if and while statements treated as nondeterministic
choice between the two branches

Example 8.3

y := 0;
z := 0;

while [x > 0]l do
if y < 17 then
y := y + 1;

z := z + x;
x := x - 1;

Interval analysis (with widening) yields for l :

x ∈ [−∞,+∞]
y ∈ [0,+∞]
z ∈ [−∞,+∞]

Too pessimistic! In fact,

x ∈ [−∞,+∞]
y ∈ [0, 17]
z ∈ [0,+∞]

Static Program Analysis Winter Semester 2014/15 8.16

Taking Conditional Branches into Account II

Solution: introduce transfer functions for branches

First approach: attach (negated) conditions as labels to control flow
edges

advantage: no language modification required
disadvantage: entails extension of DFA framework
will not further be considered here

Second approach: encode conditions as assertions (statements)

advantage: DFA framework can be reused
disadvantage: entails extension of WHILE language
the way we will follow

Static Program Analysis Winter Semester 2014/15 8.17

First Approach: Conditions as Edge Labels

Example 8.4 (cf. Example 8.3)

[y := 0]1

[z := 0]2

while [x > 0]3 ¬(x > 0)

if [y < 17]4

[y := y + 1]5

[z := z + x]6

[x := x - 1]7

x > 0

y < 17 ¬(y < 17)

Static Program Analysis Winter Semester 2014/15 8.18

Second Approach: Conditions as Assertions

Example 8.5 (cf. Example 8.3)

y := 0;
z := 0;
while x > 0 do
assert x > 0;
if y < 17 then
assert y < 17;
y := y + 1;

z := z + x;
x := x - 1;

assert ¬(x > 0);

Static Program Analysis Winter Semester 2014/15 8.19

Extending the Syntax of WHILE Programs

Definition 8.6 (Labelled WHILE programs with assertions)

The syntax of labelled WHILE programs with assertions is defined by the
following context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c | [assert b]l ∈ Cmd

To be done:

Definition of transfer functions for assert blocks
(depending on analysis problem)

Idea: assertions as filters that let only “valid” information pass

Static Program Analysis Winter Semester 2014/15 8.20

Outline

1 Recap: Interval Analysis

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Static Program Analysis Winter Semester 2014/15 8.21

Constant Propagation Analysis with Assertions I

So far:

Complete lattice (D,v) where
D := {δ | δ : Var c → Z ∪ {⊥,>}}

δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Transfer functions {ϕl | l ∈ Lab} defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := z

valδ(a1 op a2) :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := valδ(a1) and z2 := valδ(a2)

Static Program Analysis Winter Semester 2014/15 8.22

Constant Propagation Analysis with Assertions II

Additionally for B l = (assert b), δ : Var c → Z ∪ {⊥,>} and x ∈ Var c :

ϕl(δ)(x) :=

{⊥ if @σ ∈ Σδ : valσ(b) = true
z if ∀σ ∈ Σδ : valσ(b) = true =⇒ σ(x) = z
> otherwise

where

the set of δ-assignments is given by

Σδ :=

{
σ : Var c → Z

∣∣∣∣∣∀y ∈ Var c : σ(y) ∈

{∅ if δ(y) = ⊥
{z} if δ(y) = z
Z if δ(y) = >

}
(and thus Σδ = ∅ iff δ(y) = ⊥ for some y ∈ Var c)

the evaluation function valσ : BExp → B is defined by

valσ(t) := t
valσ(a1=a2) := (valσ(a1) =

valσ(a2))

valσ(¬b) :=

{
true if valσ(b) =

false
false otherwise

valσ(b1∧b2) :=

{
true if valσ(b1) =

valσ(b2) = true
false otherwise

etc.
Static Program Analysis Winter Semester 2014/15 8.23

Constant Propagation Analysis with Assertions III

Example 8.7

1 Var c = {x, y, z}, δ = (⊥︸︷︷︸
x

, 1︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ Σδ = ∅
=⇒ ϕassert b(δ) = (⊥,⊥,⊥) for every b ∈ BExp

2 Var c = {x, y, z}, δ = (1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ Σδ = {(1, 2, z) | z ∈ Z}
=⇒ ϕassert x=y(δ) = (⊥,⊥,⊥)

ϕassert y=z(δ) = (1, 2, 2)
ϕassert y<z(δ) = (1, 2,>)

ϕassert x<=z∧y>z(δ) = (1, 2, 1)

3 Var c = {x, y, z}, δ = (1︸︷︷︸
x

, >︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ Σδ = {(1, z1, z2) | z1, z2 ∈ Z}
=⇒ ϕassert x=y(δ) = (1, 1,>)

ϕassert y=z(δ) = (1,>,>)
Static Program Analysis Winter Semester 2014/15 8.24

Constant Propagation Analysis with Assertions IV

Remarks:

For B l = (assert b) and δ : Var c → Z ∪ {⊥,>},
ϕl(δ) v δ and hence Σϕl (δ) ⊆ Σδ (“filter”)

Constant propagation captures interdependencies between variables
only when both are constant (cf. “assert y=z” in Example 8.7)

ϕl(δ) can be determined (or at least approximated) by Satisfiability
Modulo Theories (SMT) techniques

If CPl(x) = ⊥ for some l ∈ Labc and x ∈ Var c , then l is unreachable
(and CPl(y) = ⊥ for all y ∈ Var c)

Static Program Analysis Winter Semester 2014/15 8.25

	Recap: Interval Analysis
	Narrowing
	Taking Conditional Branches into Account
	Constant Propagation Analysis with Assertions

