Static Program Analysis

Lecture 8: Dataflow Analysis VII
(Narrowing & DFA with Conditional Branches)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

@ Recap: Interval Analysis

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.2

The Domain of Interval Analysis

@ The domain (/nt, C) of intervals over Z is defined by

Int :={[z1,2] | 71 € ZU{—x},20 € ZU{+00}},z1 < 2} U {0}
where
o —o0 < zand z < 4oo (for all z € Z)
o () C J (for all J € Int)
-] [y17y2] g [21722] Iff n Z zZ1 and Y2 S Vi)
@ (Int,C) is a complete lattice with (for every Z C Int)

Lo if 7=0orZ={0}
|_| 1[4, 22] otherwise

2= Naug-oyiar | 21, 22] € T}
22 = pupio{z2 | [21, 22] € T}
(and thus L =0, T = [—o00,+0oq])
o Clearly (Int, C) has infinite ascending chains, such as

0CL,1C,2]CL3]C...

where

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 8.3

The Complete Lattice of Interval Analysis

[—OO,+OO]
[—OO,/].] N L [—174-00]
/ \
[—O0,0] N [_2’2] L [O’+OO]
/ N AN
[790’71] N [725 1] [71’2] , [1’+OO]
‘ SN N
[-2,0] [-1,1] [0,2]
SN SN SN
[-2,-1] [-1,0] [0,1] [1,2]
SN SN SN SN
"*~--_[___2’_2] [-1,-1] [0,0] [1,1] [2,2 -

""""" =

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 8.4

Formalising Interval Analysis |

The dataflow system S = (Lab, E, F,(D,C),¢,) is given by
@ set of labels Lab := Lab.
e extremal labels E := {init(c)} (forward problem)

o flow relation F := flow(c) (forward problem)
e complete lattice (D, C) where

o D:={6|d: Varc — Int}

e 1 C &y iff 01(x) C da(x) for every x € Var,

@ 1:=Tp: Varc — Int: x — Tpe (With Ty = [—00, +0])

@ : see next slide

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.5

Formalising Interval Analysis Il

Transfer functions {¢; | | € Lab} are defined by
(5) =) if B! = skip or B' € BExp
POV = 6[x s valg(a)] if B! = (x := a)

where I5(ar+as) i vals(ay) @ vals(as)
L vals(ai+arz) := vals(air) @ vals(az
‘\Z?g; _ ?z(xz] vals(ai-az) := vals(a1) © vals(az)
J ’ vals(ai*ay) := vals(a1) ® vals(az)
with

Vel =Jad=0cd:=....=0

[v1, 2] © [z1, 2] == [y1 + 21, y2 + 2]

1. y2] © [z1, 2] :== [y1 — 22, y2 — 1]

1, y2] © [z1, 2] := [{121, v122, yoz1, yozo }, | {121, Y122, Y221, Yo 2o }]

Remarks:

@ Possible refinement of DFA to take conditional blocks b’ into account

o essentially: b as edge label, p/(8)(x) =d(x)\{z € Z | x =2z = —b}
(cf. “DFA with Conditional Branches" later)

@ Important: soundness and optimality of abstract operations, e.g., &:
e soundness: z1 € L,z € b — zn+2€ B b
e optimality: J; @ J as small as possible

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 8.6

Widening Operators

Definition (Widening operator)

Let (D,C) be a complete lattice. A mapping V : D x D — D is called
widening operator if
o for every di,dr € D,
diUd, C diVdy
and
o for all ascending chains dy = d; C ..., the ascending chain
dy T dY C ... eventually stabilises where
dov ‘= dp and dv1 = d Vdj;q for each i € N

Remarks:

o (d¥)jen is clearly an ascending chain as
d¥, =d¥Vdip1 3 dY Udiyy JdY
@ In contrast to LI, V does not have to be commutative, associative,
monotonic, nor absorptive (dVd = d)
@ The requirement di U dr C dqVd> guarantees soundness of widening

RWNTH HE Static Program Analysis Winter Semester 2014/15 8.7

Applying Widening to Interval Analysis

@ A widening operator: V : Int X Int — Int with
0VJ :=JIVD:=J
[x1,x]Viy1, y2] == [z1,22] where
Lo dx ifxasyn
L —o0 otherwise
Lo dxe ifxx>y
27) +o0o otherwise
@ Widening turns infinite ascending chain
bo=0Ch=[L1ChL=[12]C h=][L3]C...
into a finite one:
iy =Jo=10
JY = Iy Vh =0V[L,1] = [1,1]
By = ¥V =[1,1]V[L,2] = [1, +]
Jy = JYV I =[1,+]V][L,3] = [1, +]
@ In fact, the maximal chain size arising with this operator is 4:
0 C[3,7] € [3,+o0] C [~o0, +d]

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.8

Worklist Algorithm with Widening

Goal: extend Algorithm 5.3 by widening to ensure termination

Algorithm (Worklist algorithm with widening)

Input: dataflow system S = (Lab, E, F,(D,C), ¢, ¢)
Variables: W € (Lab x Lab)*, {Al; € D | | € Lab}
Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W
for | € Lab do % Initialise Al
if /| € E then Al; := . else Al; := 1 p;
while W # ¢ do
(1,1") :== head(W); W := tail(W);
if p/(Al)) Z Al; then % Fixpoint not yet reached
AI// = Al//V(ﬂ/(Al/);
for (I',1") € F do
if (I',1") not in W then W := (I, 1") - W;
Output: {Al; | | € Lab}, denoted by fix" (®s)

Remark: due to widening, only fix" (®s) I fix(®s) is guaranteed
(cf. Thm. 5.6)

RWNTH Static Program Analysis Winter Semester 2014/15

8.9

© Narrowing

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.10

Another Widening Example

Transfer functions (for 6(x) = J):

v() = [L1]
p(J) = J
e3(J) = [2,2]
ea(0) = 0
a([x1,x2]) = [x1+1,x +1]

Application of worklist algorithm
© without widening (omitted):
terminates with expected result for Al ([1, 3])

@ with widening (on the board):
terminates with unexpected result for Aly ([1,400])

RWNTH Static Program Analysis Winter Semester 2014/15 8.11

Idea of Narrowing

@ Observation: widening can lead to unnecessarily imprecise results

@ Solution: improvement by iterating again from the result obtained by
widening (i.e., from fixV (®s))
— compute ®X(fix" (ds)) for k=1,2,...
o Soundness: fix¥ (®s) I fix(ds) (cf. Alg. 7.7)
= OL(fixV (Ps)) I PX(fix(Ps)) = fix(Ps)
(since ®s and thus ®& monotonic)

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 8.12

Narrowing Example

Example 8.2 (cf. Example 8.1)
Transfer functions (for 6(x) = J):

e1(J) = [1,1]
e2(J) = J
@3(-/) = [27 2]
pa(0) = 0
ea([x1,%]) = Pa+1x+1]
Narrowing:
Aly Al Alz Aly

ﬁxv(cbs) [—00,+0] [1,400] [1,+00] [2,2]
ds(fixV(®s)) | [oo,+00] [1,3] [1,4+00] [2,2]
PZ(fixV(Ps)) | [-o0, +00] [1,3] [1,3] [2,2]
L (fixV(ds)) | [~o0, +o0] [1,3] [1,3] [2,2]

Narrowing in Practice

@ Problem: narrowing may not terminate
(due to infinite descending chains)

@ But: possible to stop after every step without losing soundness

@ In practice: termination often ensured by using narrowing operators
(=~ counterpart of widening operator; definition omitted)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.14

© Taking Conditional Branches into Account

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 8.15

Taking Conditional Branches into Account |

@ So far: values of conditions have been ignored in analysis

o Essentially: if and while statements treated as nondeterministic
choice between the two branches

Example 8.3

e Interval analysis (with widening) yields for /:

y = 0; X € [—00, +]

z := 0; y € [0, +o0]

while [x > 0]/ do z € [—o0, +00]
if y < 17 then

y =y +1 @ Too pessimistic! In fact,
z fzt}lc’ x € [—00, 400]
=X ’ y € [0,17]
z € [0, +o0]

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 8.16

Taking Conditional Branches into Account Il

@ Solution: introduce transfer functions for branches
e First approach: attach (negated) conditions as labels to control flow
edges
e advantage: no language modification required
e disadvantage: entails extension of DFA framework
o will not further be considered here
e Second approach: encode conditions as assertions (statements)

e advantage: DFA framework can be reused
o disadvantage: entails extension of WHILE language
o the way we will follow

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.17

First Approach: Conditions as Edge Labels

Example 8.4 (cf. Example 8.3)

-(x > 0)

-(y < 17)

RWNTH HE Static Program Analysis Winter Semester 2014/15 8.18

Second Approach: Conditions as Assertions

Example 8.5 (cf. Example 8.3)

y = 0;
z := 0;
while x > 0 do
assert x > 0;
if y < 17 then
assert y < 17;

y :=y + 1;
zZ = z + X;
X :=x - 1;

assert —(x > 0);

nerAACHEN Static Program Analysis Winter Semester 2014/15 8.19

Extending the Syntax of WHILE Programs

Definition 8.6 (Labelled WHILE programs with assertions)

The syntax of labelled WHILE programs with assertions is defined by the
following context-free grammar:

a; =z | X | airtar ’ ai—arz ‘ ar*ay € AExp
[o= it | aj=ar ’ a;>ar ‘ —|b‘ biA\b; | bi1Vby € BExp
c == [skip]' | [x := 3] | 1500 |

if [b])’ then c; else ¢ | while [b]' do c | [assert b] € Cmd

To be done:

@ Definition of transfer functions for assert blocks
(depending on analysis problem)

@ ldea: assertions as filters that let only “valid” information pass

Static Program Analysis Winter Semester 2014/15 8.20

@ Constant Propagation Analysis with Assertions

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.21

Constant Propagation Analysis with Assertions |

So far:

o Complete lattice (D, C) where
o D:={6|0:Varc - ZU{L, T}}
@ §(x) =z € Z: x has constant value z
@ §(x) = L: x undefined
@ §(x) = T: x overdefined (i.e., different possible values)
e L C D x D defined by pointwise extension of | C zC T
(for every z € Z)

e Transfer functions {p; | | € Lab} defined by

(6) == o if B! = skip or B! € BExp
i T (S[X —> Val5(a)] |f B/ = (X o= a)
where
C— Z1 Op 2o ifZl,ZQEZ
‘\Z;(SE)Z(; — i(X) vals(ay op az) := ¢ L fzi=lorzn=1
’ o T otherwise

for z; := vals(a1) and z := vals(az)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.22

Constant Propagation Analysis with Assertions Il

Additionally for B’ = (assert b), § : Var. =+ ZU{L, T} and x € Var,:

1L if fo € T : val,(b) = true
wi(0)(x) =<z ifVoeXs:val,(b)=true = o(x) =1z
T otherwise

where

@ the set of J-assignments is given by

Y5 = {O’Z Var. — 7

0 if 5(y) = L
Yy € Varc:o(y) € {{z} if 6(y) =z }
Z y)=T

(and thus X5 = 0 iff §(y) = L for some y € Var)
@ the evaluation function val, : BExp — B is defined by
true if val,(b) =

valy(—b) := { false

val,(t) : false otherwise

val,(a1=az) :

(525"81%): true if val,(by) =
o192 valy(biAby) = valy(b2) = true
false otherwise
etc.
RWIHAACHEN Static Program Analysis Winter Semester 2014/15 8.23

Constant Propagation Analysis with Assertions IlI

Example 8.7

o VarC:{XaYaz}' 5:(¢7‘ 1 SR T)

y
= Qassert b(9) = (L, L, L) for every b € BExp

Q@ Vare={x,y,z},0=(1,2,T)
X y z

= Y5=1(1,2,2) | z€ Z}
= Passert x=y(6) = (J_, J_,J_)
Passert y=z(5) —
Passert y<z(5)
Passert x<=z/\y>z(5)

= Y ={(l,z,2) |z2,2€Z
— Passert x=y(6) = (]-,]-,T)
Passert y=z(6) = (]-, T,T)

nm“ ; | Static Program Analysis

—

Winter Semester 2014/15

8.24

Constant Propagation Analysis with Assertions IV

Remarks:

o For B! = (assert b)and 0 : Var. — ZU {1, T},
©1(0) E 6 and hence ¥, 5) C X5 (“filter”)

@ Constant propagation captures interdependencies between variables
only when both are constant (cf. “assert y=z" in Example 8.7)

@ /(0) can be determined (or at least approximated) by Satisfiability
Modulo Theories (SMT) techniques

o If CP/(x) = L for some | € Lab. and x € Var., then [is unreachable
(and CP/(y) = L for all y € Var,)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 8.25

	Recap: Interval Analysis
	Narrowing
	Taking Conditional Branches into Account
	Constant Propagation Analysis with Assertions

