Static Program Analysis

Lecture 4: Dataflow Analysis Ill (The Framework)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Wanted: Software Engineering HiWis

o What we offer: work in
e EU project D-MILS
o Dependability and Security of Distributed
Information and Communication Infrastructures
@ http://www.d-mils.org/ B=M L
o Goal: [design and] implementation of high-level G oo NATRORE
specification language
e ESA project CATSY
o Catalogue of System and Software Properties
@ Successor of COMPASS project
(http://compass.informatik.rwth-aachen.de)
e goal: support early V&V activities in model-based
system development
@ What we expect: prospective candidates

o like formal methods (model checking,
program/model transformations)

e program efficiently (Python)

o work 9-19 hrs/week

e Contact: Thomas Noll (noll@cs.rwth-aachen.de)
RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.2

http://www.d-mils.org/
http://compass.informatik.rwth-aachen.de
noll@cs.rwth-aachen.de

@ Recapitulation: Heading for a Dataflow Analysis Framework

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.3

Similarities Between Analysis Problems

@ Observation: the analyses presented so far have some similarities
— Look for underlying framework

e Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

@ Overall pattern: for c € Cmd and | € Lab, the analysis information
(Al) is described by equations of the form

Al — 2 if e E
P er (Aly) | (1, 1) € F} otherwise

where

o the set of extremal labels, E, is {init(c)} or final(c)

¢ specifies the extremal analysis information

the combination operator, | |, is (] or U

oy denotes the transfer function of block B

the flow relation F is flow(c) or flow(c) ;= {(/",1) | (1,I") € flow(c)})

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.4

Goal: solve dataflow equation system by fixpoint iteration

@ Characterize solution of equation system as fixpoint of a
transformation

Introduce partial order for comparing analysis results
Establish least upper bound as combination operator

Ensure monotonicity of transfer functions

©© 00

Guarantee termination of fixpoint iteration by ascending chain
condition

Optimize fixpoint iteration by worklist algorithm

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.5

© Recapitulation: Order-Theoretic Foundations: The Domain

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.6

Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,
reflexivity: di C dy
transitivity: di Cdr and dbo C d3 = di C d3
antisymmetry: di Cdr and db C di = di = o>
It is called total if, in addition, always d; C d, or d» C dj.

(N, <) is a total partial order

o
@ (N, <) is not a partial order (since not reflexive)

© (Live Variables) (2V%<, C) is a (non-total) partial order
o

(Available Expressions) (2¢6P<. D) is a (non-total) partial order

RWNTH Static Program Analysis Winter Semester 2014/15 4.7

Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D,) be a partial order and S C D.

© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

@ An upper bound d of S is called least upper bound (LUB) or
supremum of S if d C d’ for every upper bound d’ of S
(notation: d =] |S).

V.

Example
© S CNhasaLUBin (N, <) iff it is finite
@ (Live Variables) (D,C) = (2"2"<, C). Given W,...,V, C Var,
L{Va, . s Vol = U{V, ..., Vo)
Q (Avail. Expr.) (D,C) = (2B, D). Given Ay,..., A, C CExp,,
LI{A1, ..., An} = (A1, ..., An}

RWNTH Static Program Analysis Winter Semester 2014/15 4.8

Complete Lattices

Since {op(Aly) | (I',1) € F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have
least upper bounds. In this case,

1L:=1]0

denotes the least element of D.

is not a complete lattice as, e.g., N does not have a
Q (N,)i lete latti N d h LUB
@ (Live Variables)
(D,C) = (2¥°r<, C) is a complete lattice with | = ()
© (Available Expressions)
(D,C) = (2B*<, D) is a complete lattice with | = CExp,

v

RWNTH HE Static Program Analysis Winter Semester 2014/15 4.9

Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition (Chain)
Let (D,C) be a partial order.

@ A subset S C D is called a chain in D if, for every di,d» € S,
diCdryordr Cdy
(that is, S is a totally ordered subset of D).

@ (D,) has finite height if all chains are finite. In this case, its height
is max{|S| | S chain in D} — 1.

Q Every S C Nis a chain in (N, <) (which is of infinite height)
Q@ {0,{0},{0,1},{0,1,2},...} is a chain in (2%, C)
@ {0,{0},{1}} is not a chain in (2%, C)

v

RWNTH Static Program Analysis Winter Semester 2014/15 4.10

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the following condition.

Definition (Ascending Chain Condition)

@ A sequence (d;)jen is called an ascending chain in D if d; C dj;1 for
each i € N.

@ A partial order (D, C) satisfies the Ascending Chain Condition (ACC)
if each ascending chain dy C d; C ... eventually stabilizes, i.e., there
exists n € N such that d, = dp11 = ...

Notes:

@ The finite height property implies ACC, but not vice versa (as there
might be non-stabilizing descending chains)

@ The complete lattice and ACC properties are orthogonal

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.11

© Order-Theoretic Foundations: The Function

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 4.12

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D', C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2

Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2, C) and (N, <).

Q ¢,:2N - 2N: S5 N\ S is not monotonic w.r.t. (21, C)
(since, e.g.,) C N but ®5(0) = N € ®,(N) = 0).

© (Live Variables) (D,C) = (D',C') = (2", C)
Each transfer function ¢ (V) := (V \ killy(B")) U gen,y(B") is
obviously monotonic

© (Available Expressions) (D,C) = (D’,C') = (2¢Exrc, D) ditto

V.
RWNTH Static Program Analysis Winter Semester 2014/15 4.13

Definition 4.3 (Fixpoint)
Let D be some domain, d € D, and ®: D — D. If

o(d)=d
then d is called a fixpoint of ®.

Example 4.4
The (only) fixpoints of ® : N — N : n+s n? are 0 and 1

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.14

The Fixpoint Theorem |

AT AT K]
Alfred Tarski (1901-1983) (LS \

Bronislaw Knaster (1893-1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a complete lattice satisfying ACC and ® : D — D
monotonic. Then

fix(®) = | | {CD" (L) | ke N}
is the least fixpoint of ® where
®0(d) := d and dKF1(d) := d(P*(d)).

Function requirements for dataflow analysis
All transfer functions must be a monotonic

RWNTH HE Static Program Analysis Winter Semester 2014/15 4.15

The Fixpoint Theorem Il

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,C) be a complete lattice satisfying ACC, S C D a chain, and
® : D — D monotonic. Then

o(LsS) =L*(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Remark: ACC — (Cbk(J_))keN stabilizes at some kg € N with
fix(®) = k(L) (where kg bounded by height of (D, L))

RWTHAACHE Static Program Analysis Winter Semester 2014 /15 4.16

e Application to Dataflow Analysis

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.17

Dataflow Systems |

Definition 4.7 (Dataflow system)

A dataflow system S = (Lab, E, F,(D,C),t,) consists of
o a finite set of (program) labels Lab (here: Lab.),
@ a set of extremal labels E C Lab (here: {init(c)} or final(c)),
e a flow relation F C Lab x Lab (here: flow(c) or flowR(c)),

@ a complete lattice (D, C) satisfying ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

@ a collection of monotonic transfer functions {p; | | € Lab} of type
w;:D— D.

RWTHAACHE Static Program Analysis Winter Semester 2014/15 4.18

Dataflow Systems I|

Example 4.8

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flowR(¢)

D 2CExpC 2VarC

C 2 -

L N U

L CExp, 0

L 0 Var.

7 oi(d) = (d \ kill(B)) U gen(B")

Static Program Analysis Winter Semester 2014/15 4.19

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (Lab, E, F,(D,C), ¢,), Lab= {1, ..., n}
(w.l.o.g.)
@ S determines the equation system (where | € Lab)
Al = {L if | € E
LI{er(Aly) | (I']) € F} otherwise
o (di,...,dp) € D" is called a solution if

4 — {L if I cE
P71 er(dr) | (I,1) € F} otherwise
@ S determines the transformation
G5 : D" — D" (dh,...,dp) — (dy,...,d])

where
if e E

r .)t
9 = {U{‘Pl’(dl') | (I']) € F} otherwise

Corollary 4.10
(di,...,dn) € D" solves the equation system iff it is a fixpoint of ®g

RWNTH Static Program Analysis Winter Semester 2014/15

Solving Dataflow Problems by Fixpoint lteration

Remarks:
e (D,C) being a complete lattice ensures that ®s is well defined
@ Since (D,LC) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,dn) C" (di,...,d}) iff dj C d for every 1 < i < n)
@ Monotonicity of transfer functions ¢, in (D, C) implies monotonicity
of g in (D", ") (since | | also monotonic)
@ Thus the (least) fixpoint is effectively computable by iteration:
fix(®s) = | [{05(Lon) | k € N}
where J_Dn = (J_D, e J_D)
H,—/
n times
@ If height of (D,C) is m
= height of (D",C")is m-n
— fixpoint iteration requires at most m - n steps

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 4.21

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]}; AE; =0
[y .= a*b]2; AE, = AE, U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 2 3 4 5
CExp. CExp. CExp. CExp. CExp,
0 CExp. CExp. CExp.
0 {a+b} {atb} CExp,
0 {atb} {a+b} {a+b}
0 {a+b} {atb} {atb}

A WN R O~
SRR

RWNTH HE Static Program Analysis Winter Semester 2014/15 4.22

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program: Equation system:
x := 2]; = 4]?; LV = LV \ {y}
{X = 1}3;[y | LVo = LV3 \ {x}
if [y > 0]* then Vs = LV, U {y}
[z := x]° LVa = ((LV5 \ {z}) U {x}) U((LVe6 \ {z}) U {y})
else LVs = (LV7 \ {x}) U {z}
2 := yay]°; Ve = (LV7 \ {x}) U {z}
[X = Z]7 LV7 = {X7Y7Z}

Fixpoint iteration:

i1 2 3 4 5 6 7
ol0 0 0 0 0 0 0
Lo 0 {y} {xyt {z} {z} {xvy.z}
210 {y} {xy} {xy} {v.z} {v.z} {zxy.z}
310 {y} {=y} {=y} {v.z2} {v.z2} {zxy.z}

RWNTH | Static Program Analysis Winter Semester 2014/15

	Recapitulation: Heading for a Dataflow Analysis Framework
	Recapitulation: Order-Theoretic Foundations: The Domain
	Order-Theoretic Foundations: The Function
	Application to Dataflow Analysis

