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Labelled Programs

Goal: localisation of analysis information
Dataflow information will be associated with

skip statements
assignments
tests in conditionals (if) and loops (while)

Assume set of labels Lab with meta variable l ∈ Lab (usually
Lab = N)

Definition (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

All labels in c ∈ Cmd assumed distinct, denoted by Labc

Labelled fragments of c called blocks, denoted by Blkc
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Representing Control Flow

Example

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by
(control) flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4
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Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do
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The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc , AEl ⊆ CExpc represents the set of available
expressions at the entry of block B l

Formally, for c ∈ Cmd with isolated entry:

AEl =

{
∅ if l = init(c)⋂
{ϕl ′(AEl ′) | (l ′, l) ∈ flow(c)} otherwise

where ϕl ′ : 2CExpc → 2CExpc denotes the transfer function of block
B l ′ , given by

ϕl ′(A) := (A \ killAE(B l ′)) ∪ genAE(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards

must:
⋂

in equation for AEl

Later: solution not necessarily unique
=⇒ choose greatest one
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The Equation System II

Reminder: AEl =

{
∅ if l = init(c)⋂
{ϕl′(AEl′) | (l ′, l) ∈ flow(c)} otherwise

ϕl′(E ) = (E \ killAE(B l′)) ∪ genAE(B l′)

Example (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅
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Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables
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The Equation System I

For each l ∈ Labc , LVl ⊆ Var c represents the set of live variables at
the exit of block B l

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{
Var c if l ∈ final(c)⋃
{ϕl ′(LVl ′) | (l , l ′) ∈ flow(c)} otherwise

where ϕl ′ : 2Var c → 2Var c denotes the transfer function of block B l ′ ,
given by

ϕl ′(V ) := (V \ killLV(B l ′)) ∪ genLV(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
backward: starts in final(c) and proceeds upwards

may:
⋃

in equation for LVl

Later: solution not necessarily unique
=⇒ choose least one
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The Equation System II

Reminder: LVl =

{
Var c if l ∈ final(c)⋃
{ϕl′(LVl′) | (l , l ′) ∈ flow(c)} otherwise

ϕl′(V ) = (V \ killLV(B l′)) ∪ genLV(B l′)

Example (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV(B l) genLV(B l)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {y, z}
LV6 = {y, z}
LV7 = {x, y, z}
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Similarities Between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Labc , the analysis information
(AI) is described by equations of the form

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

where

the set of extremal labels, E , is {init(c)} or final(c)
ι specifies the extremal analysis information
the combination operator,

⊔
, is
⋂

or
⋃

ϕl′ denotes the transfer function of block B l′

the flow relation F is flow(c) or flowR(c) (:= {(l ′, l) | (l , l ′) ∈ flow(c)})
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Characterization of Analyses

Direction of information flow:
forward:

F = flow(c)
AIl concerns entry of B l

c has isolated entry

backward:

F = flowR(c)
AIl concerns exit of B l

c has isolated exits

Quantification over paths:
may: ⊔

=
⋃

property satisfied by some path
interested in least solution (later)

must:⊔
=

⋂
property satisfied by all paths
interested in greatest solution (later)

Static Program Analysis Winter Semester 2014/15 3.13



Characterization of Analyses

Direction of information flow:
forward:

F = flow(c)
AIl concerns entry of B l

c has isolated entry

backward:

F = flowR(c)
AIl concerns exit of B l

c has isolated exits

Quantification over paths:
may: ⊔

=
⋃

property satisfied by some path
interested in least solution (later)

must:⊔
=

⋂
property satisfied by all paths
interested in greatest solution (later)
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Roadmap

Goal: solve dataflow equation system by fixpoint iteration

1 Characterize solution of equation system as fixpoint of a
transformation

2 Introduce partial order for comparing analysis results

3 Establish least upper bound as combination operator

4 Ensure monotonicity of transfer functions

5 Guarantee termination of fixpoint iteration by ascending chain
condition

6 Optimize fixpoint iteration by worklist algorithm
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Outline

1 Recap: Dataflow Analysis

2 Heading for a Dataflow Analysis Framework

3 Order-Theoretic Foundations: The Domain
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Motivation

Wanted: solution of (dataflow) equation system

Problem: recursive dependencies between dataflow variables

Idea: characterize solution as fixpoint of transformation:

(AIl = τl)l∈Labc ⇐⇒ Φ((AIl)l∈Labc ) = (AIl)l∈Labc

where Φ
(
(AIl)l∈Labc

)
:= (τl)l∈Labc

Approach: approximate fixpoint by iteration
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Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition 3.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 3.2

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (Live Variables) (2Var c ,⊆) is a (non-total) partial order

4 (Available Expressions) (2CExpc ,⊇) is a (non-total) partial order
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Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example 3.4

1 S ⊆ N has a LUB in (N,≤) iff it is finite
2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔

{V1, . . . ,Vn} =
⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2CExpc ,⊇). Given A1, . . . ,An ⊆ CExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}

Static Program Analysis Winter Semester 2014/15 3.18



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example 3.4

1 S ⊆ N has a LUB in (N,≤) iff it is finite
2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔

{V1, . . . ,Vn} =
⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2CExpc ,⊇). Given A1, . . . ,An ⊆ CExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}

Static Program Analysis Winter Semester 2014/15 3.18



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example 3.4

1 S ⊆ N has a LUB in (N,≤) iff it is finite

2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔
{V1, . . . ,Vn} =

⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2CExpc ,⊇). Given A1, . . . ,An ⊆ CExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}

Static Program Analysis Winter Semester 2014/15 3.18



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example 3.4

1 S ⊆ N has a LUB in (N,≤) iff it is finite
2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔

{V1, . . . ,Vn} =
⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2CExpc ,⊇). Given A1, . . . ,An ⊆ CExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}

Static Program Analysis Winter Semester 2014/15 3.18



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example 3.4

1 S ⊆ N has a LUB in (N,≤) iff it is finite
2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔

{V1, . . . ,Vn} =
⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2CExpc ,⊇). Given A1, . . . ,An ⊆ CExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}

Static Program Analysis Winter Semester 2014/15 3.18



Complete Lattices

Since {ϕl ′(AIl ′) | (l ′, l) ∈ F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition 3.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
least upper bounds. In this case,

⊥ :=
⊔
∅

denotes the least element of D.

Example 3.6

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (Live Variables)
(D,v) = (2Var c ,⊆) is a complete lattice with ⊥ = ∅

3 (Available Expressions)
(D,v) = (2CExpc ,⊇) is a complete lattice with ⊥ = CExpc
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Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:
An element d ∈ D is called a lower bound of S ⊆ D if d v s for every
s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum of S
if d ′ v d for every lower bound d ′ of S (notation: d =

d
S).

Examples:
(Live Variables) (D,v) = (2Var c ,⊆),

d
{V1, . . . ,Vn} =

⋂
{V1, . . . ,Vn}

(Available Expressions) (D,v) = (2CExpc ,⊇),d
{A1, . . . ,An} =

⋃
{A1, . . . ,An}

Lemma: the following are equivalent:

(D,v) is a complete lattice
(i.e., every subset of D has a least upper bound)
Every subset of D has a greatest lower bound

Corollary: every complete lattice has a greatest element > :=
d
∅
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Chains

Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition 3.7 (Chain)

Let (D,v) be a partial order.

A subset S ⊆ D is called a chain in D if, for every d1, d2 ∈ S ,
d1 v d2 or d2 v d1

(that is, S is a totally ordered subset of D).

(D,v) has finite height if all chains are finite. In this case, its height
is max{|S | | S chain in D} − 1.

Example 3.8

1 Every S ⊆ N is a chain in (N,≤) (which is of infinite height)

2 {∅, {0}, {0, 1}, {0, 1, 2}, . . .} is a chain in (2N,⊆)

3 {∅, {0}, {1}} is not a chain in (2N,⊆)
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The Ascending Chain Condition I

Termination of fixpoint iteration is guaranteed by the following condition.

Definition 3.9 (Ascending Chain Condition)

A sequence (di )i∈N is called an ascending chain in D if di v di+1 for
each i ∈ N.

A partial order (D,v) satisfies the Ascending Chain Condition (ACC)
if each ascending chain d0 v d1 v . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Notes:

The finite height property implies ACC, but not vice versa (as there
might be non-stabilizing descending chains)

The complete lattice and ACC properties are orthogonal
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The Ascending Chain Condition II

Example 3.10

1 (N,≤) does not satisfy ACC and is of infinite height (and not a
complete lattice)

2 (Z≤0,≤) satisfies ACC but is of infinite height (and not a complete
lattice)

3 (Z ∪ {−∞,+∞},≤) (where −∞ ≤ z ≤ +∞ for all z ∈ Z) is a
complete lattice but does not satisfy ACC

4 ({∅, {0}, {1}},⊆) satisfies ACC but is not a complete lattice

5 (Live Variables) (2Var c ,⊆) is a complete lattice satisfying ACC and is
of finite height (since Var c [unlike Var ] is finite)

6 (Available Expressions) (2CExpc ,⊇) is a complete lattice satisfying
ACC and is of finite height (since CExpc [unlike AExp] is finite)

Domain requirements for dataflow analysis

(D,v) must be a complete lattice satisfying ACC
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