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The Interprocedural Extension II

Visualization of

1 ϕ̂lc (d ·w) = ϕlc (d)·d ·w

2 ϕ̂ln(d
′ ·d ·w) = ϕln(d

′)·d ·w

3 ϕ̂lx (d
′ ·d ·w) = ϕlx (d

′)·d ·w

4 ϕ̂lr (d
′ ·d ·w) = ϕlr (d

′
, d)·w

...

[call P(a,z)]lc
lr

...

[P(val x,res y)]ln

...

[end]lx

d · w
1 ϕlc (d)·d ·w

2 ϕln(ϕlc (d))·d ·w

d ′ ·d ·w
3 ϕlx (d

′)·d ·w
4 ϕlr (ϕlx (d

′), d)·w
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Formal Definition of Equation System

Dataflow equations:

AIl =











ι if l ∈ E
⊔

{ϕ̂lc (AIlc ) | (lc , ln, lx , lr ) ∈ iflow} if l = ln
for some (lc , ln, lx , lr ) ∈ iflow

⊔

{fl ′(AIl ′) | (l
′
, l) ∈ F} otherwise

(if l not a return label)

Node transfer functions:

fl(w) =

{

ϕ̂lr (ϕ̂lx (Flx (ϕ̂lc (w)))) if l = lc for some (lc , ln, lx , lr ) ∈ iflow
ϕ̂l (w) otherwise

(if l not an exit or return label)

Procedure transfer functions:

Fl(w) =







w if l = ln
for some (lc , ln, lx , lr ) ∈ iflow

⊔

{fl ′(Fl ′(w)) | (l ′, l) ∈ F} otherwise
(if l occurs in some procedure)

As before: induces monotonic functional on lattice with ACC
=⇒ least fixpoint effectively computable
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The Fixpoint Iteration

For the fixpoint iteration it is important that the auxiliary functions only
operate (at most) on the two topmost elements of the stack:

Lemma 20.1

For every l ∈ Lab, d ∈ D, and w ∈ D∗,

fl(d
′ · d · w) = fl(d

′ · d) · w and Fl(d
′ · d · w) = Fl(d

′ · d)w

Proof.

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc.
CC ’92, LNCS 641, Springer, 1992, 125–140

It therefore suffices to consider stacks with at most two entries, and so the
fixpoint iteration ranges over “finitary objects”.
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Soundness and Completeness

The following results carry over from the intraprocedural case:

Theorem 20.2

Let Ŝ := (Lab,E ,F , (D̂ , ⊑̂), ι̂, ϕ̂) be an interprocedural dataflow system.

1 (cf. Theorem 6.3)

mvp(Ŝ) ⊑̂ fix(Φ
Ŝ
)

2 (cf. Theorem 7.3)

mvp(Ŝ) = fix(Φ
Ŝ
) if all ϕ̂l are distributive

Proof.

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc.
CC ’92, LNCS 641, Springer, 1992, 125–140
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Context-Sensitive Interprocedural DFA

Observation: MVP and fixpoint solution maintain proper relationship
between procedure calls and returns
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Context-Sensitive Interprocedural DFA

Observation: MVP and fixpoint solution maintain proper relationship
between procedure calls and returns

But: do not distinguish between different procedure calls

AIl =











ι if l ∈ E
⊔

{ϕ̂lc (AIlc ) | (lc , ln, lx , lr ) ∈ iflow} if l = ln for some
(lc , ln, lx , lr ) ∈ iflow

⊔

{fl ′(AIl ′) | (l
′
, l) ∈ F} otherwise

information about calling states combined for all call sites
procedure body only analyzed once using combined information
resulting information used at all return points

=⇒ “context-insensitive”
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Context-Sensitive Interprocedural DFA

Observation: MVP and fixpoint solution maintain proper relationship
between procedure calls and returns

But: do not distinguish between different procedure calls

AIl =











ι if l ∈ E
⊔

{ϕ̂lc (AIlc ) | (lc , ln, lx , lr ) ∈ iflow} if l = ln for some
(lc , ln, lx , lr ) ∈ iflow

⊔

{fl ′(AIl ′) | (l
′
, l) ∈ F} otherwise

information about calling states combined for all call sites
procedure body only analyzed once using combined information
resulting information used at all return points

=⇒ “context-insensitive”

Alternative: context-sensitive analysis

separate information for different call sites
implementation by “procedure cloning” (one copy for each call site)
more precise
more costly
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Pointer Analysis

So far: only static data structures (variables)
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Pointer Analysis
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Now: pointer (variables) and dynamic memory allocation using heaps

Problem:

Programs with pointers and dynamically allocated data structures are
error prone
Identify subtle bugs at compile time
Automatically prove correctness
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Pointer Analysis

So far: only static data structures (variables)

Now: pointer (variables) and dynamic memory allocation using heaps

Problem:

Programs with pointers and dynamically allocated data structures are
error prone
Identify subtle bugs at compile time
Automatically prove correctness

Interesting properties of heap-manipulating programs:

No null pointer dereference
No memory leaks
Preservation of data structures
Partial/total correctness
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The Shape Analysis Approach

Goal: determine the possible shapes of a dynamically allocated data
structure at given program point
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The Shape Analysis Approach

Goal: determine the possible shapes of a dynamically allocated data
structure at given program point
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
aliasing (different pointer variables having same value)
sharing (different heap pointers referencing same location)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)
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The Shape Analysis Approach

Goal: determine the possible shapes of a dynamically allocated data
structure at given program point
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
aliasing (different pointer variables having same value)
sharing (different heap pointers referencing same location)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Concrete questions:

Does x.next point to a shared element?
Does a variable p point to an allocated element every time p is
dereferenced?
Does a variable point to an acyclic list?
Does a variable point to a doubly-linked list?
Can a loop or procedure cause a memory leak?
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The Shape Analysis Approach

Goal: determine the possible shapes of a dynamically allocated data
structure at given program point
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
aliasing (different pointer variables having same value)
sharing (different heap pointers referencing same location)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Concrete questions:

Does x.next point to a shared element?
Does a variable p point to an allocated element every time p is
dereferenced?
Does a variable point to an acyclic list?
Does a variable point to a doubly-linked list?
Can a loop or procedure cause a memory leak?

Here: basic outline; details in [Nielson/Nielson/Hankin 2005,
Sct. 2.6]
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Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Arithmetic expressions AExp a
Boolean expressions BExp b
Selector names Sel sel
Pointer expressions PExp p
Commands (statements) Cmd c
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Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Arithmetic expressions AExp a
Boolean expressions BExp b
Selector names Sel sel
Pointer expressions PExp p
Commands (statements) Cmd c

Context-free grammar:

a ::= z | x | a1+a2 | . . . | p | nil ∈ AExp
b ::= t | a1=a2 | b1∧b2 | . . . | is-nil(p) ∈ BExp
p ::= x | x.sel
c ::= [skip]l | [p := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [malloc p]l ∈ Cmd
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An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do

[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6;

[z := nil]7;

x a1 a2 a3 ♦

y

z

next next next
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[z := y]3;
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[x := x.next]5;
[y.next := z]6;

[z := nil]7;

x a1 a2 a3 ♦

y
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while [¬is-nil(x)]2 do
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[y := x]4;
[x := x.next]5;
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z
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Example 20.3 (List reversal)
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[y := nil]1;
while [¬is-nil(x)]2 do

[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6;

[z := nil]7;

x a1 a2 a3 ♦

y ♦
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y
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An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do

[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6;

[z := nil]7;

x a1 a2 a3 ♦

y

z ♦

next next next

x a2 a3 ♦

y a1

z ♦

next next

next
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An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do

[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6;

[z := nil]7;

x a2 a3 ♦

y a1

z ♦

next next

next

x a2 a3 ♦

y a1 ♦

z ♦

next next

next
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An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do

[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6;

[z := nil]7;

x a2 a3 ♦

y a1 ♦

z ♦

next next

next

(4 steps)

x a3 ♦

y a2 a1 ♦

z

next

next next
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An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do

[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6;

[z := nil]7;

(4 steps)

x a3 ♦

y a2 a1 ♦

z

next

next next

(4 steps)
x ♦

y a3 a2 a1 ♦

z

next next next
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An Example

Example 20.3 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

[y := nil]1;
while [¬is-nil(x)]2 do

[z := y]3;
[y := x]4;
[x := x.next]5;
[y.next := z]6;

[z := nil]7;

(4 steps)
x ♦

y a3 a2 a1 ♦

z

next next next

x ♦

y a3 a2 a1 ♦

z ♦

next next next

Static Program Analysis Winter Semester 2014/15 20.15



Outline

1 Recap: Interprocedural Dataflow Analysis – Fixpoint Solution

2 Soundness and Completeness

3 Context-Sensitive Interprocedural Dataflow Analysis

4 Pointer Analysis

5 Introducing Pointers

6 Shape Graphs

Static Program Analysis Winter Semester 2014/15 20.16



Shape Graphs I

Approach: representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes X = sets of variables

interpretation: x ∈ X iff x points to concrete node represented by X

∅ represents all concrete nodes that are not directly addressed by
pointer variables

x , y ∈ X (with x 6= y) indicate aliasing (as x and y point to the same
concrete node)

if x .sel and y refer to the same heap address and if X ,Y are abstract

nodes with x ∈ X and y ∈ Y , this yields abstract edge X
sel
−→ Y

transfer functions transform (sets of) shape graphs
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x a1 a2 a3 ♦

y

z

next next next

{x} ∅
next

next
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x a1 a2 a3 ♦

y

z

next next next

{x} ∅
next

next

x a1 a2 a3 ♦

y ♦

z

next next next

{x} ∅
next

next
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x a1 a2 a3 ♦

y ♦

z

next next next

{x} ∅
next

next

x a1 a2 a3 ♦

y ♦

z ♦

next next next

{x} ∅
next

next
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x a1 a2 a3 ♦

y ♦

z ♦

next next next

{x} ∅
next

next

x a1 a2 a3 ♦

y

z ♦

next next next

{x, y} ∅
next

next
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x a1 a2 a3 ♦

y

z ♦

next next next

{x, y} ∅
next

next

x a2 a3 ♦

y a1

z ♦

next next

next

{x} ∅

{y}

next

next
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x a2 a3 ♦

y a1

z ♦

next next

next

{x} ∅

{y}

next

next

x a2 a3 ♦

y a1 ♦

z ♦

next next

next

{x} ∅

{y}

next
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

x a2 a3 ♦

y a1 ♦

z ♦

next next

next

{x} ∅

{y}

next

(4 steps)

x a3 ♦

y a2 a1 ♦

z

next

next next

{x}

{y} {z}
next
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

(4 steps)

x a3 ♦

y a2 a1 ♦

z

next

next next

{x}

{y} {z}
next

(4 steps)
x ♦

y a3 a2 a1 ♦

z

next next next

{y} {z} ∅
next next
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Shape Graphs II

Example 20.4 (List reversal; cf. Example 20.3)

Concrete heap Shape graph

(4 steps)
x ♦

y a3 a2 a1 ♦

z

next next next

{y} {z} ∅
next next

x ♦

y a3 a2 a1 ♦

z ♦

next next next

{y} ∅
next

next
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Shape Graphs III

Definition 20.5 (Shape graph)

A shape graph G = (S ,H) consists of

a set S ⊆ 2Var of abstract locations and
an abstract heap H ⊆ S × Sel × S

notation: X
sel
−→ Y for (X , sel ,Y ) ∈ H

with the following properties:

Disjointness: X ,Y ∈ S =⇒ X = Y or X ∩ Y = ∅
(a variable can refer to at most one heap location)

Determinacy: X 6= ∅ and X
sel
−→ Y and X

sel
−→ Z =⇒ Y = Z

(target location is unique if source node is unique)

SG denotes the set of all shape graphs.
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Shape Graphs III

Definition 20.5 (Shape graph)

A shape graph G = (S ,H) consists of

a set S ⊆ 2Var of abstract locations and
an abstract heap H ⊆ S × Sel × S

notation: X
sel
−→ Y for (X , sel ,Y ) ∈ H

with the following properties:

Disjointness: X ,Y ∈ S =⇒ X = Y or X ∩ Y = ∅
(a variable can refer to at most one heap location)

Determinacy: X 6= ∅ and X
sel
−→ Y and X

sel
−→ Z =⇒ Y = Z

(target location is unique if source node is unique)

SG denotes the set of all shape graphs.

Remark: the following example shows that determinacy requires X 6= ∅:

Concrete: y −→ •
sel
←− •

z −→ •
sel
←− •

Abstract: Y = {y}
sel
←− X = ∅

sel
−→ Z = {z}
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Shape Graphs and Concrete Heap Properties

Example 20.6

Let G = (S ,H) be a shape graph. Then the following concrete heap
properties can be expressed as conditions on G :

x 6= nil

⇐⇒ ∃X ∈ S : x ∈ X

x = y 6= nil (aliasing)
⇐⇒ ∃Z ∈ S : x, y ∈ Z

x.sel1 = y.sel2 6= nil (sharing)

=⇒ ∃X ,Y ,Z ∈ S : x ∈ X , y ∈ Y ,X
sel1
−→ Z

sel2
←− Y

(⇐= only valid if Z 6= ∅)
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