Static Program Analysis

Lecture 1: Introduction to Program Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014 /15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

© Preliminaries

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.2

@ Lectures:

e Thomas Noll (noll@cs.rwth-aachen.de)
o Christina Jansen (christina.jansen@cs.rwth-aachen.de)

@ Exercise classes:

o Christian Dehnert (dehnert@cs.rwth-aachen.de)
e Benjamin Kaminski (benjamin.kaminski@cs.rwth-aachen.de)

@ Student assistant:
o Frederick Prinz

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.3

noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de
dehnert@cs.rwth-aachen.de
benjamin.kaminski@cs.rwth-aachen.de

Target Audience

@ MSc Informatik:
o Theoretische Informatik

@ MSc Software Systems Engineering:
o Theoretical Foundations

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.4

Expectations

o What you can expect:

e Foundations of static analysis of computer software

o Implementation and tool support

e Applications in, e.g., program optimization and software validation

@ What we expect: basic knowledge in

o Programming (essential concepts of imperative and object-oriented
programming languages and elementary programming techniques)

o helpful: Theory of Programming (such as Semantics of Programming
Languages or Software Verification)

Static Program Analysis Winter Semester 2014/15 1.5

Schedule:

Lecture Mon 14:15-15:45 AH 1 (starting October 13)

o Lecture Thu 14:15-15:45 AH 2 (starting October 23)

o Exercise class Mon 10:15-11:45 AH 6 (starting October 27)

@ see overview at http://moves.rwth-aachen.de/teaching/ws-1415/spa/

1st assignment sheet next week, presented October 27
Work on assignments in groups of two
Oral/written exam (6 credits) depending on number of participants

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.6

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

© Introduction

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.7

What Is It All About?

Static (Program) Analysis

Static analysis is a general method for automated reasoning on artefacts
such as requirements, design models, and programs.

Distinguishing features:
Static: based on source code, not on (dynamic) execution
(in contrast to testing, profiling, or run-time verification)
Automated: “push-button” technology, i.e., little user intervention
(in contrast to theorem-proving approaches)

(Main) Applications:
Optimizing compilers: exploit program properties to improve runtime or
memory efficiency of generated code
(dead code elimination, constant propagation, ...)
Software validation: verify program correctness
(bytecode verification, shape analysis, ...)
RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.8

Dream of Static Program Analysis

Program Analyzer Result

write the origy

Property specification

Static Program Analysis Winter Semester 2014/15 1.9

Fundamental Limits

Theorem 1.1 (Theorem of Rice (1953))

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Example 1.2 (Detection of constants)

read(x); read(x);
if x > 0 then if x > 0 then
=25 P
y = X; ? y = X;
else ~ else
y :=1; y = 1;
end; end;
write(y); write(1);

write(y) can be equivalently replaced by write (1)
iff program P does never terminate

Thus: constant detection is undecidable
RWNTH Static Program Analysis Winter Semester 2014/15 1.10

Two Solutions

© Weaker models:
e employ abstract models of systems
o finite automata, labeled transition systems, ...
e perform exact analyses
@ model checking, theorem proving, ...
@ Weaker analyses (here):
e employ concrete models of systems
@ source code
e perform approximate analyses

o dataflow analysis, abstract interpretation, type checking, ...

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 111

Soundness vs. Completeness

@ Soundness:

o Predicted results must apply to every system execution
o Examples:
@ constant detection: replacing expression by appropriate constant does
not change program results
@ pointer analysis: analysis finds pointer variable x 7% 0
== no run-time exception when dereferencing x

o Absolutely mandatory for trustworthiness of analysis results!
o Completeness:
e Behavior of every system execution catched by analysis
o Examples:
@ program always terminates = analysis must be able to detect
@ value of variable in [0,255] = interval analysis finds out

e Usually not guaranteed due to approximation
o Degree of completeness determines quality of analysis
@ Correctness := Soundness A Completeness
(often for logical axiomatizations and such, usually not guaranteed for
program analyses)

RWNTH "HEN Static Program Analysis Winter Semester 2014/15 1.12

© The Imperative Model Language WHILE

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.13

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,-1,...} =z
Truth values B = {true, false} t
Variables Var = {x,y,...} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.14

Syntax of WHILE Programs

Definition 1.3 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a:; =z | X | aitas | ai—ar | air*xap € AEXp
[o= i | aj=a» | ai>a» ’ -b | biAby | bi1Vby € BExp
c:=skip|x :=a|c;c | if b then ¢; else ¢ | while b do c € Cmd

v

Remarks: we assume that

@ the syntax of numbers, truth values and variables is predefined
(i.e., no "“lexical analysis")

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 1.15

A WHILE Program and its Flow Diagram

y :=7;
ZhE;O; 04 % 3= 0 v o=y
while x > fo)
S QH‘F
vV =Y @
while v > 0 d |t
v :i=v - 1; v i=v - 1

z =z + 1

Effect: z := x x y = 42

RWNTH HE Static Program Analysis Winter Semester 2014/15 1.16

@ Overview of the Lecture

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 1.17

(Preliminary) Overview of Contents

© Introduction to Program Analysis
@ Dataflow analysis (DFA)

Available expressions problem
Live variables problem
The DFA framework
Solving DFA equations
The meet-over-all-paths (MOP) solution
Case study: Java bytecode verifier
© Abstract interpretation (Al)
@ Working principle
@ Program semantics & correctness
@ Galois connections
@ Instantiations (sign analysis, interval analysis, ...)
@ Case study: 16-bit multiplication

900000

© |Interprocedural analysis

© Pointer analysis

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.18

© Additional Literature

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.19

Additional Literature

@ Flemming Nielson, Hanne R. Nielson, Chris Hankin: Principles of
Program Analysis, 2nd edition, Springer, 2005
[available in CS Library]

@ Michael I. Schwartzbach: Lecture Notes on Static Analysis
[http://www.itu.dk/people/brabrand/UFPE/
Data-Flow-Analysis/static.pdf]

@ Helmut Seidl, Reinhard Wilhelm, Sebastian Hack: Ubersetzerbau 3:
Analyse und Transformation, Springer, 2010
[available in CS Library]

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 1.20

http://www.itu.dk/people/brabrand/UFPE/Data-Flow-Analysis/static.pdf
http://www.itu.dk/people/brabrand/UFPE/Data-Flow-Analysis/static.pdf

	Preliminaries
	Introduction
	The Imperative Model Language WHILE
	Overview of the Lecture
	Additional Literature

