Static Program Analysis

Lecture 16: Abstract Interpretation VI (Counterexample-Guided Abstraction Refinement)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Oral Exam in Static Program Analysis

- Options:
 - Thu 12 March
 - Tue 24 March
 - Thu 26 March
 - Wed 08 April
- Registration via https://terminplaner2.dfn.de/foodle/ Exam-Static-Program-Analysis-54991 (accessible through http://moves.rwth-aachen.de/teaching/ws-1415/spa/)

Outline

1 Recap: Predicate Abstraction

2 Additional Remarks

3 Counterexample-Guided Abstraction Refinement

Predicate Abstraction I

Definition (Predicate abstraction)

Let Var be a set of variables.

- A predicate is a Boolean expression $p \in BExp$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in BExp$ $(\sigma \models p)$ if $val_{\sigma}(p) = true$.
- p implies q ($p \models q$) if $\sigma \models q$ whenever $\sigma \models p$ (or: p is stronger than q, q is weaker than p).
- p and q are equivalent $(p \equiv q)$ if $p \models q$ and $q \models p$.
- Let $P = \{p_1, \dots, p_n\} \subseteq BExp$ be a finite set of predicates, and let $\neg P := \{\neg p_1, \dots, \neg p_n\}$. An element of $P \cup \neg P$ is called a literal. The predicate abstraction lattice is defined by:

$$Abs(p_1,\ldots,p_n) := \left(\left\{ \bigwedge Q \mid Q \subseteq P \cup \neg P \right\}, \models \right).$$

Abbreviations: true := $\bigwedge \emptyset$, false := $\bigwedge \{p_i, \neg p_i, \ldots\}$

Predicate Abstraction II

Lemma

 $Abs(p_1, ..., p_n)$ is a complete lattice with

- $\bot = \mathsf{false}$, $\top = \mathsf{true}$
- $\bullet \ \ Q_1 \sqcap Q_2 = Q_1 \wedge Q_2$
- $Q_1 \sqcup Q_2 = \overline{Q_1 \vee Q_2}$ where $\overline{b} := \bigwedge \{q \in P \cup \neg P \mid b \models q\}$ (i.e., strongest formula in $Abs(p_1, \ldots, p_n)$ that is implied by $Q_1 \vee Q_2$)

Example

Let $P := \{p_1, p_2, p_3\}.$

 $\bullet \ \, \text{For} \,\, Q_1 := p_1 \wedge \neg p_2 \,\, \text{and} \,\, Q_2 := \neg p_2 \wedge p_3, \,\, \text{we obtain}$

$$Q_1 \sqcap Q_2 = Q_1 \land Q_2 \equiv p_1 \land \neg p_2 \land p_3$$

$$Q_1 \sqcup Q_2 = \overline{Q_1 \lor Q_2} \equiv \overline{\neg p_2 \land (p_1 \lor p_3)} \equiv \neg p_2$$

② For $Q_1 := p_1 \wedge p_2$ and $Q_2 := p_1 \wedge \neg p_2$, we obtain

$$Q_1 \sqcap Q_2 = Q_1 \land Q_2 \equiv false$$

 $Q_1 \sqcup Q_2 = Q_1 \lor Q_2 \equiv p_1 \land (p_2 \lor \neg p_2) \equiv p_1$

Predicate Abstraction III

Definition (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$\alpha: 2^{\Sigma} \to Abs(p_1, \dots, p_n)$$
 and $\gamma: Abs(p_1, \dots, p_n) \to 2^{\Sigma}$

with

$$\alpha(S) := | \{ Q_{\sigma} \mid \sigma \in S \} \text{ and } \gamma(Q) := \{ \sigma \in \Sigma \mid \sigma \models Q \}$$

where $Q_{\sigma} := \bigwedge (\{p_i \mid 1 \leq i \leq n, \sigma \models p_i\} \cup \{\neg p_i \mid 1 \leq i \leq n, \sigma \not\models p_i\}).$

Example

- Let $Var := \{x, y\}$
- Let $P := \{p_1, p_2, p_3\}$ where $p_1 := (x \le y)$, $p_2 := (x = y)$, $p_3 := (x > y)$
- If $S = \{\sigma_1, \sigma_2\} \subseteq \Sigma$ with $\sigma_1 = [\mathfrak{x} \mapsto 1, \mathfrak{y} \mapsto 2]$, $\sigma_2 = [\mathfrak{x} \mapsto 2, \mathfrak{y} \mapsto 2]$, then $\alpha(S) = Q_{\sigma_1} \sqcup Q_{\sigma_2}$ $= (p_1 \wedge \neg p_2 \wedge \neg p_3) \sqcup (p_1 \wedge p_2 \wedge \neg p_3)$ $= (p_1 \wedge \neg p_2 \wedge \neg p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3)$ $\equiv p_1 \wedge \neg p_3$
- If $Q = p_1 \land \neg p_2 \in Abs(p_1, \dots, p_n)$, then $\gamma(Q) = \{ \sigma \in \Sigma \mid \sigma(x) < \sigma(y) \}$

Abstract Semantics for Predicate Abstraction I

Definition (Execution relation for predicate abstraction)

If $c \in Cmd$ and $Q \in Abs(p_1, ..., p_n)$, then $\langle c, Q \rangle$ is called an abstract configuration. The execution relation for predicate abstraction is defined by the following rules:

$$(\text{skip}) \frac{}{\langle \text{skip}, Q \rangle \Rightarrow \langle \downarrow, Q \rangle} \text{ (asgn)} \frac{}{\langle x := a, Q \rangle \Rightarrow \langle \downarrow, \bigsqcup \{Q_{\sigma[x \mapsto val_{\sigma}(a)]} \mid \sigma \models Q\} \rangle}{\langle c_1, Q \rangle \Rightarrow \langle c'_1, Q' \rangle c'_1 \neq \downarrow} \text{ (seq2)} \frac{\langle c_1, Q \rangle \Rightarrow \langle \downarrow, Q' \rangle}{\langle c_1; c_2, Q \rangle \Rightarrow \langle c_2, Q' \rangle}$$

$$\frac{(\text{if1})}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, Q \rangle \Rightarrow \langle c_1, \overline{Q \wedge b} \rangle}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, Q \rangle \Rightarrow \langle c_2, \overline{Q \wedge \neg b} \rangle}$$

$$\frac{(\text{wh1})}{\langle \text{while } b \text{ do } c, Q \rangle \Rightarrow \langle c; \text{while } b \text{ do } c, \overline{Q \wedge b} \rangle}{\langle \text{while } b \text{ do } c, Q \rangle \Rightarrow \langle c; \text{while } b \text{ do } c, \overline{Q \wedge \neg b} \rangle}$$

Outline

Recap: Predicate Abstraction

2 Additional Remarks

3 Counterexample-Guided Abstraction Refinement

Additional Remarks

In Rules (if1, (if2), (wh1), (wh2), the fact that $b=p_i$ for some $\underline{i} \in \{1,\ldots,n\}$ implies $Q \wedge [\neg]b \in Abs(p_1,\ldots,p_n)$, but not $\overline{Q} \wedge [\neg]b = Q \wedge [\neg]b$

- $Q := \text{true}, \ b := p_1$
- $\Rightarrow \overline{Q \wedge b} = p_1 \wedge p_2 \neq Q \wedge b = p_1$

Additional Remarks

In Rules (if1, (if2), (wh1), (wh2), the fact that $b=p_i$ for some $\underline{i} \in \{1,\ldots,n\}$ implies $Q \wedge [\neg]b \in Abs(p_1,\ldots,p_n)$, but not $\overline{Q} \wedge [\neg]b = Q \wedge [\neg]b$

Example 16.1 (cf. Example 15.7)

- $p_1 := (x > y), p_2 := (x >= y)$
- $Q := \text{true}, \ b := p_1$
- $\Rightarrow \overline{Q \wedge b} = p_1 \wedge p_2 \neq Q \wedge b = p_1$

For similar reasons, generally $Q_1 \sqcup Q_2 \ (= \overline{Q_1 \vee Q_2}) \neq Q_1 \cap Q_2$

- $p_1 := (x > y), p_2 := (x >= y), p_3 := (x = y)$
- $Q_1 := p_1 \wedge p_2 \wedge \neg p_3 \ (\equiv x > y), \ Q_2 := p_3 \ (\equiv x = y)$
- $\Rightarrow Q_1 \sqcup Q_2 = \overline{Q_1 \vee Q_2} = p_2 \neq Q_1 \cap Q_2 = \text{true}$

Problem: $\overline{b} = \bigwedge \{q \in P \cup \neg P \mid b \models q\}$ (i.e., the strongest formula in $Abs(p_1, \ldots, p_n)$ that is implied by b) is generally not computable (due to undecidability of implication in certain logics)

Problem: $\overline{b} = \bigwedge \{q \in P \cup \neg P \mid b \models q\}$ (i.e., the strongest formula in $Abs(p_1, \ldots, p_n)$ that is implied by b) is generally not computable (due to undecidability of implication in certain logics)

Solutions:

- Over-approximation: fall back to non-strongest postconditions
 - in practice, (automatic) theorem proving
 - for every $i \in \{1, ..., n\}$, try to prove $b \models p_i$ and $b \models \neg p_i$
 - approximate \overline{b} by conjunction of all provable literals

Problem: $\overline{b} = \bigwedge \{q \in P \cup \neg P \mid b \models q\}$ (i.e., the strongest formula in $Abs(p_1, \ldots, p_n)$ that is implied by b) is generally not computable (due to undecidability of implication in certain logics)

Solutions:

- Over-approximation: fall back to non-strongest postconditions
 - in practice, (automatic) theorem proving
 - for every $i \in \{1, ..., n\}$, try to prove $b \models p_i$ and $b \models \neg p_i$
 - approximate \overline{b} by conjunction of all provable literals
- Restriction of programs:
 - |= decidable for certain logics
 - example: Presburger arithmetic (first-order theory of $\mathbb N$ with +)
 - thus \overline{b} computable for WHILE programs without multiplication

Problem: $\overline{b} = \bigwedge \{q \in P \cup \neg P \mid b \models q\}$ (i.e., the strongest formula in $Abs(p_1, \ldots, p_n)$ that is implied by b) is generally not computable (due to undecidability of implication in certain logics)

Solutions:

- Over-approximation: fall back to non-strongest postconditions
 - in practice, (automatic) theorem proving
 - for every $i \in \{1, ..., n\}$, try to prove $b \models p_i$ and $b \models \neg p_i$
 - approximate \overline{b} by conjunction of all provable literals
- Restriction of programs:
 - |= decidable for certain logics
 - example: Presburger arithmetic (first-order theory of \mathbb{N} with +)
 - thus \overline{b} computable for WHILE programs without multiplication
- Restriction to finite domains:
 - for example, binary numbers of fixed size
 - thus everything (domain, Galois connection, ...) exactly computable
 - problem: exponential blowup \implies solution: Binary Decision Diagrams

Outline

Recap: Predicate Abstraction

2 Additional Remarks

3 Counterexample-Guided Abstraction Refinement

Reminder: CEGAR

Reminder: CEGAR

Reminder: CEGAR

Counterexamples

Typical properties of interest:

- a certain program location is not reachable (dead code)
- division by zero is excluded
- the value of x never becomes negative
- after program termination, the value of y is even

Counterexamples

Typical properties of interest:

- a certain program location is not reachable (dead code)
- division by zero is excluded
- the value of x never becomes negative
- \bullet after program termination, the value of y is even

Definition 16.1 (Counterexample)

A counterexample is a sequence of abstract transitions of the form

$$\langle c_0, \mathsf{true} \rangle \Rightarrow \langle c_1, Q_1 \rangle \Rightarrow \ldots \Rightarrow \langle c_k, Q_k \rangle$$

where

- k > 1
- $c_0, \ldots, c_k \in Cmd$ (or $c_k = \downarrow$)
- $Q_1, \ldots, Q_k \in Abs(p_1, \ldots, p_n)$ with $Q_k \not\equiv$ false

Counterexamples

Typical properties of interest:

- a certain program location is not reachable (dead code)
- division by zero is excluded
- the value of x never becomes negative
- after program termination, the value of y is even

Definition 16.1 (Counterexample)

A counterexample is a sequence of abstract transitions of the form

$$\langle c_0, \mathsf{true} \rangle \Rightarrow \langle c_1, Q_1 \rangle \Rightarrow \ldots \Rightarrow \langle c_k, Q_k \rangle$$

where

- $k \ge 1$
- $c_0, \ldots, c_k \in Cmd$ (or $c_k = \downarrow$)
- $Q_1, \ldots, Q_k \in Abs(p_1, \ldots, p_n)$ with $Q_k \not\equiv$ false
- It is called real if there exist concrete states $\sigma_0, \ldots, \sigma_k \in \Sigma$ such that

$$\forall i \in \{1, \ldots, k\} : \sigma_i \models Q_i \text{ and } \langle c_{i-1}, \sigma_{i-1} \rangle \rightarrow \langle c_i, \sigma_i \rangle$$

• Otherwise it is called spurious.

Lemma 16.2

If $\langle c_0, \mathsf{true} \rangle \Rightarrow \langle c_1, Q_1 \rangle \Rightarrow \ldots \Rightarrow \langle c_k, Q_k \rangle$ is a spurious counterexample, there exist Boolean expressions b_0, \ldots, b_k with $b_0 \equiv \mathsf{true}$, $b_k \equiv \mathsf{false}$, and $\forall i \in \{1, \ldots, k\}, \sigma, \sigma' \in \Sigma : \sigma \models b_{i-1}, \langle c_{i-1}, \sigma \rangle \rightarrow \langle c_i, \sigma' \rangle \implies \sigma' \models b_i$

Lemma 16.2

If $\langle c_0, \mathsf{true} \rangle \Rightarrow \langle c_1, Q_1 \rangle \Rightarrow \ldots \Rightarrow \langle c_k, Q_k \rangle$ is a spurious counterexample, there exist Boolean expressions b_0, \ldots, b_k with $b_0 \equiv \mathsf{true}$, $b_k \equiv \mathsf{false}$, and $\forall i \in \{1, \ldots, k\}, \sigma, \sigma' \in \Sigma : \sigma \models b_{i-1}, \langle c_{i-1}, \sigma \rangle \rightarrow \langle c_i, \sigma' \rangle \implies \sigma' \models b_i$

Proof (idea).

Inductive definition of b_i as strongest postconditions:

- $\mathbf{0}$ $b_0 := true$
- ② for $i=1,\ldots,k$: definition of b_i depending on b_{i-1} and on (axiom) transition rule applied in $\langle c_{i-1},.\rangle \Rightarrow \langle c_i,.\rangle$:
- (skip) $b_i := b_{i-1}$
- (asgn) $b_i := \exists x'. (b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ (x' = previous value of x)
- (if1) $b_i := b_{i-1} \wedge b$
- (if2) $b_i := b_{i-1} \land \neg b$
- (wh1) $b_i := b_{i-1} \wedge b$
- (wh2) $b_i := b_{i-1} \land \neg b$

(yields $p_k \equiv \text{false}$; by induction on k)

• Let
$$c_0 := [x := z]^0$$
; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable
- Initial abstraction: $P = \emptyset$ (\Longrightarrow $Abs(P) = \{true, false\}$)

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- (Spurious) counterexample:

```
\langle 0,\mathsf{true}\rangle \Rightarrow \langle 1,\mathsf{true}\rangle \Rightarrow \langle 2,\mathsf{true}\rangle \Rightarrow \langle 3,\mathsf{true}\rangle \Rightarrow \langle 4,\mathsf{true}\rangle
```

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- (Spurious) counterexample:

$$\langle 0, \mathsf{true} \rangle \Rightarrow \langle 1, \mathsf{true} \rangle \Rightarrow \langle 2, \mathsf{true} \rangle \Rightarrow \langle 3, \mathsf{true} \rangle \Rightarrow \langle 4, \mathsf{true} \rangle$$

- Forward construction of Boolean expressions:
 - $b_0 := true$

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- (Spurious) counterexample:

$$\langle 0,\mathsf{true}\rangle \Rightarrow \langle 1,\mathsf{true}\rangle \Rightarrow \langle 2,\mathsf{true}\rangle \Rightarrow \langle 3,\mathsf{true}\rangle \Rightarrow \langle 4,\mathsf{true}\rangle$$

- Forward construction of Boolean expressions:
 - $b_0 := true$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\Rightarrow b_1 := \exists x'.(b_0[x \mapsto x'] \land x = z[x \mapsto x']) \equiv (x = z)$

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- (Spurious) counterexample:

$$\langle 0,\mathsf{true}\rangle \Rightarrow \langle 1,\mathsf{true}\rangle \Rightarrow \langle 2,\mathsf{true}\rangle \Rightarrow \langle 3,\mathsf{true}\rangle \Rightarrow \langle 4,\mathsf{true}\rangle$$

- Forward construction of Boolean expressions:
 - $b_0 := true$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\implies b_1 := \exists x'.(b_0[x \mapsto x'] \land x = z[x \mapsto x']) \equiv (x = z)$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\implies b_2 := \exists z'.(b_1[z \mapsto z'] \land z = z + 1[z \mapsto z'])$ $= \exists z'.(x = z' \land z = z' + 1) \equiv (x + 1 = z)$

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- (Spurious) counterexample:

$$\langle 0, \mathsf{true} \rangle \Rightarrow \langle 1, \mathsf{true} \rangle \Rightarrow \langle 2, \mathsf{true} \rangle \Rightarrow \langle 3, \mathsf{true} \rangle \Rightarrow \langle 4, \mathsf{true} \rangle$$

- Forward construction of Boolean expressions:
 - $b_0 := true$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\implies b_1 := \exists x'.(b_0[x \mapsto x'] \land x = z[x \mapsto x']) \equiv (x = z)$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\implies b_2 := \exists z'.(b_1[z \mapsto z'] \land z = z + 1[z \mapsto z'])$ $= \exists z'.(x = z' \land z = z' + 1) \equiv (x + 1 = z)$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\Rightarrow b_3 := \exists y'.(b_2[y \mapsto y'] \land y = z[y \mapsto y']) \equiv (x + 1 = z \land y = z)$

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- (Spurious) counterexample:

$$\langle 0,\mathsf{true}\rangle \Rightarrow \langle 1,\mathsf{true}\rangle \Rightarrow \langle 2,\mathsf{true}\rangle \Rightarrow \langle 3,\mathsf{true}\rangle \Rightarrow \langle 4,\mathsf{true}\rangle$$

- Forward construction of Boolean expressions:
 - $b_0 := true$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\implies b_1 := \exists x'.(b_0[x \mapsto x'] \land x = z[x \mapsto x']) \equiv (x = z)$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\implies b_2 := \exists z'.(b_1[z \mapsto z'] \land z = z + 1[z \mapsto z'])$ $= \exists z'.(x = z' \land z = z' + 1) \equiv (x + 1 = z)$
 - (asgn) $b_i := \exists x'.(b_{i-1}[x \mapsto x'] \land x = a[x \mapsto x'])$ $\Rightarrow b_3 := \exists y'.(b_2[y \mapsto y'] \land y = z[y \mapsto y']) \equiv (x + 1 = z \land y = z)$
 - (if1) $b_i := b_{i-1} \wedge b$ $\implies b_4 := b_3 \wedge x = y \equiv (x + 1 = z \wedge y = z \wedge x = y) \equiv false$

Abstraction Refinement

Abstraction refinement step:

- Using b_1, \ldots, k_{k-1} as computed before, let $P' := P \cup \{p_1, \ldots, p_n\}$ where p_1, \ldots, p_n are the atomic conjuncts occurring in b_1, \ldots, k_{k-1}
- Refine Abs(P) to Abs(P')

Abstraction Refinement

Abstraction refinement step:

- Using b_1, \ldots, k_{k-1} as computed before, let $P' := P \cup \{p_1, \ldots, p_n\}$ where p_1, \ldots, p_n are the atomic conjuncts occurring in b_1, \ldots, k_{k-1}
- Refine Abs(P) to Abs(P')

Lemma 16.4

After refinement, the spurious counterexample

$$\langle c_0, \mathsf{true} \rangle \Rightarrow \langle c_1, Q_1 \rangle \Rightarrow \ldots \Rightarrow \langle c_k, Q_k \rangle$$

with $Q_k \not\equiv$ false does not exist anymore.

Proof.

omitted

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- $P = \emptyset$, $P' = \{\underbrace{x = z}_{p_1}, \underbrace{x + 1 = z}_{p_2}, \underbrace{y = z}_{p_3}\}$

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- $P = \emptyset$, $P' = \{\underbrace{x = z}_{p_1}, \underbrace{x + 1 = z}_{p_2}, \underbrace{y = z}_{p_3}\}$
- Refined abstract transitions:

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- $P = \emptyset$, $P' = \{\underbrace{x = z}_{p_1}, \underbrace{x + 1 = z}_{p_2}, \underbrace{y = z}_{p_3}\}$
- Refined abstract transitions:

$$\langle 0, \mathsf{true} \rangle \Rightarrow \langle 1, p_1 \wedge \neg p_2 \rangle$$

- Let $c_0 := [x := z]^0; [z := z + 1]^1; [y := z]^2;$ if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- $P = \emptyset$, $P' = \{\underbrace{x = z}_{p_1}, \underbrace{x + 1 = z}_{p_2}, \underbrace{y = z}_{p_3}\}$
- Refined abstract transitions:

$$\begin{array}{l} \langle 0,\mathsf{true} \rangle \Rightarrow \langle 1, p_1 \wedge \neg p_2 \rangle \\ \Rightarrow \langle \mathbf{2}, \neg p_1 \wedge p_2 \rangle \end{array}$$

- Let $c_0 := [x := z]^0; [z := z + 1]^1; [y := z]^2;$ if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- $P = \emptyset$, $P' = \{\underbrace{x = z}_{p_1}, \underbrace{x + 1 = z}_{p_2}, \underbrace{y = z}_{p_3}\}$
- Refined abstract transitions:

$$\begin{array}{l} \langle 0,\mathsf{true} \rangle \Rightarrow \langle 1, p_1 \wedge \neg p_2 \rangle \\ \Rightarrow \langle 2, \neg p_1 \wedge p_2 \rangle \\ \Rightarrow \langle \mathbf{3}, \neg p_1 \wedge p_2 \wedge p_3 \rangle \end{array}$$

- Let $c_0 := [x := z]^0$; $[z := z + 1]^1$; $[y := z]^2$; if $[x = y]^3$ then $[skip]^4$ else $[skip]^5$
- $P = \emptyset$, $P' = \{\underbrace{x = z}_{p_1}, \underbrace{x + 1 = z}_{p_2}, \underbrace{y = z}_{p_3}\}$
- Refined abstract transitions:

$$\begin{array}{c} \langle 0,\mathsf{true} \rangle \Rightarrow \langle 1, p_1 \wedge \neg p_2 \rangle \\ \Rightarrow \langle 2, \neg p_1 \wedge p_2 \rangle \\ \Rightarrow \langle 3, \neg p_1 \wedge p_2 \wedge p_3 \rangle \\ \Rightarrow \langle 4, \underbrace{\neg p_1 \wedge p_2 \wedge p_3 \wedge \mathsf{x=y}} \rangle \\ & \stackrel{\mathsf{=}\mathsf{false}}{=} \end{array}$$

Another Example: Multiplication

```
• Let c_0 := [z := 0]^0;

while [x > 0]^1 do

[z := z + y]^2;

[x := x - 1]^3;

if [z \mod y = 0]^4 then

[skip]^5;

else

[skip]^6;
```

- Initial assumption: y > 0
- Interesting property: label 6 unreachable

Another Example: Multiplication

```
• Let c_0 := [z := 0]^0;

while [x > 0]^1 do

[z := z + y]^2;

[x := x - 1]^3;

if [z \mod y = 0]^4 then

[skip]^5;

else

[skip]^6;
```

- Initial assumption: y > 0
- Interesting property: label 6 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- Abstraction refinement: on the board

Where CEGAR Fails

Example 16.7

```
• Let c_0 := [x := a]^0;

[y := b]^1;

while [\neg(x = 0)]^2 do

[x := x - 1]^3;

[y := y - 1]^4;

if [a = b \land \neg(y = 0)]^5 then

[skip]^6;

else

[skip]^7;
```

• Interesting property: label 6 unreachable

Where CEGAR Fails

```
• Let c_0 := [x := a]^0;

[y := b]^1;

while [\neg(x = 0)]^2 do

[x := x - 1]^3;

[y := y - 1]^4;

if [a = b \land \neg(y = 0)]^5 then

[skip]^6;

else

[skip]^7;
```

- Interesting property: label 6 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- Abstraction refinement: on the board

Where CEGAR Fails

```
• Let c_0 := [x := a]^0;

[y := b]^1;

while [\neg(x = 0)]^2 do

[x := x - 1]^3;

[y := y - 1]^4;

if [a = b \land \neg(y = 0)]^5 then

[skip]^6;

else

[skip]^7;
```

- Interesting property: label 6 unreachable
- Initial abstraction: $P = \emptyset$ ($\Longrightarrow Abs(P) = \{true, false\}$)
- Abstraction refinement: on the board
- Observation: iteration yields predicates of the form x = a-k and y = b-k for all $k \in \mathbb{N}$
- Actually required: loop invariant a = b => x = y,
 but x = y not generated in CEGAR loop