Static Program Analysis

Lecture 16: Abstract Interpretation VI
(Counterexample-Guided Abstraction Refinement)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Oral Exam in Static Program Analysis

@ Options:
e Thu 12 March
e Tue 24 March
e Thu 26 March
o Wed 08 April
@ Registration via https://terminplaner2.dfn.de/foodle/
Exam-Static-Program-Analysis-54991 (accessible through
http://moves.rwth-aachen.de/teaching/ws-1415/spa/)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.2

https://terminplaner2.dfn.de/foodle/Exam-Static-Program-Analysis-54991
https://terminplaner2.dfn.de/foodle/Exam-Static-Program-Analysis-54991
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

@ Recap: Predicate Abstraction

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.3

Predicate Abstraction |

Definition (Predicate abstraction)

Let Var be a set of variables.
@ A predicate is a Boolean expression p € BExp over Var.
e A state o € ¥ satisfies p € BExp (o = p) if val,(p) = true.

e pimplies g (p = q) if 0 = g whenever o = p
(or: p is stronger than g, g is weaker than p).

@ p and g are equivalent (p = q) if p =g and q = p.

o Let P ={pi1,...,pn} C BExp be a finite set of predicates, and let
=P :={=p1,...,7pn}. An element of P U =P is called a literal. The
predicate abstraction lattice is defined by:

Abs(p1,...,pn) = ({/\Q!QCPU—'P}):)

Abbreviations: true := A 0, false := A{p;, —pi,...}

RWNTH Static Program Analysis Winter Semester 2014/15 16.4

Predicate Abstraction |l

Abs(p1, ..., pn) is a complete lattice with
o | =false, T = true
@ UMN@=GAQ

e QU =QV Q where b:= N{ge PU—-P | b q}
(i.e., strongest formula in Abs(pi, ..., pn) that is implied by Q1 V Q)

Let P := {p1, p2, p3}-
© For Q1 := p1 A —po and @ := —py A p3, we obtain
QM@ =QANQ=pitAN-pAps
QU =QVQ=—-pA(p1Vp)=-p
@ For Q1 := p1 A pp and Q> := p1 A —pp, we obtain
QM Q= Q1 AN Qr = false
QU =QqV@Q=pA(p2V-p)=p

RWNTH Static Program Analysis Winter Semester 2014/15 16.5

Predicate Abstraction |1l

Definition (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

o : 2% — Abs(py,...,pn) and v :Abs(pi,...,pn) — 2%
with a(S) = |_|{QU |loeS} and (Q):={ceX|okEQ}

where Qo := A({pi |1 <i<noEp}tU{-pi|1<i<noppi}).

Example
o Let Var:= {x,y}
o Let P :={p1, p2, p3} where p; := (x<=y), p2 := (x=y), p3 := (x>y)
o If S={o1,00} C X withoy=[x—1y—2],00=[x—2,y— 2]
then a(S) = Qy, U Qp,
= (pr A =p2 A =p3) U (p1 A p2 A —p3)
= (pr A —p2 A =p3) V (p1 A p2 A —ps3)
=p1/Ap3
o If Q=p1 A—p2 € Abs(p1,...,pn), then y(Q) ={oc € X | o(x) < a(y)})
RWNTH Static Program Analysis

| \

Winter Semester 2014/15 16.6

Abstract Semantics for Predicate Abstraction |

Definition (Execution relation for predicate abstraction)

If c € Cmd and Q € Abs(ps, ..., pn), then {c, Q) is called an abstract
configuration. The execution relation for predicate abstraction is defined by the

following rules:
ki n
) i 5 @ =20 = G Qo [0 F Q)

@@= dq4 (o (@@=
(116, Q) = (c;0, Q) a2 Q) = (e Q)

(if1)

(seql)

(if b then ¢ else ¢, Q) = (c1, Q A b)

if2 ————
(if2) (if b then ¢ else &, Q) = (c, @ A —b)

(wh1) _
(while b do ¢, Q) = (c;while b do ¢, Q A b)

(wh2)

(while b do ¢, Q) = (], Q A —b)

Winter Semester 2014/15 16.7

RWNTH Static Program Analysis

© Additional Remarks

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.8

Additional Remarks

In Rules (if1, (if2), (whl), (wh2), the fact that b = p; for some
i€{l,...,n} implies Q A [-]b € Abs(p1,...,pn), but not
QA[F]b=QA[-]b

Example 16.1 (cf. Example 15.7)

o pri=(x > y), p2i=(x >= y)
o @ :=true, b:=p;

= QAb=pApp# QAb=p

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.9

Additional Remarks

In Rules (if1, (if2), (whl), (wh2), the fact that b = p; for some
i€{l,...,n} implies Q A [-]b € Abs(p1,...,pn), but not
QA[F]b=QA[-]b

Example 16.1 (cf. Example 15.7)
o pri=(x>y)p=(x>7y)
o @ :=true, b:=p;

= QAb=pApp# QAb=p

For similar reasons, generally Q1 LI @ (= Q1 V @2) # Q1N @ J

Example 16.2

o pri=(x>y), pi=(x>y)p:=(x=y)
o ui=pApA-p3(Ex>y), Q:=p3(=x =7Y)
= QUQ=0Q1V Q=pr# Q1N Q= true

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.9

Computation of Postconditions

Problem: b= A\{qg € PU—-P | b= g} (i.e., the strongest formula in
Abs(pi, ..., pn) that is implied by b) is generally not computable (due to
undecidability of implication in certain logics)

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 16.10

Computation of Postconditions

Problem: b= A\{qg € PU—-P | b= g} (i.e., the strongest formula in
Abs(pi, ..., pn) that is implied by b) is generally not computable (due to
undecidability of implication in certain logics)

Solutions:
@ Over-approximation: fall back to non-strongest postconditions

e in practice, (automatic) theorem proving
o forevery i € {1,...,n}, try to prove b |= p; and b |= —p;
e approximate b by conjunction of all provable literals

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.10

Computation of Postconditions

Problem: b= A\{qg € PU—-P | b= g} (i.e., the strongest formula in
Abs(pi, ..., pn) that is implied by b) is generally not computable (due to
undecidability of implication in certain logics)

Solutions:
@ Over-approximation: fall back to non-strongest postconditions

e in practice, (automatic) theorem proving
o for every i € {1,...,n}, try to prove b |= p; and b = —p;
e approximate b by conjunction of all provable literals
@ Restriction of programs:
o |= decidable for certain logics
o example: Presburger arithmetic (first-order theory of N with +)
o thus b computable for WHILE programs without multiplication

nerAACHEN Static Program Analysis Winter Semester 2014/15 16.10

Computation of Postconditions

Problem: b = A\{qg € PU—=P | b= q} (i.e., the strongest formula in
Abs(pi, ..., pn) that is implied by b) is generally not computable (due to
undecidability of implication in certain logics)

Solutions:
@ Over-approximation: fall back to non-strongest postconditions
e in practice, (automatic) theorem proving
o forevery i € {1,...,n}, try to prove b |= p; and b |= —p;
e approximate b by conjunction of all provable literals
@ Restriction of programs:

o |= decidable for certain logics
o example: Presburger arithmetic (first-order theory of N with +)
e thus b computable for WHILE programs without multiplication

@ Restriction to finite domains:

o for example, binary numbers of fixed size
o thus everything (domain, Galois connection, ...) exactly computable
o problem: exponential blowup = solution: Binary Decision Diagrams

HEN Static Program Analysis Winter Semester 2014/15 16.10

© Counterexample-Guided Abstraction Refinement

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 16.11

Reminder: CEGAR

yes

‘{ Start with (coarse) }—)‘Property satisfied in A?J

initial abstraction A

/ o

Remove counterexample
by refining A

[Find run violating cp]

spurious

[Analyze counterexample}

real

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 16.12

Reminder: CEGAR

yes

Start with (coarse) 5
‘{ initial abstraction A]—{Property ip satisfied in A'J
/ no

Remove counterexample
by refining A

[Find run violating cp]

spurious

Eﬂxnalyze counterexample}

Problems:
@ How to decide realness of real

counterexample? -

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 16.12

Reminder: CEGAR

yes

‘{ Start with (coarse) }—)‘Property satisfied in A?J

initial abstraction A

/ o

Remove counterexample
by refining A

[Find run violating cp]

spurious

[Analyze counterexample}

Problems:
@ How to decide realness of real

counterexample?
@ How to extract new predicates -
from spurious counterexample?
RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.12

Counterexamples

Typical properties of interest:
@ a certain program location is not reachable (dead code)
@ division by zero is excluded
@ the value of x never becomes negative
o after program termination, the value of y is even

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.13

Counterexamples

Typical properties of interest:
@ a certain program location is not reachable (dead code)
@ division by zero is excluded
@ the value of x never becomes negative
o after program termination, the value of y is even

Definition 16.1 (Counterexample)
@ A counterexample is a sequence of abstract transitions of the form

(co, true) = (c1, Q1) = ... = (ck, Qx)
where
o k>1

e Cp,...,ck € Cmd (or cx =)
o Q1,...,Q € Abs(p1, ..., p,) with Qx # false

RWNTH Static Program Analysis Winter Semester 2014/15

16.13

Counterexamples

Typical properties of interest:
@ a certain program location is not reachable (dead code)
@ division by zero is excluded
@ the value of x never becomes negative
o after program termination, the value of y is even

Definition 16.1 (Counterexample)
@ A counterexample is a sequence of abstract transitions of the form

(co, true) = (c1, Q1) = ... = (ck, Qx)
where
o k>1

e Cp,...,ck € Cmd (or cx =)
o Q1,...,Q € Abs(p1, ..., p,) with Qx # false

@ It is called real if there exist concrete states oy, ...,0x € such that

Vi e {1,...,/(} o): Q; and <C,',1,0',',1> — <C,',0','>

@ Otherwise it is called spurious.

RWNTH Static Program Analysis Winter Semester 2014/15

16.13

Elimination of Spurious Counterexamples |

If (co, true) = (c1, Q1) = ... = (ck, Qk) is a spurious counterexample,
there exist Boolean expressions by, . . ., by with by = true, b, = false, and

Vie{l,...,k},0,0' €L :0F bi_1,{ci_1,0) = (c;,0') = o' Eb;

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.14

Elimination of Spurious Counterexamples |

If (co, true) = (c1, Q1) = ... = (ck, Qk) is a spurious counterexample,
there exist Boolean expressions by, . . ., by with by = true, b, = false, and

Vie{l,...,k},0,0' €L :0F bi_1,{ci_1,0) = (c;,0') = o' Eb;

Proof (idea).
Inductive definition of b; as strongest postconditions:
Q@ by ;= true
@ for i =1,..., k: definition of b; depending on b;_; and on (axiom)
transition rule applied in (¢i_1,.) = (ci,.):
o (skip) b; :== bj_1 °

o (asgn) by := 3Ix'.(bi—1[x = X'] A x = a[x — X])
(x" = previous value of x)

(ifl) b == bi_1 A b
(if2) bj == bi_1 A —b
(Wh1) b; := bi_y A b
o (wh2) b; := b;_1 A—b
(yields px = false; by induction on k) O

<
RWNTH Static Program Analysis Winter Semester 2014/15 16.14

Elimination of Spurious Counterexamples ||

Example 16.3

o Let ¢ =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.15

Elimination of Spurious Counterexamples ||

Example 16.3

o Let ¢ =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.15

Elimination of Spurious Counterexamples ||

Example 16.3

o Let ¢ =[x := 2|%[z := z + 1]};[y := 2]?;

if [x = y]® then [skip]* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.15

Elimination of Spurious Counterexamples ||

Example 16.3

o Let ¢ =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})
@ (Spurious) counterexample:
(0, true) = (1,true) = (2,true) = (3,true) = (4, true)

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.15

Elimination of Spurious Counterexamples ||

Example 16.3

o Let ¢ =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})
(Spurious) counterexample:
(0, true) = (1,true) = (2,true) = (3,true) = (4, true)
Forward construction of Boolean expressions:

(]

@ by := true

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.15

Elimination of Spurious Counterexamples ||

Example 16.3

o Let ¢ =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})
(Spurious) counterexample:
(0, true) = (1,true) = (2,true) = (3,true) = (4, true)
Forward construction of Boolean expressions:

(]

@ by := true
o (asgn) b; := IX'.(bi_1[x — x| A x = a[x — X'])
= by =X .(bo[x— X Ax=z[x— X]) = (x = 2)

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.15

Elimination of Spurious Counterexamples ||

Example 16.3

o Let =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip|* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})
(Spurious) counterexample:
(0, true) = (1,true) = (2,true) = (3,true) = (4, true)
Forward construction of Boolean expressions:

(]

@ by := true
o (asgn) b; := IX'.(bi_1[x — x| A x = a[x — X'])
= by =X .(bo[x— X Ax=z[x— X]) = (x = 2)
o (asgn) b; := 3Ix'.(bi—1[x — X'] A x = a[x — X])
= by :=3Z.(z—= Z|ANz=2z+ 1z Z])
=3 (x=ZNz=2+1)=(x+1=2)

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.15

Elimination of Spurious Counterexamples ||

Example 16.3

o Let ¢ =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})
(Spurious) counterexample:
(0, true) = (1,true) = (2,true) = (3,true) = (4, true)
Forward construction of Boolean expressions:

(]

@ by := true
o (asgn) b; := IX'.(bi_1[x — x| A x = a[x — X'])

= by =X .(bo[x— X Ax=z[x— X]) = (x = 2)
o (asgn) b; := 3Ix'.(bi—1[x — X'] A x = a[x — X])

= by :=3Z.(z—= Z|ANz=2z+ 1z Z])

=3 (x=ZNz=2+1)=(x+1=2)

o (asgn) bj := 3x".(bi—1[x — X'] A x = a[x — X])

= b=y . (ly— YA Ay=zly—y])=Ex+1l=2zAy=2z2)

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.15

Elimination of Spurious Counterexamples ||

Example 16.3

o Let ¢ =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip|* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})
(Spurious) counterexample:
(0, true) = (1,true) = (2,true) = (3,true) = (4, true)
Forward construction of Boolean expressions:

(]

@ by := true
o (asgn) b; := IX'.(bi_1[x — x| A x = a[x — X'])

= by =X .(bo[x— X Ax=z[x— X]) = (x = 2)
o (asgn) b; := 3Ix'.(bi—1[x — X'] A x = a[x — X])

= by :=3Z.(z—= Z|ANz=2z+ 1z Z])

=3 (x=ZNz=2+1)=(x+1=2)

o (asgn) b; := IX'.(bi_1[x = X] A x = a[x — X'])

= b=y . (ly— YA Ay=zly—y])=Ex+1l=2zAy=2z2)
° (Ifl) bi:=bi_1 Nb

= by=biAx=y=(x+1l=zAy=zAx=y)=false

RWNTH | Static Program Analysis Winter Semester 2014/15 16.15

Abstraction Refinement

Abstraction refinement step:

@ Using by, ..., kx_1 as computed before, let P":= P U {p1,...,pn}
where p1, ..., pn are the atomic conjuncts occurring in by, ..., kxk_1

@ Refine Abs(P) to Abs(P’)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.16

Abstraction Refinement

Abstraction refinement step:
@ Using by, ..., kx_1 as computed before, let P":= P U {p1,...,pn}
where p1, ..., pn are the atomic conjuncts occurring in by, ..., kxk_1

@ Refine Abs(P) to Abs(P’)

Lemma 16.4

After refinement, the spurious counterexample

(co,true> = <C1, Q1> = ...=> <Ck, Qk>
with Qy # false does not exist anymore.

omitted

Static Program Analysis Winter Semester 2014/15 16.16

A Simple Example

Example 16.5 (cf. Example 16.3)
o Let ¢p:=[x := z]o;[z 0= & 1]1;[y = z]2;
if [x = y]® then [skip]* else [skip]®
e P=0,P={x=2zx+1=2zy=2z}

p1 P2 P3

Static Program Analysis Winter Semester 2014/15 16.17

A Simple Example

Example 16.5 (cf. Example 16.3)
o Let o :=[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®
e P=0,P={x=2zx+1=2zy=2z}
p1 P2 P3

@ Refined abstract transitions:
(0, true)

Static Program Analysis Winter Semester 2014/15 16.17

A Simple Example

Example 16.5 (cf. Example 16.3)
o Let ¢ :=[x := 2]%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®
e P=0,P={x=2zx+1=2zy=2z}
p1 P2 P3

@ Refined abstract transitions:
(0,true) = (1, p1 A —p2)

Static Program Analysis Winter Semester 2014/15 16.17

A Simple Example

Example 16.5 (cf. Example 16.3)
o Let o :=[x := 2]%[z := z + 1]};[y := 2Z]?;
if [x = y]® then [skip]* else [skip]®

e P=0,P={x=2zx+1=2zy=2z}

P1 P2 3
o Refined abstract transitions:

(0,true) = (1, p1 A —p2)

= (27 —p1 A\ P2>

Static Program Analysis Winter Semester 2014/15 16.17

A Simple Example

Example 16.5 (cf. Example 16.3)
o Let ¢ :=[x := 2]%[z := z + 1]};[y := 2]?;
if [x = y]? then [skip]* else [skip]®
e P=0,P={x=2zx+1=2zy=2z}
p1 P2 P3
o Refined abstract transitions:
(0,true) = (1, p1 A —p2)
= (27 —p1 A\ P2>
= (3,7 pL Ap2 A p3)

Static Program Analysis Winter Semester 2014/15 16.17

A Simple Example

Example 16.5 (cf. Example 16.3)
o Let ¢ :=[x := 2]%[z := z + 1]};[y := 2]?;
if [x = y]® then [skip]* else [skip]®
e P=0,P={x=2zx+1=2zy=2z}
P1 P2 3
o Refined abstract transitions:

=false

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 16.17

Another Example: Multiplication
Example 16.6

o Let ¢ :=[z := 0]°;
while [x > 0]' do

[z =z + y]%;
[x :=x - 1]3;
if [z mod y = 0]* then
[skip]®;
else
[skip]®;

@ Initial assumption: y > 0

@ Interesting property: label 6 unreachable

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 16.18

Another Example: Multiplication
Example 16.6

o Let ¢ :=[z := 0]°;
while [x > 0]' do

2 =2+ P
[x := x - 1]3;
if [z mod y = 0]* then
[skip]®;
else
[skip]®;

Initial assumption: y > 0
Interesting property: label 6 unreachable
Initial abstraction: P = (= Abs(P) = {true, false})

Abstraction refinement: on the board

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 16.18

Where CEGAR Fails

Example 16.7

o Let ¢o:=[x := a]%

[y = b]';

while [-(x = 0)]? do
[x := x - 1]3;
y ==y - 1%

if [a = b A —(y = 0)]° then
[skip]®;

else
[skip];

@ Interesting property: label 6 unreachable

Static Program Analysis

Winter Semester 2014/15

16.19

Where CEGAR Fails

o Let ¢o:=[x := a]%

[y = b]';

while [-(x = 0)]? do
[x := x - 1]3;
y ==y - 1%

if [a = b A —(y = 0)]° then
[skip]®;

else
[skip];

@ Interesting property: label 6 unreachable
@ Initial abstraction: P = (= Abs(P) = {true, false})

@ Abstraction refinement: on the board

Winter Semester 2014/15 16.19

Static Program Analysis

Where CEGAR Fails

o Let ¢o:=[x := a]%

[y = b]';

while [-(x = 0)]? do
[x := x - 1]3;
y ==y - 1%

if [a = b A —(y = 0)]° then
[skip]®;

else
[skip];

@ Interesting property: label 6 unreachable

@ Initial abstraction: P = (= Abs(P) = {true, false})

@ Abstraction refinement: on the board

@ Observation: iteration yields predicates of the form x = a-k and
y = b-k forall k e N

o Actually required: loop invarianta = b — x =y,
but x = y not generated in CEGAR loop

RWNTH Static Program Analysis Winter Semester 2014/15 16.19

	Recap: Predicate Abstraction
	Additional Remarks
	Counterexample-Guided Abstraction Refinement

