Static Program Analysis

Lecture 13: Abstract Interpretation III (Abstract Interpretation of WHILE Programs)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN LINIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Outline

- 1 Recap: Safe Approximation of Functions and Relations
- Example: Hailstone Sequences
- 3 Abstract Interpretation of WHILE Programs
- 4 Abstract Semantics of WHILE

Safe Approximation of Functions

Definition (Safe approximation)

Let (α, γ) be a Galois connection with $\alpha: L \to M$ and $\gamma: M \to L$, and let $f: L^n \to L$ and $f^\#: M^n \to M$ be functions of rank $n \in \mathbb{N}$. Then $f^\#$ is called a safe approximation of f if, whenever $m_1, \ldots, m_n \in M$,

$$\alpha(f(\gamma(m_1),\ldots,\gamma(m_n))) \sqsubseteq_M f^{\#}(m_1,\ldots,m_n).$$

Moreover it is called most precise safe approximation if the reverse inclusion is also true.

Abstract		Concrete
\vec{m}	$\xrightarrow{\gamma}$	$\gamma(ec{m})$
↓ f #		$\downarrow f$
$f^{\#}(\vec{m}) \supseteq \alpha(f(\gamma(\vec{m})))$	\leftarrow	$f(\gamma(\vec{m}))$

- Interpretation: the abstraction $f^{\#}$ of f covers all concrete results
- **Note:** monotonicity of f and/or $f^{\#}$ is *not* required (but usually given; see Lemma 12.5)

Safe Approximation of Execution Relation I

- Reminder: concrete semantics of WHILE
 - states $\Sigma := \{ \sigma \mid \sigma : Var \rightarrow \mathbb{Z} \}$ (Definition 11.6)
 - execution relation $\rightarrow \subseteq (Cmd \times \Sigma) \times ((Cmd \cup \{\downarrow\}) \times \Sigma)$ (Definition 11.9)
- Yields concrete domain $L := 2^{\Sigma}$ and concrete transition function:

Definition (Concrete transition function)

The concrete transition function of WHILE is defined by the family of functions

$$\mathsf{next}_{c,c'}: 2^{\Sigma} \to 2^{\Sigma}$$

where $c \in \mathit{Cmd}$, $c' \in \mathit{Cmd} \cup \{\downarrow\}$ and, for every $S \subseteq \Sigma$,

$$\mathsf{next}_{c,c'}(S) := \{ \sigma' \in \Sigma \mid \exists \sigma \in S : \langle c, \sigma \rangle \to \langle c', \sigma' \rangle \}.$$

Safe Approximation of Execution Relation II

Remarks: next satisfies the following properties

- "Determinism" (cf. Theorem 12.2):
 - for all $c \in Cmd$, $c' \in Cmd \cup \{\downarrow\}$ and $\sigma \in \Sigma$: $|\text{next}_{c,c'}(\{\sigma\})| \leq 1$
 - for all $c \in Cmd$ and $\sigma \in \Sigma$ there exists exactly one $c' \in Cmd \cup \{\downarrow\}$ such that $\text{next}_{c,c'}(\{\sigma\}) \neq \emptyset$
- When is $\operatorname{next}_{c,c'}(S) = \emptyset$? Possible reasons:
 - **1** $S = \emptyset$
 - - c = (x := 0)
 - c' = skip
 - 3 c' unreachable for all $\sigma \in S$, e.g.,
 - c = (if x = 0 then x := 1 else skip)
 - c' = skip
 - $\sigma(x) = 0$ for each $\sigma \in S$

Safe Approximation of Execution Relation III

- **Reminder:** abstraction determined by Galois connection (α, γ) with $\alpha: L \to M$ and $\gamma: M \to L$
 - here: $L := 2^{\Sigma}$, M not fixed (usually $M = Var \rightarrow ...$ or $M = 2^{Var \rightarrow ...}$)
 - write *Abs* in place of *M*
 - thus $\alpha: 2^{\Sigma} \to Abs$ and $\gamma: Abs \to 2^{\Sigma}$
- Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given $\alpha: 2^{\Sigma} \to Abs$, an abstract semantics is defined by a family of functions

$$\mathsf{next}^\#_{c,c'}: \mathsf{Abs} \to \mathsf{Abs}$$

where $c \in Cmd$, $c' \in Cmd \cup \{\downarrow\}$, and each $\operatorname{next}_{c,c'}^{\#}$ is a safe approximation of $\operatorname{next}_{c,c'}$, i.e.,

$$\alpha(\mathsf{next}_{c,c'}(\gamma(abs))) \sqsubseteq_{Abs} \mathsf{next}_{c,c'}^{\#}(abs)$$

for every $abs \in Abs$.

Notation: $\langle c, abs \rangle \Rightarrow \langle c', abs' \rangle$ for $\text{next}_{c,c'}^{\#}(abs) = abs'$.

Outline

- Recap: Safe Approximation of Functions and Relations
- 2 Example: Hailstone Sequences
- 3 Abstract Interpretation of WHILE Programs
- 4 Abstract Semantics of WHILE

Example: Hailstone Sequences

Example 13.1 (Hailstone Sequences)

```
[skip]^1;
while [\neg(n = 1)]^2 do
  if [even(n)]^3 then
     [n := n / 2]^4; [skip]^5;
  else
     [n := 3 * n + 1]^6; [skip]^7; \bullet formal derivation later
```

- additional skip statements only for labels
- abstract transition system for $\sigma(\mathbf{n}) \in \mathbb{Z}_{odd}$: on the board

- Collatz Conjecture: given any n > 0, the program finally returns 1 (that is, every Hailstone Sequence terminates with 1)
- see http://en.wikipedia.org/wiki/Collatz_conjecture
- AKA 3n+1 Conjecture, Ulam Conjecture, Kakutani's Problem, Thwaites' Conjecture, Hasse's Algorithm, or Syracuse Problem
- New proof attempt by Gerhard Opfer from Hamburg University (http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf)

Outline

- Recap: Safe Approximation of Functions and Relations
- Example: Hailstone Sequences
- 3 Abstract Interpretation of WHILE Programs
- 4 Abstract Semantics of WHILE

Derivation of Abstract Semantics

• Problem: most precise safe approximation not always definable

Example 13.2 (Fermat's Last Theorem)

Sign abstraction (cf. Example 11.3) on

$$\langle \texttt{if n>2} \ \land \ \texttt{x^n+y^n=z^n then n:=1 else n:=-1}, \{[\texttt{n},\texttt{x},\texttt{y},\texttt{z} \mapsto +]\} \rangle$$

- Result n = 1 possible iff there exist n > 2 and $x, y, z \ge 1$ such that $x^n + y^n = z^n$
- Fermat's Last Theorem: equation not solvable
- Final proof by Andrew Wiles and Richard Taylor in 1995

- More general: solvability of Diophantic equations undecidable
- Thus: resort to possibly imprecise safe approximations

Extraction Functions

- Assumption: abstraction determined by pointwise mapping of concrete elements
- If $L=2^C$ and $M=2^A$ with $\sqsubseteq_L=\sqsubseteq_M=\subseteq$, then $\beta:C\to A$ is called an extraction function
- β determines Galois connection (α, γ) where

```
\alpha: L \to M: I \mapsto \beta(I) \ (= \{\beta(c) \mid c \in I\})
\gamma: M \to L: m \mapsto \beta^{-1}(m) \ (= \{c \in C \mid \beta(c) \in m\})
```

Example 13.3

① Parity abstraction (cf. Example 11.2): $\beta : \mathbb{Z} \to \{\text{even}, \text{odd}\}$ where

$$\beta(z) := \begin{cases} \text{even} & \text{if } z \text{ even} \\ \text{odd} & \text{if } z \text{ odd} \end{cases}$$

- ② Sign abstraction (cf. Example 11.3): $\beta : \mathbb{Z} \to \{+, -, 0\}$ with $\beta = \operatorname{sgn}$
- Interval abstraction (cf. Example 11.4): not definable by extraction function (as Int is not of the form 2^A)

Safe Approximation by Extraction Functions

Reminder: safe approximation condition (Definition 12.3)

$$\alpha(f(\gamma(m_1),\ldots,\gamma(m_n))) \sqsubseteq_M f^\#(m_1,\ldots,m_n).$$

Theorem 13.4

Let $L=2^C$ and $M=2^A$ with $\sqsubseteq_L=\sqsubseteq_M=\subseteq$, $\beta:C\to A$ be an extraction function, and $f:C^n\to C$. Then

$$f^{\#}: M^{n} \to M: (m_{1}, \ldots, m_{n}) \mapsto \{\beta(f(c_{1}, \ldots, c_{n})) \mid \forall i \in \{1, \ldots, n\} : c_{i} \in \beta^{-1}(m_{i})\}$$

is a safe approximation of f.

Proof.

on the board

Safe Approximation of Arithmetic Operations

Example 13.5 (Sign abstraction)

For
$$C = \mathbb{Z}$$
, $A = \{+, -, 0\}$, $\beta = \operatorname{sgn}$:

$$\begin{array}{|c|c|c|c|c|} \hline +^{\#} & \{+\} & \{-\} & \{0\} \\ \hline \{+\} & \{+\} & \{+,-,0\} & \{+\} \\ \{-\} & \{+,-,0\} & \{-\} & \{-\} \\ \{0\} & \{+\} & \{-\} & \{0\} \\ \hline \end{array}$$

and
$$\{+,0\}$$
 *# $\{-\}$ = $\{+\}$ *# $\{-\}$ \cup $\{0\}$ *# $\{-\}$ = $\{-\}$ \cup $\{0\}$ = $\{-,0\}$

etc.

Safe Approximation of Boolean Operations

Example 13.6 (Sign abstraction)

- Relational operations:
 - $C = \mathbb{Z} \cup \mathbb{B}$, $A = \{+, -, 0\} \cup \mathbb{B}$, $\beta = \operatorname{sgn}$

- $\{+,0\}$ =# $\{0\}$ = $\{+\}$ =# $\{0\}$ \cup $\{0\}$ =# $\{0\}$ = $\{\text{false}\}$ \cup $\{\text{true}\}$ = $\{\text{true}, \text{false}\}$ etc.
- 2 Boolean connectives:
 - $C = A = \mathbb{B}, \ \neg^{\#} = \neg, \ \wedge^{\#} = \wedge, \dots$
 - $\{\text{true}, \text{false}\} \land^{\#} \{\text{true}\} = \{\text{true}\} \land^{\#} \{\text{true}\} \cup \{\text{false}\} \land^{\#} \{\text{true}\} = \{\text{true}\} \cup \{\text{false}\} = \{\text{true}, \text{false}\} \text{ etc.}$

Abstract Program States

Now: take values of variables into account

Definition 13.7 (Abstract program state)

Let $\beta: \mathbb{Z} \to A$ be an extraction function.

• An abstract (program) state is an element of the set

$$\{\rho \mid \rho : Var \rightarrow A\},\$$

called the abstract state space.

- The abstract domain is denoted by $Abs := 2^{Var \rightarrow A}$.
- The abstraction function $\alpha: 2^{\Sigma} \to Abs$ is given by

$$\alpha(S) := \{\beta \circ \sigma \mid \sigma \in S\}$$

for every $S \subseteq \Sigma$.

Abstract Evaluation of Expressions

Definition 13.8 (Abstract evaluation functions)

Let $\rho: Var \to A$ be an abstract state.

1 $\operatorname{val}_{\rho}^{\#}: AExp \to 2^{A}$ is determined by (f arithmetic operation)

$$val_{
ho}^{\#}(z) := \{\beta(z)\}\ val_{
ho}^{\#}(x) := \{\rho(x)\}\ val_{
ho}^{\#}(f(a_1, \dots, a_n)) := f^{\#}(val_{
ho}^{\#}(a_1), \dots, val_{
ho}^{\#}(a_n))$$

② $val_{\rho}^{\#}: BExp \rightarrow 2^{\mathbb{B}}$ is determined by (g/h relational/Boolean op.)

$$val_{
ho}^{\#}(t) := \{t\}$$
 $val_{
ho}^{\#}(g(a_1, \ldots, a_n)) := g^{\#}(val_{
ho}^{\#}(a_1), \ldots, val_{
ho}^{\#}(a_n))$
 $val_{
ho}^{\#}(h(b_1, \ldots, b_n)) := h^{\#}(val_{
ho}^{\#}(b_1), \ldots, val_{
ho}^{\#}(b_n))$

Example 13.9 (Sign abstraction)

Let
$$\rho(x) = +$$
 and $\rho(y) = -$.

1
$$val_{0}^{\#}(2 * x + y) = \{+, -, 0\}$$

2
$$val_{0}^{\#}(\neg(x + 1 > y)) = \{false\}$$

Outline

- 1 Recap: Safe Approximation of Functions and Relations
- 2 Example: Hailstone Sequences
- Abstract Interpretation of WHILE Programs
- Abstract Semantics of WHILE

Abstract Semantics of WHILE I

Reminder: abstract domain is $Abs := 2^{Var \rightarrow A}$

Definition 13.1 (Abstract execution relation for statements)

If $c \in Cmd$ and $abs \in Abs$, then $\langle c, abs \rangle$ is called an abstract configuration. The abstract execution relation is defined by the following rules:

$$(\mathsf{skip}) \overline{\langle \mathsf{skip}, abs \rangle} \Rightarrow \langle \downarrow, abs \rangle$$

$$(\mathsf{asgn}) \overline{\langle x := a, abs \rangle} \Rightarrow \langle \downarrow, \{ \rho[\mathsf{x} \mapsto \mathsf{a}'] \mid \rho \in \mathsf{abs}, \mathsf{a}' \in \mathsf{val}_{\rho}^{\#}(\mathsf{a}) \} \rangle$$

$$(\mathsf{seq1}) \overline{\langle c_1, abs \rangle} \Rightarrow \langle c_1', abs' \rangle \ c_1' \neq \downarrow$$

$$\langle c_1; c_2, abs \rangle \Rightarrow \langle c_1'; c_2, abs' \rangle$$

$$(\mathsf{seq2}) \overline{\langle c_1; c_2, abs \rangle} \Rightarrow \langle \downarrow, abs' \rangle$$

$$\langle c_2, abs \rangle \Rightarrow \langle c_2, abs' \rangle$$

Abstract Semantics of WHILE II

Definition 13.1 (Abstract execution relation for statements; cont.)

$$(if1) \cfrac{\exists \rho \in abs : \mathsf{true} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2, abs \rangle} \Rightarrow \langle c_1, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{false}\}\} \rangle$$

$$\cfrac{\exists \rho \in abs : \mathsf{false} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2, abs \rangle} \Rightarrow \langle c_2, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{true}\}\} \rangle$$

$$\cfrac{\exists \rho \in abs : \mathsf{true} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, abs \rangle} \Rightarrow \langle c; \mathsf{while} \ b \ \mathsf{do} \ c, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{false}\}\} \rangle$$

$$\cfrac{\exists \rho \in abs : \mathsf{false} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, abs \rangle \Rightarrow \langle \downarrow, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{true}\}\} \rangle}$$

$$(\mathsf{wh2}) \cfrac{\exists \rho \in abs : \mathsf{false} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, abs \rangle \Rightarrow \langle \downarrow, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{true}\}\} \rangle}$$

Abstract Semantics of WHILE III

Definition 13.2 (Abstract transition function)

The abstract transition function is defined by the family of mappings

$$\mathsf{next}_{c,c'}^\# : Abs \to Abs,$$

given by

$$\mathsf{next}_{c,c'}^\#(\mathit{abs}) := \bigcup \{ \mathit{abs}' \in \mathit{Abs} \mid \langle c, \mathit{abs} \rangle \Rightarrow \langle c', \mathit{abs}' \rangle \}$$

Example 13.3 (Hailstone Sequences; cf. Example 13.1)

```
[skip]^1;

while [\neg(n = 1)]^2 do

if [even(n)]^3 then

[n := n / 2]^4; [skip]^5;

else

[n := 3 * n + 1]^6; [skip]^7;
```

Execution relation with parity abstraction: see following slide (courtesy B. König)

Abstrakte Interpretation von Hailstone

