Static Program Analysis

Lecture 13: Abstract Interpretation |1l
(Abstract Interpretation of WHILE Programs)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15


noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

@ Recap: Safe Approximation of Functions and Relations

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 13.2



Safe Approximation of Functions

Definition (Safe approximation)

Let («,) be a Galois connection with av: L — M and v : M — L, and let
f:L"— Land f#* : M" — M be functions of rank n € N. Then f# is
called a safe approximation of f if, whenever my,...,m, € M,

O‘(f(fy(ml)a 000 77(mn))) Cwm f#(mb 0o00g mn)'
Moreover it is called most precise safe approximation if the reverse
inclusion is also true.

Abstract Concrete
i — ()
L7 L f

FE(m) 2 a(f(y(m)) «—  F(y(r)

o Interpretation: the abstraction f# of f covers all concrete results
o Note: monotonicity of f and/or f# is not required (but usually
given; see Lemma 12.5)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 13.3



Safe Approximation of Execution Relation |

@ Reminder: concrete semantics of WHILE
o states ¥ := {0 | 0 : Var — Z} (Definition 11.6)
o execution relation — C (Cmd x £) x ((Cmd U {]}) x X)
(Definition 11.9)

@ Yields concrete domain L := 2> and concrete transition function:

Definition (Concrete transition function)
The concrete transition function of WHILE is defined by the family of
functions
nexte ¢ : PE s DT
where ¢ € Cmd, ¢’ € Cmd U {]} and, for every S C ¥,
nextc o(S) :={o' € X |Jo € S: (c,0) = (', ")}

Static Program Analysis Winter Semester 2014/15 13.4




Safe Approximation of Execution Relation Il

Remarks: next satisfies the following properties
o "Determinism” (cf. Theorem 12.2):

o forallce Cmd, ¢/ € Cmd U {l} and 0 € ¥: |nextc o ({o})] <1
e for all c € Cmd and o € ¥ there exists exactly one ¢’ € Cmd U {|}
such that nextc o ({o}) # 0
e When is nextc (S) = (07 Possible reasons:
QS=0
@ (' not a possible successor statement of c, e.g.,
e c=(x :=0)
o ¢’ =skip
© ¢’ unreachable forall o € S, e.g.,
@ c=(if x = 0 then x := 1 else skip)
o ¢’ = skip
@ o(x) =0foreacho €S

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 13.5



Safe Approximation of Execution Relation Ill

e Reminder: abstraction determined by Galois connection («, ) with
a:L—-Mandy: M — L
o here: L:=2% M not fixed (usually M = Var — ... or M = 2‘/‘"_’“')
e write Abs in place of M
o thus o : 2% — Abs and 7 : Abs — 2%

@ Yields abstract semantics:
Definition (Abstract semantics of WHILE)

Given a : 2% — Abs, an abstract semantics is defined by a family of
functions

next? , : Abs — Abs
where ¢ € Cmd, ¢’ € Cmd U {]}, and each nextc#c, is a safe
approximation of next. ., i.e.,
a(nextc or(y(abs))) Cabs nextféc,(abs)

for every abs € Abs.
Notation: (c, abs) = (c’, abs’) for nextc#’c,(abS) = abs’.

RWTHAACHE Static Program Analysis Winter Semester 2014/15 13.6



© Example: Hailstone Sequences

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 13.7



Example: Hailstone Sequences

Example 13.1 (Hailstone Sequences)

[skip]l; " .
while [~(n = D]? do @ additional skip statements only
if [even(n)]? then e Lelorls
[n :=n / 2]*;[skip]®; @ abstract transition system for
else o(n) € Zogq: on the board
= 6. s 17 . . .
[0 := 3 * n + 1]°;[skip]’; ¢ formal derivation later

@ Collatz Conjecture: given any n > 0, the program finally returns 1
(that is, every Hailstone Sequence terminates with 1)

@ see http://en.wikipedia.org/wiki/Collatz_conjecture

@ AKA 3n+ 1 Conjecture, Ulam Conjecture, Kakutani's Problem, Thwaites'
Conjecture, Hasse's Algorithm, or Syracuse Problem

@ New proof attempt by Gerhard Opfer from Hamburg University
(http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf)

Static Program Analysis Winter Semester 2014/15 13.8



http://en.wikipedia.org/wiki/Collatz_conjecture
http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf

9 Abstract Interpretation of WHILE Programs

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 13.9



Derivation of Abstract Semantics

@ Problem: most precise safe approximation not always definable

Example 13.2 (Fermat's Last Theorem)
Sign abstraction (cf. Example 11.3) on
(if n>2 A x"n+y"n=z"n then n:=1 else n:=-1,{[n,x,y,z— +|})

o Result n =1 possible iff there exist n > 2 and x, y,z > 1 such that
Xﬂ _|_ yn — zn
o Fermat's Last Theorem: equation not solvable

o Final proof by Andrew Wiles and Richard Taylor in 1995

@ More general: solvability of Diophantic equations undecidable

@ Thus: resort to possibly imprecise safe approximations

Static Program Analysis Winter Semester 2014/15 13.10



Extraction Functions

@ Assumption: abstraction determined by pointwise mapping of
concrete elements
o If L=2%and M =22 with C; = Cpy = C, then §: C — Ais called
an extraction function
@ (3 determines Galois connection («,y) where
a:L—=-M:1— p(l)(={B(c)| cel})
Y:M—L:mw— B7Ym) (={ce C|pB(c) e m})

Example 13.3
Q Parity abstraction (cf. Example 11.2): 5 : Z — {even, odd} where

__ Jeven if z even
blz) = {odd if 7 odd

@ Sign abstraction (cf. Example 11.3): §:Z — {+, —,0} with 8 = sgn
@ Interval abstraction (cf. Example 11.4): not definable by extraction
function (as Int is not of the form 24)

v

Static Program Analysis Winter Semester 2014/15 13.11



Safe Approximation by Extraction Functions

Reminder: safe approximation condition (Definition 12.3)
a(f(y(mi),...,v(mn))) Cm f#(ml, ceeyMp).

Theorem 13.4

Let L=2C and M =24 withC;, = Cpy = C, B : C — A be an extraction
function, and f : C" — C. Then
fE M — M:(my,...,m,) —
[B(F(ct, . cm) | Vi € {L,...,n} : ; € B~1(m))}

is a safe approximation of f.

on the board ]

Static Program Analysis Winter Semester 2014/15 13.12



Safe Approximation of Arithmetic Operations

Example 13.5 (Sign abstraction)

For C=7, A= {+,—,0}, B =sgn:

1 {+) {=r {0} [ {+) {-} {0}
{+r| {+r  {+-0 {+} {+r [ {+r {-} {0}

(= =0 =} {3 {(=}|{=) {+} {0}
{0y | {+} {=r {0 {0} | {0} {0} {0}

and {+,0} *# {—}

= {+} #* (<} U{0} #* (-}
={hu

etc.

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 13.13




Safe Approximation of Boolean Operations

Example 13.6 (Sign abstraction)

© Relational operations:
e C=ZUB, A={+,—,0} UB, 8 =sgn

o =¥ {+} {-} {o}

{+} | {true, false} {false} {false}
-} {false} {true, false} {false}
0} {false} {false} {true}

o[ ># {+} {—} {0}

{+} | {true, false} {true} {true}
{-} {false} {true,false} {false}
{0} {false} {true} {false}

o {+,0} =# {0} = {+} =# {0} U {0} =# {0} = {false} U {true} =
{true, false} etc.

@ Boolean connectives:
o C=A=B, % =-, A¥ =A, ...
o {true,false} A# {true} = {true} A# {true} U {false} A# {true} =
{true} U {false} = {true, false} etc.

RWNTH Static Program Analysis Winter Semester 2014/15 13.14




Abstract Program States

Now: take values of variables into account

Definition 13.7 (Abstract program state)
Let 5 : Z — A be an extraction function.
@ An abstract (program) state is an element of the set
{p|p:Var = A},
called the abstract state space.
@ The abstract domain is denoted by Abs := 2Var—=4,
@ The abstraction function o : 2> — Abs is given by
a(S) ={foo|oceS}

for every S C Y.

RWTHAACHE Static Program Analysis Winter Semester 2014/15 13.15



Abstract Evaluation of Expressions

Definition 13.8 (Abstract evaluation functions)

Let p: Var — A be an abstract state.
© val’ : AExp — 2" is determined by (f arithmetic operation)
valf(z) := {6(2)}
valif(x) = {p(x)}
va/f(f(al, cooyap)) = f#(valﬁ(al), e va/f(a,,))
Q va/f : BExp — 2% is determined by (g/h relational /Boolean op.)
va/f(t) = {t}
va/f(g(al, cooyap)) = g#(va/f(al), e va/j'é(an))
valf (h(by,.. ., bn)) := h#(val’ (by), ..., val? (b))

Example 13.9 (Sign abstraction)

Let p(x) = + and p(y) = —.
o va/f(Q * x +y)={+,—,0}
Q va/f(—'(x + 1 > y)) = {false}

RWNTH Static Program Analysis Winter Semester 2014/15 13.16




@ Abstract Semantics of WHILE

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 13.17



Abstract Semantics of WHILE |

Reminder: abstract domain is Abs := 2Var—A

Definition 13.1 (Abstract execution relation for statements)

If c € Cmd and abs € Abs, then (c, abs) is called an abstract
configuration. The abstract execution relation is defined by the following
rules:

(skie) (skip, abs) = ({, abs)

) (x := a,abs) = (|, {p[x — &] | p € abs,a € val¥(a)})

(c1, abs) = (c}, abs') ¢} # |

(c1; co,abs) = (ci;co, abs’)

(seql)

(c1,abs) = (], abs’)
(c1;¢o,abs) = (cp, abs’)

(seq2)

v

RWNTH Static Program Analysis Winter Semester 2014/15 13.18




Abstract Semantics of WHILE Il

Definition 13.1 (Abstract execution relation for statements; cont.)

dp € abs : true € valf(b)

(if1)

(if b then cj else ¢y, abs)
= (cy,abs \ {p € abs | val#(b) = {false}})

dp € abs : false € valf(b)

(if2)
(if b then ¢j else ¢y, abs)

= (c2,abs \ {p € abs | va/f(b) = {true}})
dp € abs : true € valf(b)

(while b do c, abs)
= (c;while b do c,abs \ {p € abs | va/f(b) = {false}})

(wh1)

Jdp € abs : false € valf(b)
(while b do ¢, abs) = ({,abs \ {p € abs | valﬁ(b) = {true}})

(wh2)

v

RWNTH Static Program Analysis Winter Semester 2014/15 13.19



Abstract Semantics of WHILE 11
Definition 13.2 (Abstract transition function)

The abstract transition function is defined by the family of mappings
nextﬁc, : Abs — Abs,
given by
nextffc,(abs) = U{abs' € Abs | (c,abs) = (c’, abs’)}

Example 13.3 (Hailstone Sequences; cf. Example 13.1)

[skip]';
while [~(n = 1)]% do
if [even(n)]® then
[n :=n / 2]*;[skip]®;
else
[n := 3 *x n + 1]%;[skip]’;

Execution relation with parity abstraction: see following slide (courtesy B. Konig)

v

RWNTH Static Program Analysis Winter Semester 2014/15 13.20



(Iskip]*; . . ., {[n~ odd]}) {ln = odd]} =

/
(vhile [nA1] ﬂ {In+ odd]}) e (smile A1 ., (o even]})
(it [even ]’ ﬂ {In+ odd]}) (if [even(m]? ﬂ ([ even]})
— ([ne=Bene1]5;. ﬂ {ln » odd]}) (2 ﬂ {ln » even})
([skipls .. -,ﬂ{[n s even]}) —— ([skipls .. .. {fn~ even]. [n > odd]})
(uhile A1) ..., {[n > even],[n — odd]}) ——
\ \ (if [even@P ..., {[n > even],[n — odd]})




	Recap: Safe Approximation of Functions and Relations
	Example: Hailstone Sequences
	Abstract Interpretation of WHILE Programs
	Abstract Semantics of WHILE

