
Overview

1 Lecture 2: Message Sequence Charts

Joost-Pieter Katoen Theoretical Foundations of the UML 1/26

Theoretical Foundations of the UML
Lecture 2: Message Sequence Charts

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1415/uml/

14. Oktober 2014

Joost-Pieter Katoen Theoretical Foundations of the UML 2/26

History

70s - 80s: often used informally

1992: first version of MSCs standardized by CCITT (currently
ITU) Z.120

1992 - 1996: many extensions, e.g., high-level + formal semantics
(using process algebras)

1996: MSC’96 standard

2000: MSC 2000, time, data, o-o features

2005: MSC 2004 . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 3/26

Variants of MSCs

UML sequence diagrams

(instantiations of) use cases

triggered MSCs

netcharts (= Petri net + MSC)

STAIRS

Live sequence charts

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 4/26

Characteristics

scenario-based language

visual representation

“easy” to comprehend

generalization possible towards automata (states are MSCs)

widely used in industrial practice

Joost-Pieter Katoen Theoretical Foundations of the UML 5/26

Applications

requirements specification
(positive, negative scenarios, e.g., CREWS)

system design and software engineering

visualization of test cases
(graphical extension to TTCN)

feature interaction detection

workflow management systems

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 6/26

Example

p1 p2 p3

a
b

c

d

e

These pictures are
formalized using partial orders.

Joost-Pieter Katoen Theoretical Foundations of the UML 7/26

Partial orders

Definition
Let E be a set of events.
A partial order over E is a relation � ⊆E × E such that:

1 � is reflexive, i.e., ∀e ∈ E. e � e,
2 � is transitive, i.e., e � e′ ∧ e′ � e′′ implies e � e′′, and
3 � is anti-symmetric, i.e., ∀e, e′. (e � e′ ∧ e′ � e) ⇒ e = e′.

The pair (E,�) is called a partially ordered set (poset, for short).

Definition
Let (E,�) be a poset and let e, e′ ∈ E. e and e′ are comparable if e � e′

or e′ � e. Otherwise, they are incomparable.

� is a non-strict partial order as it is reflexive. A strict partial order is a relation ≺
that is irreflexive, transitive and asymmetric (i.e., if e ≺ e′ then not e′ ≺ e).

Joost-Pieter Katoen Theoretical Foundations of the UML 8/26

Hasse diagram

Definition
Let (E,�) be a poset.
The Hasse diagram (E,�) of (E,�) is defined by:

e� e′ iff e � e′ and ¬(∃e′′ �= e, e′. e � e′′ ∧ e′′ � e′)

Hasse diagrams can be used to visualize posets with finitely many elements in
a succinct way.

Joost-Pieter Katoen Theoretical Foundations of the UML 9/26

Linearizations

Definition
Let (E,�) be a poset.
A linearization of (E,�) is a total order 	⊆ E × E such that

e � e′ implies e 	 e′

A linearization is a topological sort of the Hasse diagram of (E,�).

Note that every partial order has at least one linearization.

Joost-Pieter Katoen Theoretical Foundations of the UML 10/26

Example

Example
Let E = {e1, . . . , e6},

� = { (e1, e2), (e1, e3), (e3, e4), (e4, e5), (e5, e6), (e1, e4),
(e3, e5), (e1, e5), (e1, e6), (e3, e6), (e4, e6)

}r where Rr denotes the reflexive closure of R

Hasse diagram:

e1

e2

e3 e4 e5 e6

Linearizations:
• e1e2e3e4e5e6,
• e1e3e2e4e5e6,
• e1e3e4e2e5e6,
• e1e3e4e5e2e6,
• e1e3e4e5e6e2

No linearizations:
• e2e1e3 . . ., and e1e4e3 . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 11/26

Processes and actions

Definition
Let P: finite set of (sequential) processes

C: finite set of message contents (a, b, c, . . . ∈ C)

Definition
Communication action: p, q ∈ P, p �= q, a ∈ C

!(p, q, a) “process p sends message a to process q”

?(p, q, a) “process p receives message a sent by process q”

Let Act denote the set of communication actions

Joost-Pieter Katoen Theoretical Foundations of the UML 12/26

Message Sequence Chart (MSC) (1)

Definition
An MSC M = (P, E, C, l,m,�) with:

P, a finite set of processes {p1, p2, . . . , pn} with n > 1

E, a finite set of events

E =
⊎
p∈P

Ep = E? ·∪ E!

C, a finite set of message contents
l : E → Act , a labelling function defined by:

l(e) =

{
!(p, q, a) if e ∈ Ep ∩ E!

?(p, q, a) if e ∈ Ep ∩ E?

, for p �= q ∈ P, a ∈ C

Joost-Pieter Katoen Theoretical Foundations of the UML 13/26

Message Sequence Chart (MSC) (2)

Definition
m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p �= q, a ∈ C)

� ⊆E × E is a partial order (“visual order”) defined by:

� =
(⋃

p∈P
<p

︸ ︷︷ ︸
<p is a total order = “top-to-
bottom” order on process p

∪ {(e,m(e)) | e ∈ E!}︸ ︷︷ ︸
communication order <c

)∗

where for relation R, R∗ denotes its reflexive and transitive closure.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/26

Example (1)

p1 p2

a

b

MSC M :

e1 e2

e3e4

M = (P , E, C, l,m,�) with:
P = {p1, p2} Ep1 = {e1, e4}
E = {e1, e2, e3, e4} Ep2 = {e2, e3}
C = {a, b} E! = {e1, e3},

E? = {e2, e4}

l(e1) = !(p1, p2, a) m(e1) = e2
l(e2) = ?(p2, p1, a)
l(e3) = !(p2, p1, b) m(e3) = e4
l(e4) = ?(p1, p2, b)

Ordering at processes: e1 <p1 e4 and e2 <p2 e3
Hasse diagram of (E,�):

e1 e2 e3 e4

Linearizations?

Joost-Pieter Katoen Theoretical Foundations of the UML 15/26

Example (2)

p1 p2

a b

MSC M ′:

e1

e2

e3

e4

M ′ = (P, E, C, l,m︸ ︷︷ ︸
as above

,�′) with:

e1

e3

e2

e4

<′
c:

e1

e3

e4

e2

<′
p1 :

<′
p2 :

e1

e3

e2

e4

�′:

Joost-Pieter Katoen Theoretical Foundations of the UML 16/26

This is not an MSC

p1 p2

a

b

Joost-Pieter Katoen Theoretical Foundations of the UML 17/26

FIFO property

MSC M = (P, E, C, l,m,�) has the First-In-First-Out (FIFO) property
whenever: for all e, e′ ∈ E! we have

e ≺ e′ ∧ l(e) = !(p, q, a) ∧ l(e′) = !(p, q, b) implies m(e) ≺ m(e′)

i.e., “no message overtaking allowed”

p1 p2

a

b
e

e′
m(e)

m(e′)

p1 p2

a

b

e

e′

m(e′)

m(e)

FIFO

non-FIFO

l(e) = !(p1, p2, a)
l(e′) = !(p1, p2, b)
e ≺ e′

⇒ m(e) ≺ m(e′)

Note:
We assume an MSC to
possess the FIFO property,
unless stated otherwise!

Joost-Pieter Katoen Theoretical Foundations of the UML 18/26

Linearizations

Definition
Let Lin(M) = denote the set of linearizations of MSC M .

MSCs and its linearizations are interchangeable
There is a one-to-one correspondence between an MSC and its set of
linearizations.

Thus:
Lin(M) uniquely characterizes the MSC M .

From MSCs to its set of linearizations is straightforward. The reverse direction
is discussed in the following. First: well-formedness.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/26

Well-formedness

Let Ch := {(p, q) | p �= q , p, q ∈ P} be the set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:∑
m∈C

|u|!(p,q,m)︸ ︷︷ ︸
sends from p to q

�
∑
m∈C

|u|?(q,p,m)︸ ︷︷ ︸
receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 � i < j � n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑
m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C |w|!(p,q,m) =
∑

m∈C |w|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 20/26

Properties of well-formedness

Proposition
For every MSC M and every w ∈ Lin(M), w is well-formed.

Lin(M) denotes a set of words (and not linearizations)
the word of linearization e1 . . . en equals �(e1) . . . �(en)

Joost-Pieter Katoen Theoretical Foundations of the UML 21/26

From linearizations to posets

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,�, �)

such that:
E = {1, . . . , n} are the positions in w labelled with �(i) = ai

�=
(⋃

p∈P ≺p ∪ ≺msg
)∗

where
i ≺p j if and only if i < j for every i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

�(i) = !(p, q,m) and �(j) = ?(q, p,m) and∑
m∈C

|a1 . . . ai−1|!(p,q,m) =
∑
m∈C

|a1 . . . aj−1|?(q,p,m)

Example
construct M(w) for w = !(r, q,m)!(p, q,m1)!(p, q,m2)?(q, p,m1)?(q, p,m2)?(q, r,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 22/26

Properties

Relating well-formed words to MSCs
For every well-formed w ∈ Act∗, M(w) is an MSC.

Definition
(E,�, �) and (E′,�′, �′) are isomorphic if there exists a bijection
f : E → E′ such that e � e′ iff f(e) �′ f(e′) and �(e) = �′(f(e)).

Linearizations yield isomorphic MSCs
For every well-formed w ∈ Act∗ and w′ ∈ Lin(M(w)):

M(w) and M(w′) are isomorphic.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/26

Visual order can be misleading

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

e2 ≺ e6?

If message b takes much shorter than message a,
then c might arrive at p1 before a.

Formally: e6 might occur before e2, but e2 <p1 e6.

This is misleading and called a race.

Q: When are such situations possible and how to detect them?

Joost-Pieter Katoen Theoretical Foundations of the UML 24/26

Causal order

Let M = (P, E, C, l,m,�) be an MSC.
Let � ⊆ E × E be defined by:

e � e′ iff e′ = m(e)
or e <p e

′ and E! ∩ {e, e′} �= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m
−1(e′)

� is the “interpreted / possible order” (also called causal order)
p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

Example
e1 � e2, e3 � e4, e5 � e6, e1 � e3, e4 � e5, ¬(e2 � e6)

Joost-Pieter Katoen Theoretical Foundations of the UML 25/26

Races

Definition
MSC M contains a race if for some e, e′ ∈ E? and process p:

e <p e
′ but not (e �∗ e′)

where �∗ ⊆ E × E is the reflexive and transitive closure of �.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/26

