Theoretical Foundations of the UML

Lecture 17: Introduction to Statecharts

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1415/uml/

13. Januar 2015

Joost-Pieter Katoen Theoretical Foundations of the UML 1/36

@ Background

© Ingredients of Statecharts
@ Mealy Machines
@ State Hierarchy
@ Orthogonality
@ Broadcast Communication
® Some Small Examples
@ Other Features: Priority, Nondeterminism and Negated Events

© Semantics of Statecharts

@ Formal Definition of UML Statecharts

Joost-Pieter Katoen Theoretical Foundations of the UML 2/36

Overview

@ Background

Joost-Pieter Katoen Theoretical Foundations of the U

Statecharts

MSCs are a visual modelling formalism for requirements

Statecharts is a visual modelling formalism for describing the
behaviour of discrete-event systems

@ automata + hierarchy + communication + concurrency

Developed by David Harel in 1987
o professor at Weizmann Institute (Israel); co-founder of I-Logix Inc.

Extensively used in embedded systems, automotive and avionics

Variants: UML Statecharts, Stateflow, hierarchical state machines

@ supported by Statemate toolset, and Matlab/Simulink

Joost-Pieter Katoen Theoretical Foundations of the UML 4/36

© Ingredients of Statecharts
@ Mealy Machines
@ State Hierarchy
@ Orthogonality
@ Broadcast Communication
® Some Small Examples
@ Other Features: Priority, Nondeterminism and Negated Events

Joost-Pieter Katoen Theoretical Foundations of the UML 5/36

What are Statecharts?

Statecharts constitute a visual formalism for: [Harel, 1987]

Describing states and transitions in a modular way

Enabling clustering of states

Orthogonality, i.e., concurrency

@ Refinement, and

Encouraging “zoom‘ capabilities for moving easily back and forth

between levels of abstraction
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 6/36

What are Statecharts?

Statecharts := Mealy machines
+ State hierarchy
+ Broadcast communication

+ Orthogonality

Joost-Pieter Katoen Theoretical Foundations of the UML 7/36

Mealy machines

Definition (Mealy machine)

A Mealy machine A = (Q, qo, %, T, 0, w) with:
@ (Q is a finite set of states with initial state gy € Q

@ X is the input alphabet
@ [is the output alphabet
@ §:Q x X — Q is the deterministic (input) transition function, and

0 w:Q x X — I is the output function

A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.

Moore machines
In a Moore machine w : @ — I', output is purely state-based.

Joost-Pieter Katoen Theoretical Foundations of the UML 8/36

Mealy machines
Mealy machines

@ No final (accepting) states

@ Transitions produce output
@ Deterministic input transition function

= Acceptance of input words is not important, but the generation of
output words from input words is important
Exaeagle : ajo
C)} ol
A4 S
— (1] 132)
—

s
—{0)-
“\ e
S ofo
wlze) zo of4
1/4
o
Joost-Pieter Katoen Theoretical Foundations of the

Limitations of Mealy machines

@ No support for hierarchy

o all states are arranged in a flat fashion

@ no notion of substates

@ Realistic systems require complex transition structure and huge
number of states

@ scalability problems yields unstructured state diagrams

@ No notion of concurrency
o need for modeling independent components

@ No notion of communication between automata.

Joost-Pieter Katoen Theoretical Foundations of the UML 10/36

Scalability

A bit unstructured Mealy machine

|
-

]
g

V.

An equivalent statechart

sueerskak:

Skatechaort * default
1 skart stabe

;
) L

Ra

—[A — @

¥F

3
?

s state
—AE—F)

V.

State hierarchy yields modular, hierarchical and structured models.]

Joost-Pieter Katoen Theoretical Foundations of the UML

Orthogonality

Two independent components

Image: Seund:
Wmom _,U
[(\.L

V.

Mealy machine for Image | Sound
norenal 3| videokxk
mute AT nnote

norme

e

Soaond

Number of states is exponential in size of concurrent components

Joost-Pieter Katoen Theoretical Foundations of the

Two independent components

Tmage: Seund:
— noreal | tv\meb& i M
ek obF
Statechart for Image | Sound
e Stetechavk: "anp state ”
!mﬂa& ‘SQ
]) P (s I r- |
\ ~ I
‘."r Asic? stele S a stake

Concurrency modeled by independence

Joost-Pieter Katoen Theoretical Foundations of the

Combined with state hierarchy

Switching on and off the television
|
t—a video- E = mote :J
(o] |

off i on

A

/
name of Standby
fAnD skake

Joost-Pieter Katoen Theoretical Foundations of the UML

Broadcast

Turn off sound on switching a tv channe

\:7
S N
==

@ Output is broadcast that can be received by any other component

@ When pushing button 1, channel switches to its state channel 1,
while generating signal sm on which component SM switches off
the sound.

Joost-Pieter Katoen Theoretical Foundations of the UML

Concurrency

Example concurrency in statecharts

@ As long as node X is active, nodes S and T are active
@ Node S is active when either node A or B is active

@ Node T is active if one of C, D or F is active

Joost-Pieter Katoen Theoretical Foundations of the UML

Concurrency

Example concurrency in statecharts

% |

Exit behaviour
@ When node X exits, both nodes S and T exit
@ When Y exits, X starts, S starts in A, and T starts in C

@ On the occurrence of event e, node X exits (regardless of current
state in S or T')

Joost-Pieter Katoen Theoretical Foundations of the UML

Swapping two variables

Swapping the value of variables z and y

<]

|
)
)
e /"’:_\l\ } {f;_/'?ii-:‘,
\
]
|

A

v

]

'

®]

L

it

@ If nodes A and C' are active, assume z =1, y = 2
@ On occurrence of event e, B and D are active, and x =2, y = 1

= In Harel’s statecharts, memory is shared, i.e., concurrent
components have access to shared variables.

Joost-Pieter Katoen Theoretical Foundations of the UML

What if event e occurs when A and C are active?

(&

2[5 |

|
|

Solution:

| m
\

Add a priority mechanism that decides whether:
@ inter-level transitions (such as C' — E), or
@ intra-level transitions (such as A — B)

prevail in case both are enabled.

V.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/36

Nondeterminism

What if event e and €’ occur in A?

Choice is resolved nondeterministically, i.e., the next state is either B or
C, but not both.

Joost-Pieter Katoen Theoretical Foundations of the UML

Negation of events

Priority of events by negated events

v

In UML statecharts, negated events do not occur l

Joost-Pieter Katoen Theoretical Foundations of the UML 21/36

Overview

© Semantics of Statecharts

Joost-Pieter Katoen Theoretical Foundations of the

Semantic problems with Statecharts

@ Synchrony hypothesis (or: zero response time)

Self-triggering

Negated trigger events

Transition effect is contradicting its cause

Interrupts

Due to all these problems, hundred(s) (!) of different semantics for
Statecharts have been defined in the literature.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/36

Synchrony hypothesis

Event may yield chain of reactions

=]

-

|

Ny

o If Al, Bl and C1 are active and event a occurs, a chain of
reactions occurs: transition t; triggers to, and to triggers t3

@ But transitions ¢1, tg, t3 occur at the same time as events do not
take time (except for after(d) events with real d)

V.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/36

Negated events and synchrony may yield paradox

A

m1 ®)

L]

;

|

: Y/ a
I 3

|

1

I

EX

J

AL L

@ Assume events a and b are not alive

Transition ¢ can be taken, generating event b
Transition ¢’ can be taken, generating event a

°
°
@ But then ¢ should not have taken place as it is not enabled
@ But then ¢ cannot be taken since b does not occur

°

Hence, a does not occur and ¢ cannot be taken

<

Joost-Pieter Katoen Theoretical Foundations of the UML 25/36

Simplifications in UML statecharts

© No shared variables
@ No negated and no compound events (like e A €’)

© Two-party communication rather than broadcast

© No synchrony hypothesis:

@ events generated in step ¢ can only be consumed in step i+1,
o and die otherwise, i.e., when they are not consumed in step i+1,
events disappear

Joost-Pieter Katoen Theoretical Foundations of the UML 26/36

@ Formal Definition of UML Statecharts

Joost-Pieter Katoen Theoretical Foundations of the UML

Statecharts

Definition (Statecharts)
A statechart SCis a triple (N, E, Edges) with:

O N is a set of nodes (or: states) structured in a tree

@ F is a set of events

o pseudo-event after(d) denotes a delay of d € Rx(time units
o | & F stands for “no event available”

© Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts

(SC1,...,SCy).

Joost-Pieter Katoen Theoretical Foundations of the UML 28/36

Syntactic sugar

this is an elementary form; the UML allows more constructs

that can be defined in terms of these basic elements

@ Deferred events simulate by regeneration
@ Parametrised events simulate by set of parameter-less events
o Activities that take time simulate by start and end event
@ Dynamic choice points simulate by intermediate state
@ Synchronization states use a hyperedge with a counter
o History states (re)define an entry point
RWIH

Joost-Pieter Katoen Theoretical Foundations of the U

Tree structure

Function children

Nodes obey a tree structure defined by function children : N — 2V
where x € children(y) means that x is a child of y, or equivalently, y is
the parent of x.

| A

Partial order <

The partial order < C N x N is defined by:
oVre N.x<dx
o Vz,y € N.x Jy if x € children(y)
o Vr,yze Na<dy ANy<dz = zdz2

x <y means that z is a descendant of y, or equivalently, y is an ancestor
of z. If x <y or y <z, nodes = and y are ancestrally related.

o

Root node
There is a unique root with no ancestors, and Vz € N.z < root.

Joost-Pieter Katoen Theoretical Foundations of the UML

Functions on nodes

The type of nodes

Nodes are typed, type(x) € { BASIC, AND, OR } such that for x € N:

@ type(root) = OR
o type(z) = BASIC iff children(x) = @, i.e., is a leaf
o type(x) = AND implies (Vy € children(x). type(y) = OR)

Default nodes

default : N — N is a partial function on domain
{x € N | type(x) = OR } such that

default(x) =y implies y € children(z).

The function default assigns to each OR-node x one of its children as
default node that becomes active once z becomes active.

v
Joost-Pieter Katoen Theoretical Foundations of the UML 31/36

Example

Example statechart

4 =

'—’(-\/@

— %:[3__]
7

B

Nl

Joost-Pieter Katoen Theoretical Foundations of the UML

Edges

Definition (Edges)

An edge is a quintuple (X, e, g, A,Y), denoted X /ALy with:
@ X C N is a set of source nodes with X # @&
@ e € EU{ L} is the trigger event

@ A C Act is a set of actions

@ such as v := expr or local variable v and expression expr
o or send j.e, i.e., send event e to statechart SC;

@ Guard ¢ is a Boolean expression over all variables in (SCy, ..., SCy)
@ Y C N is a set of target nodes with Y # &

The sets X and Y may contain nodes at different depth in the node tree.J

Joost-Pieter Katoen Theoretical Foundations of the UML 33/36

Example (1)

Example statechart

((oler)=e

T

e[x‘io]/ x:=0

edge 1: {C'} Lltrue]/{z:=1} {D}

edge 2: { D} —z=2UMzi=0}, £ 4 o

Joost-Pieter Katoen Theoretical Foundations of the UML

Example (2)

T

Ai=2

Ki=0 #i=

edge 1: {A}M){B}

edge 2: {B}M){root}

Joost-Pieter Katoen Theoretical Foundations of the UML

Example (3)

Example statechart
]

edge : {A,B}—>{C}

Joost-Pieter Katoen Theoretical Foundations of the UML 36/36

