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Specification to implementation

@ Consider an MSGs as complete system specifications
o they describe a full set of possible system scenarios

@ Can we obtain “realisations” that exhibit precisely these scenarios?

@ Map MSGs, i.e., scenarios onto an executable model

@ model each process by a finite-state automaton
o that communicate via unbounded directed FIFO channels

= This yields Communicating Finite-state Machines
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The need for synchronisation messages
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Preliminaries

(Definition |

Let
o P be a finite set of at least two (sequential) processes
o C be a finite set of message contents

Definition (communication actions, channels)

o Act, = {!(p,q,a) | g€ P\ {p}, a €C}
the set of send actions by process p

o Act, :={?(p,q,a) | g € P\ {p}, acC}
the set of receive actions by process p

o Acty:= Act;, U Act;
0 Act :=J,ep Actp
© Ch:={(p,q) |p,q€P, p#q} ‘“channels”

o
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Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp; Ap))per: D, Sinit, F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

e S, is a non-empty finite set of local states (the S, are disjoint)
o A, C S, x Act, x D x S) is a set of local transitions

@ Sinit € S4 is the global initial state
o where Sy4 :=[[,cp Sy is the set of global states of A
o F C Sy is the set of global final states

We often write s ﬂp s' instead of (s,0,m,s’) € A, RWTH
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Communicating finite-state machines
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Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, sinit, F) be a CFM over P and C.

Definition (configurations)
Configurations of A: Conf, := Sa x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:
@ sending a message: ((3,7),!(p,q,a),m, (5',7)) € =>4 if
o (3[pl, (p, g, a), m,5'[p]) € A,
o 1" =nl(p,q) = (a,m) - n((p, )]
o s[r] =9r] for allr € P\ {p}
@ receipt of a message: ((5,7),7(p,q,a),m,(5,1)) € =4 if
9 (E[p],?(p, qya),m,gl[p]) € AP
o 1((g,p)) = w- (a,m) # € and ' = n[(g, p) := w]

o 3[r]=3[r] forallr € P\ {p
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Linearizations of a CFM

Let A= (((Sp, Ap))per, D, sinit, F) be a CFM over P and C.

Definition (accepting runs

A run p of CFM A on word w = 0y ...0, € Act™ is an alternating
sequence p = Yo M1 Y1 - - - Yn—1 Mn Yn Such that

O "0 = (Sinit, ne) with 1. mapping any channel to ¢

2] ’Vi—l%A v; for any i € {1,...,n}

The run p is accepting if v, € F' x {n:}.

Definition (linearization of a CFM)
The (word) language of CFM A is defined by:

Lin(A) := {w € Act™ | there is an accepting run of A on w}
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Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}

Lin(A) = {w € Act™ | there is n > 1 such that:
wll=1(1,2req))" (7(1,2,ack) !(1,2,req))"
w2 =(?(2,1,req) !(2,1,ack))” (?(2,1,req))"
for any u € Pref(w) and (p,q) € Ch:

Z |u|!(p,q,a) - Z |u‘?(q,p,a) > O}

acC acC p
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Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

Lin(A) = {w € Act™ | there is n > 1 such that:
wll=(!(1,2,req))" (?(1,2,ack) (1,2,req))"
w2 =(?(2,1,req) !(2,1,ack))” (?(2,1,req))"
for any u € Pref(w) and (p,q) € Ch:

Z |u|!(p,q,a) - Z |u‘?(q,p,a) > O}

acC acC p
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Overview

@ Emptiness Problem for CFMs
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Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

INPUT: CFM A over processes P and message contents C
QUESTION: Is £(A) empty?

vy

Proof (sketch)

Reduction from the halting problem for Turing machine
T™M = (Q,%,A,0,q0,q¢) to emptiness for a CFM with two processes.

Build CFM A = ((A1, A2), D, Sinit, F') over {1,2} and some singleton
set C such that L(A) # @ iff TM can reach gy, i.e., TM accepts.

@ Process 1 sends current configurations to process 2

@ Process 2 chooses successor configurations and sends them to 1

o D= ((ZU{D}) x QU{_}) ui{#
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A CFM simulating a Turing machine

Proof (contd.)

79{D<—qu
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A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (go,a,a’, L, q3) is applied so
that process 2

@ sends b unchanged back to process 1

o detects (receives) a < g2

o sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

o receives # so that the symbol [0 < g3 has to be inserted before
returning #

@ Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in favor
of (g2,a,d’, R, q3) while reading b, it would have to

o send b < g3 instead of just b, entering some state t(a < g2)
@ receive a < g2 (no other symbol can be received in state t(a < g2))
o send a’ back to process 1 )
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A CFM simulating a Turing machine

Proof (contd.)
@ Introduce local final states sy and t¢, one for process 1 and one for
process 2, respectively (i.e., F' = {(sf,t¢)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into ¢y and to empty the channel
(1,2) as soon as it receives a letter ¢ < ¢ for some c.

@ As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. O
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