
. . .
Delays

. . . . . . . . . . .
Validated Simulation-Based Verification

. . .
Games of Delayed Information

.
Concluding Remarks

Towards Delays in Dynamical and Control Systems
Simulation-Based Verification & Game Theory

Mingshuai Chen

State Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences
Joint work with Martin Fränzle, Yangjia Li, Naijun Zhan and Peter N. Mosaad

Saarbrücken, July 2016

Mingshuai Chen Institute of Software, CAS Towards Delays in Dynamical/Control Systems Saarbrücken, 2016 1 / 24



. . .
Delays

. . . . . . . . . . .
Validated Simulation-Based Verification

. . .
Games of Delayed Information

.
Concluding Remarks

Outline

1 Delays in Dynamical/Control Systems

2 Verifying Delayed Differential Dynamics by Validated Simulation

3 Synthesizing Controllers in Games of Delayed Information

4 Concluding Remarks

Mingshuai Chen Institute of Software, CAS Towards Delays in Dynamical/Control Systems Saarbrücken, 2016 2 / 24



. . .
Delays

. . . . . . . . . . .
Validated Simulation-Based Verification

. . .
Games of Delayed Information

.
Concluding Remarks

Outline

1 Delays in Dynamical/Control Systems
Delayed Differential Dynamics
Delayed Control Systems

2 Verifying Delayed Differential Dynamics by Validated Simulation
Problem Formulation
Simulation-Based Verification
Validated Simulation
Experimental Results

3 Synthesizing Controllers in Games of Delayed Information
Existing Work
Sketch Idea

4 Concluding Remarks
Conclusions

Mingshuai Chen Institute of Software, CAS Towards Delays in Dynamical/Control Systems Saarbrücken, 2016 3 / 24



. . .
Delays

. . . . . . . . . . .
Validated Simulation-Based Verification

. . .
Games of Delayed Information

.
Concluding Remarks

Delayed Differential Dynamics

Delayed Differential Dynamics

{
ẋ(t) = −x(t)
x(0) = 1

0 5 10 15
−0.5

0

0.5

1

t

x

{
ẋ(t) = −x(t−1)
x([−1, 0]) ≡ 1

0 5 10 15
−0.5

0

0.5

1

t

x

Mingshuai Chen Institute of Software, CAS Towards Delays in Dynamical/Control Systems Saarbrücken, 2016 4 / 24



. . .
Delays

. . . . . . . . . . .
Validated Simulation-Based Verification

. . .
Games of Delayed Information

.
Concluding Remarks

Delayed Differential Dynamics

Delayed Differential Dynamics

{
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Delayed Dynamical Systems

{
ẋ (t) = f (x (t) ,x (t− r1) , . . . ,x (t− rk)) , t ∈ [0,∞)
x (t) ≡ x0 ∈ Θ, t ∈ [−rk, 0]

The unique solution (trajectory) : ξx0 (t) : [−rk,∞) 7→ Rn.
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Safety Verification Problem

Given T ∈ R, X0 ⊆ Θ, U ⊆ Rn, weather

∀x0 ∈ X0 :

(∪
t≤T

ξx0 (t)
)

∩ U = ∅ ?
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Simulation-Based Verification

Basic Idea 

176 A. Donzé and O. Maler

Bδ(S) =
⋃

x∈S
Bδ(x) and Bδ(ξx) =

⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)

Systematic Simulation Using Sensitivity Analysis 177

Clearly, a first property of the expansion functions is that it approaches 0 as ε
tends toward 0:

∀t > 0, lim
ε→0

Ex,ε(t) = 0 (4)

This results directly from the continuity of ξx(t) w.r.t. x.

The expansion function value Ex0,ε(t)
gives the radius of the ball which over-
approximate tightly the reachable set from
the ball Bε(x0) at time t. Obviously, if we
take several such balls so that the initial
set X0 is covered, we obtain a correspond-
ing cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ε

Reach=t

[
Bε(x0)

]

Ex0,ε(t)

Proposition 1. Let S = {x1, . . . ,xk}be a sampling of X0 such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0 for some {ε1, . . . , εk}. Let t > 0 and for each 1 ≤ i ≤ k, let
δi = Exi,εi(t). Then

⋃k
i=1 Bδi(ξxi(t)) is a ball cover of Reach=t(X0).

Proof. By definition, the ball cover of X0 contains X0, and each Bδi(ξxi(t))
contains Reach=t(Bεi(xi)), and the rest follows from the commutativity of the
dynamics with set union and containment. 	


In particular, if S is a sampling of X0 with dispersion ε then we are in the case
where εi = ε for all 1 < i < k and since the result is true for all t ∈ [0, T ], we
have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion
αX0(S) = ε. Let δ > 0 be an upper bound for Exi,ε(t) for all 1 < i < k and
t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃

x∈S
BEx,ε(ξx) ⊆

⋃

x∈S
Bδ(ξx) ⊆ Bδ

(
Reach[0,T ](X0)

)
(5)

Proof. The first inclusion is a direct application of the proposition. The second
results from the fact that δ is an upper-bound and the third inclusion is due to
the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0). 	


In other terms, if we bloat the sampling trajectories starting from S with a radius
δ, which is an upper bound for expansion functions of these trajectories, then
we get an over-approximation of the reachable set which is between the exact
reachable set and the reachable set bloated with δ. Because of (4), it is clear
that δ, and then the over-approximation error, decreases when ε gets smaller.

The second corollary of proposition 1 underlies our verification strategy.

Corollary 2. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,εi(t). If for all
t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,

1. Figures are taken from [A. DonzDonzé and O. Maler, HSCC'07].
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Local Error Bounds

E(t) =

{
d0, if t = 0,

E(ti) + (t− ti)ei+1, if t ∈ [ti, ti+1].

Validation Property :

ξx0 (t) ∈ BE(t)

(
(t− ti)yi + (ti+1 − t)yi+1

ti+1 − ti

)
, for each t ∈ [ti, ti+1].
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Simulation Algorithm

Theorem (Correctness)

Suppose the maximum index of the lists is N, then ∀t ∈ [0, T] and ∀x ∈ Bδ(x0),

ξx(t) ⊆
∪N−1

n=0
conv(Bdn (yn) ∪ Bdn+1

(yn+1)).

Theorem (Completeness)

Suppose the function f is continuously differentiable in both arguments and the
dynamical system is solvable for time interval [0, T], then for any ε > 0, there exists δ, τ
and σ such that the optimization problem (9) has a solution en for all n ≤ T

τ
, and

moreover dn ≤ ε.

Further extension to simulations with variable stepsize.
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Delayed Logistic Equation

Ṅ(t) = N(t)[1− N(t− r)]
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numerical solution N(t)

over−approximation by bloating factor d(t)

Figure : X0 = B0.01(1.49), r = 1.3, τ0 = 0.01,
T = 10s.
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over−approximation by bloating factor d(t)

lower bound of the unsafe set

Figure : Over-approximation rigorously proving unsafe,
with r = 1.7, X0 = B0.025(0.425), τ0 =
0.1, T = 5s,U = {N|N > 1.6}.
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Delayed Microbial Growth

{
Ṡ(t) = 1− S(t)− f(S(t))x(t)
ẋ(t) = e−rf(S(t− r))x(t− r)− x(t)
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upper bound of the unsafe set
numerical solution (S;x)
over−approximation around sampling point
initial state space

Figure : Eq. (18) is proven safe by 17 rounds of simulation w. τ0 = 0.45. The simulated trajectories start from
within a cover of Θ (the red dashed circle on the right) and converge eventually to a basin of attraction
(marked by a small blue rectangle). Here, α = 2e, β = 1, r = 0.9, Θ = B0.3((1; 0.5)), U =
{(S; x)|S + x < 0}, T = 8s.
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Conclusions

Concluding Remarks

Verifying delayed differential dynamics by validated simulation : a combination
of numerical methods with SMT solvers.

A sketch idea on synthesizing controllers in games of delayed information ;
non-deterministic strategy & almost winning ?
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