Probabilistic Models of Concurrency

Introduction
Summer Semester 2020; April 2020
Thomas Noll et al.
Software Modeling and Verification Group
RWTH Aachen University
https://moves.rwth-aachen.de/teaching/ss-20/pmc/
Outline

Overview

Aims of this Seminar

Important Dates

The Topics

Final Hints
Concurrency

Importance

- Increasingly important for programming
 - further performance improvements only achievable by parallelism (multi-cores, GPGPUs, FPGAs, ...)
- Inherent property of distributed/embedded/reactive/... systems

Concurrency models

- Goals:
 - avoid concurrency faults (deadlocks, data races, ...)
 - ensure correctness of control systems
- Requires solid formal basis
- Therefore: concurrency models
 - automata, process algebras (CSP, CCS, π-calculus, ...), Petri nets, ...

Analysis and verification techniques

- Identification of deadlocks/data races
- Model checking based on temporal logics, ...
Quantitative Extensions

Basic setting: “qualitative” modelling

- Considers causal order of actions but ignores explicit **timing**
- Considers uncertainty (non-deterministic branching) but ignores **likelihood** of branches

Here: quantifiable uncertainty (aka probability)

- Take likelihood of certain behaviours into account
- Allows to quantify “degree of correctness” of systems:

 "the Boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion"

 [Tom Henzinger, 2013]
- Considers **non-functional** aspects of system behaviour
 - reliability
 - performance
 - survivability
 - ...
Areas Covered in this Seminar

Topic areas

- Probabilistic automata models and their analysis
 - essentially: probabilistic extensions of automata and Petri nets
 - state-space reduction techniques (partial-order reduction, bisimulation, ...)

- Probabilistic process algebras
 - probabilistic extensions of “classical” approaches (CSP, CCS, π-calculus, ...)
 - algebraic modelling of Markov automata

- Probabilistic extensions of temporal logics
 - Probabilistic Computation Tree Logic (PCTL)
Outline

Overview

Aims of this Seminar

Important Dates

The Topics

Final Hints
Goals

Aims of this seminar

- **Independent understanding** of a scientific topic
- Acquiring, reading and understanding **scientific literature**
 - given references sufficient in most cases
- **Writing of your own report** on this topic
 - far more that just a translation/rewording
 - usually an “**extended subset**” of paper
 - “subset”: present core ideas and omit too specific details (e.g., related work)
 - “extended”: more extensive explanations, examples, ...
 - discuss contents with supervisor!
- **Oral presentation** of your results
 - can be “proper subset” of report
 - generally: less (detailed) definitions/proofs and more examples
Requirements on Report

Your report

- Independent writing of a report of 12–15 pages
- First milestone: detailed outline
 - rather: overview of structure (section headers, main definitions/theorems) and initial part of main section (one page)
- **Complete** set of references to all consulted literature
- **Correct citation** of important literature
- **Plagiarism**: taking text blocks (from literature or web) without source indication causes immediate exclusion from this seminar
- **Font size** 12pt with “standard” page layout
 - **\LaTeX** template will be made available on seminar web page
- **Language**: German or English
- We expect the **correct usage** of spelling and grammar
 - ≥ 10 errors per page \(\Rightarrow\) abortion of correction
Requirements on Talk

Your talk

- Talk of **30 minutes**
- Available: projector, presenter, [laptop]
- Focus your talk on the **audience**
- **Descriptive** slides:
 - \(\leq 15 \) lines of text
 - use (base) colors in a useful manner
 - number your slides
- **Language**: German or English
- No spelling mistakes please!
- Finish **in time**. Overtime is bad
- Ask for questions
- Have **backup slides** ready for expected questions
- **\LaTeX/beamer template** will be made available on seminar web page
Outline

Overview

Aims of this Seminar

Important Dates

The Topics

Final Hints
Important Dates

Deadlines

- 17.04.2020: Topic preferences due
- 04.05.2020: Detailed outline due
- 02.06.2020: Full report due
- 29.06.2020: Presentation slides due
- 13./14.07.2020 (?): Seminar talks

Missing a deadline causes immediate exclusion from the seminar
Selecting Your Topic

Procedure

- Check out Foodle poll at https://terminplaner.dfn.de/zBXuOBPuQVxkcBvU
- Please give at least three “Yes” votes ✓
- Preferably additional “Maybe” votes (√)
- Topics classified according to BSc/MSc level
 - MSc students please choose at least one “M-only” topic
- Give as comment:
 - Preference of topics (if desired)
 - Language of report and talk (English/German)
- Fill form by Friday, April 17
- We do our best to find an adequate topic-student assignment
 - disclaimer: no guarantee for an optimal solution
- Assignment of topics and supervisors will be published on web site in week 17

Withdrawal

- You have up to three weeks to refrain from participating in this seminar.
- Later cancellation (by you or by us) causes a not passed for this seminar and reduces your (three) possibilities by one.
Outline

Overview

Aims of this Seminar

Important Dates

The Topics

Final Hints
Automata Models

Goal

Probabilistic extensions of classical models to deal with stochastic behaviour

Topics

1. Probabilistic Automata (B)
2. Markov Automata (B)
3. Probabilistic Timed Automata (B)
4. Generalised Stochastic Petri Nets (B/M)
5. Probabilistic Petri Nets (B/M)
Process Algebras

Goal

Probabilistic extensions of algebraic specification formalisms for concurrent systems

Topics

6. Stochastic Process Algebras (B/M)
7. Probabilistic CCS (B/M)
8. Probabilistic CSP (B/M)
9. Probabilistic pi-calculus (B/M)
10. Markov Automata Process Algebra (B/M)

```
constant queueSize = 10, nrOfJobTypes = 3
type Stations = {1, 2}, Jobs = {1, ..., nrOfJobTypes}

Station(i : Stations, q : Queue, size : [0..queueSize])
    = size < queueSize ⇒ (2i + 1) · \sum j:Jobs arrive(j) · Station(i, enqueue(q, j), size + 1)
    + size > 0 ⇒ deliver(i, head(q)) \sum k in {1,9} : k = 1 ⇒ Station(i, q, size)
    + k = 9 ⇒ Station(i, tail(q), size - 1)

Server = \sum n:Stations \sum j:Jobs poll(n, j) · (2 * j) · finish(j) · Server

γ(poll, deliver) = copy
System = τ_{copy, arrive, finish} (\partial_{poll, deliver} (Station(1, empty, 0) || Station(2, empty, 0) || Server))
```
Goal

Development and analysis of scheduling algorithms for resolving non-determinism

Topics

11. Sampling of MDP Schedulers (M)
12. Distributed Schedulers (M)
Abstraction Techniques

Goal
Application of state-space reduction techniques to increase efficiency of modelling and analysis

Topics
13. Game-Based Abstraction (M)
14. Probabilistic Partial-Order Reduction (M)
15. Confluence Reduction (M)
16. Probabilistic Bisimulation (M)
17. Lumping of Markov Chains (M)
Probabilistic Temporal Logics

Goal
Extensions of temporal logics to incorporate stochastic behaviour

Topics
18. Probabilistic Computation Tree Logic (B/M)

\[P_{>0.8} \diamond (\text{state} = \text{success}) \]
Outline

Overview

Aims of this Seminar

Important Dates

The Topics

Final Hints
Some Final Hints

Hints

- Take your time to understand your literature.
- Be proactive! Look for additional literature and information.
- Discuss the content of your report with other students.
- Be proactive! Contact your supervisor on time.
- Prepare the meeting(s) with your supervisor.
- Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!