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Target audience

You are studying:
Master Computer Science, or
Master Data Science, or
Master Systems Software Engineering, or
Bachelor Computer Science, or
. . . . . .

Usage as:
elective course Theoretical Computer Science
not a Wahlpflicht course for bachelor students
specialization MOVES (Modeling and Verification of Software)
complementary to Model-based Software Development (Rumpe)
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Target audience (contd.)

In general:
interest in system software engineering
interest in formal methods for software
interest in semantics and verification
application of mathematical reasoning

Prerequisites:
mathematical logic
formal language and automata theory
algorithms and data structures
computability and complexity theory
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People involved

People involved:
Lecturer EMail

Lectures Joost-Pieter Katoen katoen@cs.rwth-aachen.de

Exercises Mingshuai Chen chenms@cs.rwth-aachen.de
Bahare Salmani salmani@cs.rwth-aachen.de
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Organization

Schedule under the current COVID-19 circumstances:
The lectures will take place in digital form (slide-casts)

The exercise classes will take place in digital form (slide-casts)

A weekly Q&A session (on Thu, 16:00–17:30) via Zoom starting
from April 23

There will be about 21 lectures and 10 exercise classes

Two lecture slide-casts per week starting from April 20

One exercise class slide-cast per week starting from April 27
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Home assignments

Home assignments:
weekly assignments: about 4 exercises to be solved by you
groups of maximally three students together work on assignments
solutions: hand in via RWTHmoodlea as pdf-file
first assignment: Monday April 20
solution due at start next week: Monday April 27, 09:00
first on-line exercise class video: Monday April 27
this scheme is repeated on a weekly basis until the beginning of
July
no lecture+exercise class in week following Pentecost

a
You get access by enrolling to the exercise class via RWTHonline.
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Organization (contd.)

Examination: (6 ECTS credit points)
written exam: July 23, 2020, 13:30-15:30 (Aula 2)
written re-exam: September 2, 2020, 13:30–15:30 (Aula 2).

Details
Admission: at least 40% of total amount of exercise points
Registration: between May 1 and July 1 (via RWTHonline).
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Motivation

Scope:
Goal: formal description + analysis of (concurr.) software systems
Focus: the Unified Modeling Language

More specifically:
Sequence Diagrams (used for requirements analysis)
Propositional Dynamic Logic
Communicating Finite State Automata
Statecharts (behavioral description of systems)

Aims:
clarify and make precise the semantics of some UML fragments
formal reasoning about basic properties of UML models
convince you that UML models are much harder than you think
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What this course is NOT about:

What is it **not** about?
the use of the UML in the software development cycle

see the complementary course by Prof. Rumpe

other notations of the UML (e.g., class diagrams, activity
diagrams)
what is precisely in the UML, and what is not

liberal interpretation of which constructs belong to the UML

applying the UML to concrete SW development case studies

empirical results on the usage of UML

drawing pictures

. . .
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History

1970s – 1980s: often used informally

1992: first version of MSCs standardized by CCITT (currently
ITU) Z.120

1992 – 1996: many extensions, e.g., high-level + formal semantics
(using process algebras)

1996: MSC’96 standard

2000: MSC 2000, time, data, o-o features

2005: MSC 2004

2011: latest standard published
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Variants of MSCs

UML sequence diagrams

(instantiations of) use cases

triggered MSCs

netcharts (= Petri net + MSC)

STAIRS

Live sequence charts

. . .
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Characteristics

scenario-based language

visual representation

“easy” to comprehend

generalization possible towards automata (states are MSCs)

widely used in industrial practice
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Applications

requirements specification
(positive, negative scenarios, e.g., CREWS)

system design and software engineering

visualization of test cases
(graphical extension to TTCN)

feature interaction detection

workflow management systems

. . .
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Example

p1 p2 p3

a
b
c

d
e

msc

These pictures are formalized using partial orders.
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Partial orders

Definition
Let E be a set of events.
A partial order over E is a relation � ✓E ⇥ E such that:

1 � is reflexive, i.e., 8e 2 E. e � e,
2 � is transitive, i.e., e � e0 ^ e0 � e00 implies e � e00, and
3 � is anti-symmetric, i.e., 8e, e0. (e � e0 ^ e0 � e) ) e = e0.

The pair (E,�) is called a partially ordered set (poset, for short).

Definition
Let (E,�) be a poset and let e, e0 2 E. e and e0 are comparable if e � e0

or e0 � e. Otherwise, they are incomparable.

� is a non-strict partial order as it is reflexive. A strict partial order is a relation �
that is irreflexive, transitive and asymmetric (i.e., if e � e0 then not e0 � e).
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Hasse diagram

Definition
Let (E,�) be a poset.
The Hasse diagram (E,l) of (E,�) is defined by:

el e0 iff e � e0 and ¬(9e00 6= e, e0. e � e00 ^ e00 � e0)

Hasse diagrams can be used to visualize posets with finitely many elements in

a succinct way.
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Linearizations

Definition
Let (E,�) be a poset.
A linearization of (E,�) is a total order v✓ E ⇥ E such that

e � e0 implies e v e0

A linearization is a topological sort of the Hasse diagram of (E,�).

Note that every partial order has at least one linearization.
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Example

Example
Let E = {e1, . . . , e6},

� = { (e1, e2), (e1, e3), (e3, e4), (e4, e5), (e5, e6), (e1, e4),
(e3, e5), (e1, e5), (e1, e6), (e3, e6), (e4, e6)

}r where Rr denotes the reflexive closure of R

Hasse diagram:

e1

e2

e3 e4 e5 e6

Linearizations:
• e1e2e3e4e5e6,
• e1e3e2e4e5e6,
• e1e3e4e2e5e6,
• e1e3e4e5e2e6,
• e1e3e4e5e6e2

No linearizations:
• e2e1e3 . . ., and e1e4e3 . . .
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Processes and actions

Definition
Let P: finite set of (sequential) processes

C: finite set of message contents (a, b, c, . . . 2 C)

Definition
Communication action: p, q 2 P, p 6= q, a 2 C

!(p, q, a) “process p sends message a to process q”

?(p, q, a) “process p receives message a sent by process q”
Let Act denote the set of communication actions
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Message Sequence Chart (MSC) (1)

Definition
An MSC M = (P, E, C, l,m,�) with:

P, a finite set of processes {p1, p2, . . . , pn} with n > 1

E, a finite set of events

E =
]

p2P
Ep = E? ·[ E!

C, a finite set of message contents
l : E ! Act , a labelling function defined by:

l(e) =

(
!(p, q, a) if e 2 Ep \ E!

?(p, q, a) if e 2 Ep \ E?

, for p 6= q 2 P, a 2 C
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Message Sequence Chart (MSC) (2)

Definition
m : E! ! E? a bijection (“matching function”), satisfying:

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a) (p 6= q, a 2 C)

� ✓E ⇥ E is a partial order (“visual order”) defined by:

� =
� [

p2P
<p

| {z }
<p is a total order = “top-to-

bottom” order on process p

[ {(e,m(e)) | e 2 E!}

| {z }
communication order <c

�⇤

where for relation R, R⇤
denotes its reflexive and transitive closure.
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Example (1)

p1 p2

a

b

msc M = (P, E, C, l,m,�) with:

P = {p1, p2} Ep1 = {e1, e4}
E = {e1, e2, e3, e4} Ep2 = {e2, e3}
C = {a, b} E! = {e1, e3},

E? = {e2, e4}

l(e1) = !(p1, p2, a) m(e1) = e2
l(e2) = ?(p2, p1, a)
l(e3) = !(p2, p1, b) m(e3) = e4
l(e4) = ?(p1, p2, b)

Ordering at processes: e1 <p1 e4 and e2 <p2 e3
Hasse diagram of (E,�):

e1 e2 e3 e4

Linearizations?
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Example (2)

p1 p2

a b

msc

M 0 = (P, E, C, l,m| {z }
as above

,�0) with:

e1

e3

e2

e4

<0
c:

e1

e3

e4

e2

<0
p1 :

<0
p2 :

e1

e3

e2

e4

�0:
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This is not an MSC

p1 p2

a

b

msc
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FIFO property

MSC M = (P, E, C, l,m,�) has the First-In-First-Out (FIFO) property
whenever: for all e, e0 2 E! we have

e � e0 ^ l(e) = !(p, q, a) ^ l(e0) = !(p, q, b) implies m(e) � m(e0)

i.e., “no message overtaking allowed”

p1 p2

a

b

msc

p1 p2

a b

msc

FIFO

non-FIFO

l(e) = !(p1, p2, a)
l(e0) = !(p1, p2, b)
e � e0

) m(e) � m(e0)

Note:
We assume an MSC to
possess the FIFO property,
unless stated otherwise!
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Linearizations

Definition
Let Lin(M) = denote the set of (action) linearizations of MSC M .

Lin(M) denotes a set of words over actions (and not over events)

the word of linearization e1 . . . en equals `(e1) . . . `(en)
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Linearizations

MSCs and its linearizations are interchangeable
There is a one-to-one correspondence between an MSC and its set of
linearizations.

We will establish: the set Lin(M) uniquely characterizes the MSC M
(up to the event identities).

From MSCs to its set of linearizations is straightforward.

The reverse direction is discussed in the following. First: well-formedness.
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Well-formedness

Let Ch := {(p, q) | p 6= q , p, q 2 P} be the set of channels over P.

We call w = a1 . . . an 2 Act⇤ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
8(p, q) 2 Ch and prefix u of w, we have:

X

m2C
|u|!(p,q,m)

| {z }
# sends from p to q

>
X

m2C
|u|?(q,p,m)

| {z }
# receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
81 6 i < j 6 n, (p, q) 2 Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):
X

m2C
|a1 . . . ai�1|!(p,q,m) =

X

m2C
|a1 . . . aj�1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
P

m2C |w|!(p,q,m) =
P

m2C |w|?(q,p,m)
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X

m2C
|a1 . . . ai�1|!(p,q,m) =

X

m2C
|a1 . . . aj�1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
P

m2C |w|!(p,q,m) =
P

m2C |w|?(q,p,m)
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Well-formedness
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Properties of well-formedness

Proposition
For every MSC M and every w 2 Lin(M), w is well-formed.
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Lemma V-MSCM.tw E Lin ( M )
,

-

w is well - formed
.

Proof : let w = a
,

- - . ran C- Lin C M )

7 . by definition if aj =
? ( a

, p.m ) then

Fai with icj aie ! C Rs ,
m ) .

As this

holds for every j it follows that for

every prefix u of w and every ( p , e) E Ch .

-

IN ! cp.s.mg
→ I 147cg p.m )

2
. by definitions M is Riko

,

thus w respects

he Rko property

3
.

for every air ! Cp
, g. m )

,

W contains a

corresponding receive event aj-kqp.rs .

as w is a linearization of Msc M DX



From linearizations to MSCs

Associate to w = a1 . . . an 2 Act⇤ an Act-labelled poset

M(w) = (E,�, `)

such that:
E = {1, . . . , n} are the positions in w labelled with `(i) = ai

�=
⇣S

p2P �p [ �msg

⌘⇤
where

i �p j if and only if i < j, for every i, j 2 Ep

i �msg j if for some (p, q) 2 Ch and m 2 C we have:

`(i) = !(p, q,m) and `(j) = ?(q, p,m) and

X

m2C
|a1 . . . ai�1|!(p,q,m) =

X

m2C
|a1 . . . aj�1|?(q,p,m)

Example
construct M(w) for w = !(r, q,m)!(p, q,m1)!(p, q,m2)?(q, p,m1)?(q, p,m2)?(q, r,m)
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From linearizations to MSCs

Relating well-formed words to MSCs
For every well-formed w 2 Act⇤, M(w) is an MSC.
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Proof for well - formed w
,

Mcw ) is an MSC
-

i

( sketch ) .

let w be a
, - .  . an well - formed

.

construct Mcw ) by a pass from left - to - right

through w
. let wk = a

,
. .  . ape .

Start with Wo -- d
,

. the empty word
. Take Mcw ) is empty labeled poset

Now consider w .k+ ,
f- C and distinguish 2 cases !

⑦ when = wk ! Cp
, I a ) . Then extend M ( wk )

with a new event get ,

with Ikki , ) = ! Cp, I
, a)

Extend means that all e , c- when Ep precede

ekt ,
and that m ( etch ) is

undefined
.

② when = Wk ? C p , g. a) .
As w is well - famed

,

wk is proper ( by definition ) thus Fa
,

- E Wk

with 9- = ! ( q ,p ,
a) for which e

,
- cfdomlm)

in M (wk ) .
Take the minimal j in

{ 3 .

,
k ) with ejcfdom ( m )

.
Extend Mlwk )

with ekti , decent , ) =
? 6. a. m ) and mlej ) =

ekte



③ As u is well - timed it follows that for

ten
,

the function m is total on the

set of send actions ferrets in W
. DX



From linearizations to MSCs

Definition
(E,�, `) and (E0,�0, `0) are isomorphic if there exists a bijection
f : E ! E0 such that e � e0 iff f(e) �0 f(e0) and `(e) = `0(f(e)).

Linearizations yield isomorphic MSCs
For every well-formed w 2 Act⇤ and w0 2 Lin(M(w)):

M(w) and M(w0) are isomorphic.

M(w) and M(w0) are equal except for event identities.
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Linearizations versus MSCs

Main theorem
There is a one-to-one relationship between MSC M and the set Lin(M).
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