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@ Intuition and Assumptions
© States and Configurations
© Enabledness
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Overview

@ Intuition and Assumptions
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Towards a Statechart semantics

@ Formal semantics: map (SCj,...,SCy) onto a single Mealy machine
S —
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Towards a Statechart semantics

@ Formal semantics: map (SCj,...,SCy) onto a single Mealy machine

@ This is done using a step semantics distinguishing macro and micro
steps

@ Macro steps are “observable” and are subdivided into a finite
number of micro steps that cannot be prolonged
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Towards a Statechart semantics

@ Formal semantics: map (SCj,...,SCy) onto a single Mealy machine

@ This is done using a step semantics distinguishing macro and micro
steps

se~d \S'Q se~d 3,2 !

@ Macro steps are “observable” and afe subdivi into a finite

number of micro steps that canngt be prolghge

B W WL W O YO W Y Ly Loty 1
v \

‘\—,\/\/
@ In a macro step, a maximal Set of edges is perforied nye
oS >Isr\m0—-&.\ / se~o 'O,e'

@ Events generated in macro step n are only available in macro step
n+1
@ If such event is not “consumed” in step n+1, it dies, and is not
available in step n+2, n+3, ...
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o Input to a macro step is a set of events (and not a queue)

the order of event generation is ignored, i.e., if e and €’ are generated
in macro step ¢, the ordfr in which they are generated is irrelevant
in step i+1

wnord efed
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Assumptions

o Input to a macro step is a set of events (and not a queue)

the order of event generation is ignored, i.e., if e and €’ are generated
in macro step ¢, the order in which they are generated is irrelevant
in step i+1

@ A macro step reacts to all available events

events can only be used in macro step immediately following their
generation

@ Instantaneous edges and actions

@ Unlimited concurrency
there is no limit on the number of events that can be consumed in a
macro step

@ Perfect communication, i.e., messages are not lost
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What does a single StateChart mean?
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Intuitive semantics as a transition system:

@ State = a set of nodes (“current control”) + the values of variables
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What does a single StateChart mean?

Intuitive semantics as a transition system:

@ State = a set of nodes (“current control”) + the values of variables
3: K70

@ Edge is enabled if guard holds in current state. - ©%¢ o B
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What does a single StateChart mean?

Intuitive semantics as a transition system:

@ State = a set of nodes (“current control”) + the values of variables

@ Edge is enabled if guard holds in current state

@ Executing edge X eldl/Ay perform actions A, consume event e

@ leave source nodes X and switch to target nodes Y
= events are unordered, and considered as a set

@ Principle: execute as many edges at once (without conflict)
= the total execution of such maximal set is a macro step
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Overview

© States and Configurations
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States and configurations

Definition (Configuration)

A configuration of SC = (N, E, Edges) is a set C C N of nodes
satisfying:

@ root € C

o z € C and type(x) = OR implies |children(z) N C| =1
o z € C and type(x) = AND implies children(z) C C
Let Conf denote the set of configurations of SC.
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States and configurations

Definition (Configuration)
A configuration of SC = (N, E, Edges) is a set C C N of nodes
satisfying:

@ root € C

@ z € C and type(x) = OR implies |children(z) N C| =1

o z € C and type(x) = AND implies children(z) C C
Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N, E, Edges) is a triple (C, I, V') where
@ (' is a configuration of SC
o I C V is the set of events to be processed  ((oweieble Nﬁf‘\“)

@ V is a valuation of the variables. ey *%=3, 34-43, <="0"

o
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Enabling of an edge
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Definition (Enabledness)

Edge@% Y is enabled in state (C, I, V) whenever: 8q,,.., 8¢,
@ X C (, i.e. all source nodes are W configuration C
o ((Cy,...,Cpn)y, (V,...,Vp) ) Eg, ie., guard g is satisfied
configurations variable :aluations W e\ shekechoks
@ cither e # | impliese € [, or e = |
Let En(C,1,V) denote the set of enabled edges in state (C,I,V).
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@ On receiving an input e, several edges in SC may become enabled

@ Then, a maximal and consistent set of enabled edges is taken
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Macro steps

@ On receiving an input e, several edges in SC may become enabled /

©

Then, a maximal and consistent set of enabled edges is taken

©

If there are several such sets, choose one nondeterministically

©

Edges in concurrent components can be taken simultaneously

©

But edges in other components cannot; they are inconsistent

@ To resolve nondeterminism (partly), priorities are used
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Overview

@ Consistency
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Consistency: examples

To define consistency formally, we need some auxiliary concepts
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Least common ancestor

Definition (Least common ancestor)

For X C N, the least common ancestor, denoted Ica(X), is the node
y € N such that:

(Vze X.2<y) and Vze N.(Vze X.x<z) implies y < z.

R oRr X= 3¢,y

fce {ad)=G (‘)ﬂm G/ \ leaGD) = E

43(:& (6)= AwD .
s PYLC I Basic
en F X’: ie’C’EB

FL1E /\ £ °% \u(XD _ G
. /\ -ch.\.b)

Joost-Pieter Katoen Theoretical Foundations of the UML



Least common ancestor

Definition (Least common ancestor)

For X C N, the least common ancestor, denoted Ica(X), is the node
y € N such that:

(Vze X.2<y) and Vze N.(Vze X.x<z) implies y < z.

Node y is an ancestor of any node in X (first clause), and is a
descendant of any node which is an ancestor of any node in X (second
clause).
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Orthogonality of nodes

Definition (Orthogonality of nodes)

Nodes z,y € N are orthogonal, denoted z Ly, if

—(r<y) and —(y<z) and type(lca({z,y})) = AND.

—— T~
—_——— T
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Orthogonality of nodes

Definition (Orthogonality of nodes)
Nodes z,y € N are orthogonal, denoted z Ly, if

—(r<y) and —(y<z) and type(lca({z,y})) = AND.

Orthogonality captures the notion of independence. Orthogonal nodes can
execute enabled edges independently, and thus concurrently. J
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Definition (Scope of edge)

The scope of edge X ==Y is the most nested OR-node that is an
ancestor of both X and Y.

sheted A Ffee ) , B s nok
\eft 5\) -\-:\“\3 ¥ =5 \.

The scope of edge X =Y is the most nested OR-node that is
unaffected by executing the edge X — Y.
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Scope: example

ook
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scope(A — D) = root

root
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and scope(A—C)=G and scope(A— B)=F
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Consistency: formal definition

Definition (Consistency)

Q Edges ed, ed’ € Edges are consistent if:

ed =ed or scope(ed) L scope(ed').

© T C Edges is consistent if all edges in T" are pairwise consistent.
Cons(T) is the set of edges that are consistent with all edges in
T C Edges

Cons(T) = {ed € Edges | Ved €T : ed is consistent with ed'}

V.

On the black board.
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What is now a macro step?

skakes = (C,T,V)

A macro step is a set T" of edges such that:

@ all edges in step T are enabled T

(cixin’)
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What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

@ all edges in T are pairwise consistent, that is:

@ they are identical or
o scopes are (descendants of) different children of the same AND-node

@ enabled edge ed is not in step 7T implies

there exists ed’ € T such that ed is inconsistent with ed’, and
the priority of ed’ is not smaller than ed

@ step T is maximal (wrt. set inclusion)
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Overview

© Priority
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Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.
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Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)

The priority relation < C Edges x Edges is a partial order defined for
ed,ed € Edges by:

ed < ed if scope(ed’) < scope(ed)

So, ed’ has priority over ed if its scope is a descendant of ed’s scope.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/37



Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)

The priority relation < C Edges x Edges is a partial order defined for
ed,ed € Edges by:

ed < ed if scope(ed) < scope(ed)

So, ed’ has priority over ed if its scope is a descendant of ed’s scope.

Example:

| A

oo

2 < 1 since scope(1) = D < scope(2) = root.
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n

B
T
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Priority: examples

rosk
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Nondeterminism

Priorities rule out some nondeterminism, but not necessarily all.

S ——E]
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What is now a macro step?

A macro step is a set T' of edges such that: CC ¥ \1)

@ all edges in step T are enabled

T <
EA){J

(c'=ie)
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What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

@ all edges in T are pairwise consistent

@ they are identical or
@ scopes are (descendants of) different children of the same AND-node

@ step T is maximal (wrt. set inclusion)
@ T cannot be extended with any enabled, consistent edge

@ priorities: enabled edge ed is not in step 71" implies
Jded’ € T. (ed is inconsistent with ed’ A =(ed’ < ed))
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A macro step — formally

A macro step is a set T" of edges such that:
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A macro step — formally

A macro step is a set T" of edges such that: (C )V)
>

@ enabledness: T C En(C,I,V) T

<C ',:r',\)’)

Joost-Pieter Katoen Theoretical Foundations of the UML 26/37



A macro step — formally

A macro step is a set T" of edges such that:
@ enabledness: T C En(C,I,V)
@ comnsistency: T' C Cons(T
y: T € Cons(T) T=-£
o maximality: En(C,I,V) N Cons(T) C

@ priority: Ved € En(C,1,V) — T we have ()
(Jed' € T. (ed is inconsistent with ¢d’ A —(ed’ < ed)))

The first three points yield: 7' = En(C,I,V) N Cons(T).)) e— (%)
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Computing the set T' of macro steps in state (C, I, V)

function nextStep(C,1,V)

T:=0 <

while 7' C En(C;1,V) N Cons(T)

do let ed € High ((En(C,1,V) N Cons(T)) —T);
T:=T U {ed) PREREN

od

return 7.

where High(T) = {ed € T| =(Jed € T.ed < ed')}
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Correctness

For any state (C,1I,V'), nextStep(C,I,V) is a macro step.

The proof goes in two steps:

© We prove enabledness, consistency, and maximality by applying
some standard results from fixed point theory, in particular
Tarski’s-Kleene fixpoint theorem;

© Then we consider priority and use some monotonicity argument.

O

V.
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Step execution

(C,I',\)) _,_l_a <C"'l‘,\)'

What happens in performing a step?

For a single statechart, executing a step results in performing the
actions of all the edges in the step, and changing “control” to the target

nodes of these edges.

Interference

Actions in statechaxrt SC; may influence the sets of events of other
statecharts, e.g. ith ¢ # j if action send i.e is performed by SC; in

a step. 1.

Execution of steps is considered on the system (SCi,...,SC,).
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Default completion

Definition (Default completion)

The default completion C’ of some set C' of nodes is the canonical (m?1v~)
superset of C' such that C’ is a configuration. If C’ contains an OR-node
x and children(z) N C = @ implies default(z) € C'.

S22
F AND
B I O Default comy‘]@on of
ed

Cy= {root, I} is ¢’ = CU{D, E, F, H}
© Default completion of
___________ Gy= {root, C} is ¢ = CU {4}.

y
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Step execution by a single statechart

@ Let Cj be the current configuration of statechart SC;

@ Let T; C Edges; be a step for SCj

@ The next state (C}, I, V)) of statechart SC; is given by:

Q (] is the default completion of
/\/\NWMM

U Y U {zeC |VX—>YETj.ﬁ({EQSCOpe(X—)Y))})

—_—
x —clgl/a YYeT) nodes bwek are
"‘ wnatfeckea \’3 '\‘\‘b
&G\JQ A—N
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Step execution by a single statechart

@ Let Cj be the current configuration of statechart SC;

@ Let T; C Edges; be a step for SC}

@ The next state (C}, I, V)) of statechart SC; is given by:
3243

Q (] is the default completlon of

U Y U{zeC;|VX =Y e€T;.~(z <scope(X = Y))}
x —ldlA s yer,
sek oF ese ks
Q I'=Up_{e|3X 9 ¥ e T send j.e € A} ouadabhe For bne
— T next weewo
dheps

SCv_'s
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Step execution by a single statechart

@ Let Cj be the current configuration of statechart SC;

vV e Let T; C Edges; be a step for SC;

@ The next state (C}, I, V)) of statechart SC; is given by:

Q (] is the default completion of

U Y U{zeC;|VX =Y e€T;.~(z <scope(X = Y))}

x /A e,

Q ij =Ui_,{e] 3x /A,y ¢ Ty.send j.e € A}

, Viw) ifvX Ay e T 0= A
)= i 3 _elal/a _
val(expr) if 3X 295 Y € T;.un=expr € A

Joost-Pieter Katoen Theoretical Foundations of the UML 31/37




______ IR NG
defet g ned of e
T NA———\




SB = < imo&/O)Oh QL)C'\:S> % 1>
s (3) = € L3 D]

szz ( {®) NQE/OaO'l IGL,FS ? {Q'L)Q\Z.S>

En (s,) = | D¢, D=E, F—F, F—Ef
zanOn&;B\t,.k IR CON S ste~k

Step (SQ:{ {':D%C)F—QFS) i'D«—bC>F-—>EB’g

b\Q Qd\je (D_—)g \\Q‘! (o} \Q\A'Qf‘ F,Ao‘:%:) ’\'\AQ(\ FD'%C
a3 Slope (D—)S?) S S Swpe (D'—) C) :Qﬂ
Oy ¥ b s DR X D=2
SO SFS-QP (32) = { TZ\/\ ; CT"L"Z.Q
Teke T4 Tn ke s, yedds  The sheke

33: ( S~cz)¢7\'-‘3'0&/0)()\)@2}7 ‘SQ\,QZ'QL,\>



| TG&LQ Tl‘l | QV\ S‘tc\'ﬂ | 52’ S R



- Se~ra~XScs Q?" s st=fc\a-tx T8

((deb-copt (05), deesd)

Sg—- (cw; cw\(cc) ﬂq,ﬂ



Mealy machines

Definition (Mealy machine)

A Mealy machine A = (Q, g0, %, T, 0, w) with:
@ () is a finite set of states with initial state gy € Q
@ Y is the input alphabet
@ [ is the output alphabet

@ §:Q x X — @ is the deterministic (input) transition function, and

0 w: @ x X — I is the output function
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Mealy machines

Definition (Mealy machine)

A Mealy machine A = (Q, g0, %, T, 0, w) with:
@ ( is a finite set of states with initial state ¢y € @

@ Y is the input alphabet

@ [ is the output alphabet

@ §:Q x X — @ is the deterministic (input) transition function, and
@ w: @ x X — I is the output function

A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.
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Mealy machines

Definition (Mealy machine)

A Mealy machine A = (Q, g0, %, T, 0, w) with:
@ (Q is a finite set of states with initial state gy € Q

@ X is the input alphabet
@ [ is the output alphabet
@ §:Q x X — @ is the deterministic (input) transition function, and

0 w: @ x X — I is the output function

A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.

Moore machines
In a Moore machine w : @ — I', output is purely state-based.
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From statecharts to a Mealy machine (1)

A state ¢ is a tuple of the (local) states of SCy through SC,,.

Input and output events

Any input is a set of events, and any output is a set of events.

Next-state function ¢

Defines the effect of executing a step.

Output function w
Defines all events sent to some SC outside the system (SCy,...,SC,,).
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From statecharts to a Mealy machine (2)

A state ¢ is a tuple of the (local) states of SC; through SCj.

Formally:
o Q= 1T[_,(Confy x 2Ek x Val,) is the set of states

o where Confy is the set of configurations of SCy,
o FJ is the set of the events of SCy,
@ and Val, is the set of variable valuations of SCj,
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From statecharts to a Mealy machine (2)

A state ¢ is a tuple of the (local) states of SC; through SCj.

Formally:
o Q= 1T[_,(Confy x 2Ek x Val,) is the set of states
o where Confj, is the set of configurations of SCy,

o FJ is the set of the events of SCy,
@ and Val, is the set of variable valuations of SCj,

° q=1[r, (Cok, D, Valpx) is the initial state
@ where C’o—,k_is the default completion of the set {root}
o the initial set of events is empty
e Valy i is the initial variable valuation of SCj,
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From statecharts to a Mealy machine (3)

Input and output events

Any input is a set of events, and any output is a set of events.

Formally,
@ Input alphabet: ¥ =28 — { &}
o where E = |J;_, E) is the set of events in all statecharts

@ Output alphabet: ' = 2F'

e with F/ = {sendj.ee U SCy |j¢{1,...,n}}

k=1

all outputs that cannot be consumed

Joost-Pieter Katoen Theoretical Foundations of the UML 35/37



From statecharts to a Mealy machine (4)

Next-state function &

—

Defines the effect of executing a step.

Formally,
o (sh,...,8,) €0((s1,...,8n), E) where

)
_—

o s/ = (C}, I/, V!) is the next state after executing Some

Z = nextStep(C;, I;, Vi)
o and s, = (C/, I U(ENE;),V/)

_ =
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From statecharts to a Mealy machine (5)

Output function w
Defines all events sent to some SC outside the system (SCy,...,SC,,).

Formally,
o w((s1,..-,8n),FE) =

{send jel|j&{l,....,n} A3 3x clal/sendije, y o nextStep(Ci,Ii,Vi)}
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