Theoretical Foundations of the UML Lecture 18: Statecharts Semantics

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

June 23, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML

< ロ > (同 > (回 > (回 >)))

э

2 States and Configurations

3 Enabledness

Joost-Pieter Katoen Theoretical Foundations of the UML

< 17 >

< ∃ >

æ

2 States and Configurations

3 Enabledness

4 Consistency

5 Priority

æ

(4月) (3日) (3日)

Towards a Statechart semantics

• Formal semantics: map (SC_1, \ldots, SC_k) onto a single Mealy machine

э

Towards a Statechart semantics

- Formal semantics: map (SC_1, \ldots, SC_k) onto a single Mealy machine
- This is done using a step semantics distinguishing macro and micro steps
- Macro steps are "observable" and are subdivided into a finite number of micro steps that cannot be prolonged

Towards a Statechart semantics

- Formal semantics: map (SC_1, \ldots, SC_k) onto a single Mealy machine
- This is done using a step semantics distinguishing macro and micro steps

send je _ send j+1, e

- Macro steps are "observable" and are subdivided into a finite number of micro steps that cannot be prolonged
- In a macro step, a maximal set of edges is performed n+2
- Events generated in macro step n are only available in macro step n+1
 - If such event is not "consumed" in step n+1, it dies, and is not available in step $n+2, n+3, \ldots$

Assumptions [Eshuis & Wieringa, 2000]

 Input to a macro step is a set of events (and not a queue) the order of event generation is ignored, i.e., if e and e' are generated in macro step i, the order in which they are generated is irrelevant in step i+1

unordered

Assumptions [Eshuis & Wieringa, 2000]

- Input to a macro step is a set of events (and not a queue) the order of event generation is ignored, i.e., if e and e' are generated in macro step i, the order in which they are generated is irrelevant in step i+1
- A macro step reacts to all available events events can only be used in macro step immediately following their generation
- Instantaneous edges and actions
- Unlimited concurrency

there is no limit on the number of events that can be consumed in a macro step

• Perfect communication, i.e., messages are not lost

What does a single StateChart mean?

5. 1.

э

Intuitive semantics as a transition system:

• State = a set of nodes ("current control") + the values of variables • Edge is enabled if guard holds in current state - needs to hold in the statechat in the statechat $X = \frac{c [g]/A}{c} Y$ in the statechat $x = \frac{c [g]/A}{c} Y$

э

Intuitive semantics as a transition system:

- State = a set of nodes ("current control") + the values of variables
- Edge is enabled if guard holds in current state
- Executing edge $X \xrightarrow{-e[g]/A} Y$ = perform actions A, consume event e
 - $\bullet\,$ leave source nodes X and switch to target nodes Y
 - $\Rightarrow\,$ events are unordered, and considered as a set
- Principle: execute as many edges at once (without conflict)
 - $\Rightarrow\,$ the total execution of such maximal set is a macro step

・ロン ・聞と ・ヨン

2 States and Configurations

3 Enabledness

5 Priority

<ロト < 同ト < ヨト < ヨト

æ

Definition (Configuration)

A configuration of $\underline{SC} = (N, E, Edges)$ is a set $C \subseteq N$ of nodes satisfying:

- $\operatorname{root} \in C$
- $x \in C$ and type(x) = OR implies $|children(x) \cap C| = 1$
- $x \in C$ and type(x) = AND implies $children(x) \subseteq C$

Let Conf denote the set of configurations of SC.

(本間) ((日) (日) (日)

Definition (Configuration)

A configuration of SC = (N, E, Edges) is a set $C \subseteq N$ of nodes satisfying:

- root $\in C$
- $x \in C$ and type(x) = OR implies $|children(x) \cap C| = 1$
- $x \in C$ and type(x) = AND implies $children(x) \subseteq C$

Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N, E, Edges) is a triple (C, I, V) where

- C is a configuration of SC
- $I \subseteq V$ is the set of events to be processed
- V is a valuation of the variables. e.g $\times = 3$, y = 13, c = *6"

(availeble "events)

3

Enabling of an edge

• On receiving an input e, several edges in SC may become enabled

• Then, a maximal and consistent set of enabled edges is taken

- On receiving an input e, several edges in SC may become enabled \checkmark
- Then, a maximal and consistent set of enabled edges is taken
- If there are several such sets, choose one nondeterministically
- Edges in concurrent components can be taken simultaneously
- But edges in other components cannot; they are inconsistent
- To resolve nondeterminism (partly), priorities are used

2 States and Configurations

3 Enabledness

5 Priority

Joost-Pieter Katoen Theoretical Foundations of the UML

ヘロト ヘ部ト ヘヨト ヘヨト

æ

Consistency: examples

To define consistency formally, we need some auxiliary concepts

ヘロト ヘ週ト ヘヨト ヘヨト

э

Definition (Least common ancestor)

For $X \subseteq N$, the least common ancestor, denoted lca(X), is the node $y \in N$ such that:

 $(\forall x \in X. x \leq y)$ and $\forall z \in N. (\forall x \in X. x \leq z)$ implies $y \leq z$.

Joost-Pieter Katoen Theoretical Foundations of the UML

Definition (Least common ancestor)

For $X \subseteq N$, the least common ancestor, denoted lca(X), is the node $y \in N$ such that:

 $(\forall x \in X. \, x \trianglelefteq y) \quad \text{and} \quad \forall z \in N. \, (\forall x \in X. \, x \trianglelefteq z) \text{ implies } y \trianglelefteq z.$

Intuition

Node y is an ancestor of any node in X (first clause), and is a descendant of any node which is an ancestor of any node in X (second clause).

(4 得) (4 き) (4 き) き

Definition (Orthogonality of nodes)

Nodes $x, y \in N$ are orthogonal, denoted $x \perp y$, if

$$\neg(x \leq y)$$
 and $\neg(y \leq x)$ and $type(lca(\{x, y\})) = AND.$

(日) (部) (E) (E) (E)

Definition (Orthogonality of nodes)

Nodes $x, y \in N$ are orthogonal, denoted $x \perp y$, if

$$\neg(x \leq y)$$
 and $\neg(y \leq x)$ and $type(lca(\{x, y\})) = AND.$

Orthogonality captures the notion of <u>independence</u>. Orthogonal nodes can execute enabled edges independently, and thus concurrently.

э

・ 祠 ト ・ ヨ ト ・ ヨ ト

Definition (Scope of edge)

The scope of edge $X \xrightarrow{\dots} Y$ is the most nested OR-node that is an ancestor of both X and Y.

stated differently, A is not
left by taking
$$X \xrightarrow{\dots} Y$$
.
Intuition
The scope of edge $X \xrightarrow{\dots} Y$ is the most nested OR-node that is
unaffected by executing the edge $X \xrightarrow{\dots} Y$.

(日) (部) (E) (E) (E)

 $\operatorname{scope}(A \to D) = \operatorname{root} \quad \operatorname{and} \quad \operatorname{scope}(A \to C) = G \quad \operatorname{and} \quad \operatorname{scope}(A \to B) = F$

Definition (Consistency)

• Edges $ed, ed' \in Edges$ are consistent if:

$$ed = ed'$$
 or $scope(ed) \perp scope(ed')$.

T ⊆ Edges is consistent if all edges in T are pairwise consistent.
 Cons(T) is the set of edges that are consistent with all edges in T ⊆ Edges

 $Cons(T) = \{ ed \in Edges \mid \forall ed' \in T : ed \text{ is consistent with } ed' \}$

A macro step is a set T of edges such that:

• all edges in step T are enabled

A macro step is a set T of edges such that:

- all edges in step T are enabled
- \bullet all edges in T are pairwise consistent, that is:
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
- enabled edge ed is not in step T implies there exists $ed' \in T$ such that ed is inconsistent with ed', and the priority of ed' is not smaller than ed
- step T is maximal (wrt. set inclusion)

2 States and Configurations

3 Enabledness

Joost-Pieter Katoen Theoretical Foundations of the UML

ヘロト ヘヨト ヘヨト ヘヨト

æ

Priorities

Priorities restrict (but do not abandon) nondeterminism between multiple enabled edges.

æ

Priorities

Priorities restrict (but do not abandon) nondeterminism between multiple enabled edges.

Definition (Priority relation)

The priority relation $\leq Edges \times Edges$ is a partial order defined for $ed, ed' \in Edges$ by:

$$ed \preceq ed'$$
 if $scope(ed') \trianglelefteq scope(ed)$

So, ed' has priority over ed if its scope is a descendant of ed's scope.

Priorities

Priorities restrict (but do not abandon) nondeterminism between multiple enabled edges.

Definition (Priority relation)

The priority relation $\leq Edges \times Edges$ is a partial order defined for $ed, ed' \in Edges$ by:

$$ed \leq ed'$$
 if $scope(ed') \leq scope(ed)$

So, ed' has priority over ed if its scope is a descendant of ed's scope.

Example:

 $\mathbf{2} \leq \mathbf{1}$ since $scope(1) = D \leq scope(2) = root$.

Joost-Pieter Katoen Theoretical Foundations of the UML

Priority: examples

Joost-Pieter Katoen Theoretical Foundations of the UML

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ● ●

Priorities rule out some nondeterminism, but not necessarily all.

э

(4回) (日) (日)

A macro step is a set T of edges such that:

• all edges in step T are enabled

→ ∃ → < ∃ →</p>

э

A macro step is a set T of edges such that:

- all edges in step T are enabled
- all edges in T are pairwise consistent
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
- step T is maximal (wrt. set inclusion)
 - $\bullet~T$ cannot be extended with any enabled, consistent edge
- priorities: enabled edge ed is not in step T implies $\exists ed' \in T. \ (ed \text{ is inconsistent with } ed' \land \neg(ed' \preceq ed))$

A macro step — formally

A macro step is a set T of edges such that:

< ロ > (同 > (回 > (回 >)))

æ

A macro step — formally

A macro step is a set T of edges such that:

• enabledness: $T \subseteq En(C, I, V)$

э

A macro step — formally

A macro step is a set T of edges such that:

function nextStep(C, I, V)

 $T := \varnothing$

while $T \subset En(C, I, V) \cap Cons(T)$

do let $ed \in High((En(C, I, V) \cap Cons(T)) - T);$ $T := T \cup \{ed\}$ not yet in T

 \mathbf{od}

return T.

where $High(T) = \{ ed \in T \mid \neg (\exists ed' \in T. ed \preceq ed') \}$

Theorem:

For any state (C, I, V), nextStep(C, I, V) is a macro step.

Proof.

The proof goes in two steps:

- We prove enabledness, consistency, and maximality by applying some standard results from fixed point theory, in particular Tarski's-Kleene fixpoint theorem;
- **2** Then we consider priority and use some monotonicity argument.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >)] = (回 >) (回 >) (回 >)] = (\Pi > (\Pi >)) (\Pi >) (\Pi >)] = (\Pi > (\Pi >)) (\Pi >) (\Pi >)] = (\Pi > (\Pi >)) (\Pi >) (\Pi >)] = (\Pi > (\Pi >)) (\Pi >) (\Pi >)] = (\Pi >) (\Pi >) (\Pi >)] = (\Pi >) (\Pi >) (\Pi >)] = (\Pi >) (\Pi >) (\Pi >) (\Pi >)] = (\Pi >)] = (\Pi >) (\Pi >) (\Pi >) (\Pi >)] = (\Pi >) (\Pi

Step execution

$(\mathsf{C},\mathsf{I},\mathsf{v}) \xrightarrow{\mathsf{T}} (\mathsf{C}',\mathsf{I}',\mathsf{v}')$

What happens in performing a step?

For a single statechart, executing a step results in performing the actions of all the edges in the step, and changing <u>"control"</u> to the target nodes of these edges.

Interference

Actions in statechart SC_j may influence the sets of events of other statecharts, e.g., SC_i with $i \neq j$ if action send *i.e* is performed by $\underline{SC_j}$ in a step.

Thus:

Execution of steps is considered on the system (SC_1, \ldots, SC_n) .

Definition (Default completion)

The default completion C' of some set C of nodes is the canonical (superset of C such that C' is a configuration. If C' contains an OR-node x and $children(x) \cap C = \emptyset$ implies $default(x) \in C'$.

Example:

Default completion of
C₁= {root, I} is C' = C ∪ {D, E, F, H}
Default completion of
C₂= {root, C} is C' = C ∪ {A}.

Step execution by a single statechart

- Let C_j be the current configuration of statechart SC_j
- Let $T_j \subseteq Edges_j$ be a step for SC_j
- The next state (C'_j, I'_j, V'_j) of statechart SC_j is given by: • C'_j is the default completion of $\bigcup_{X \xrightarrow{-e[g]/A} \to Y \in T_j} (Y \cup \{x \in C_j \mid \forall X \to Y \in T_j, \neg(x \trianglelefteq scope(X \to Y))\})$ nodes that are unaffected by taking edge $X \xrightarrow{Y}$

▲母 ▲ ヨ ▶ ▲ ヨ ト ヨ - シ ۹ ()

Step execution by a single statechart

- Let C_j be the current configuration of statechart SC_j
- Let $T_j \subseteq Edges_j$ be a step for SC_j
- The next state (C'_j, I'_j, V'_j) of statechart SC_j is given by:
 C'_j is the default completion of

$$\bigcup_{X \xrightarrow{e[g]/A} Y \in T_j} Y \cup \{ x \in C_j \mid \forall X \to Y \in T_j. \neg (x \leq scope(X \to Y)) \}$$

$$I'_{j} = \bigcup_{k=1}^{n} \{e \mid \exists X \xrightarrow{e[g]/A} Y \in T_{k} \text{ send } j.e \in A \}$$
 set of events
all $f \in \mathbb{R}^{k-1}$ ovailable for the next macro steps

<ロト < 同ト < ヨト < ヨト

э

Step execution by a single statechart

- Let C_j be the current configuration of statechart SC_j
- $\checkmark \bullet$ Let $T_j \subseteq Edges_j$ be a step for SC_j
 - The next state (C'_j, I'_j, V'_j) of statechart SC_j is given by:
 C'_j is the default completion of

$$\bigcup_{X \xrightarrow{e[g]/A} Y \in T_{j}} Y \cup \{ x \in C_{j} \mid \forall X \to Y \in T_{j}. \neg (x \leq \operatorname{scope}(X \to Y)) \}$$

$$I'_{j} = \bigcup_{k=1}^{n} \{ e \mid \exists X \xrightarrow{e[g]/A} Y \in T_{k}. \operatorname{send} j.e \in A \}$$

$$V'_{j}(v) = \begin{cases} V_{j}(v) & \text{if } \forall X \xrightarrow{e[g]/A} Y \in T_{j}. v := \dots \notin A \\ \operatorname{val}(\operatorname{expr}) & \text{if } \exists X \xrightarrow{e[g]/A} Y \in T_{j}. v := \operatorname{expr} \in A \end{cases}$$

S4

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

- A Mealy machine $\mathcal{A} = (Q, q_0, \Sigma, \Gamma, \delta, \omega)$ with:
 - Q is a finite set of states with initial state $q_0 \in Q$
 - Σ is the input alphabet
 - Γ is the output alphabet
 - $\delta: Q \times \Sigma \to Q$ is the deterministic (input) transition function, and
 - $\omega: Q \times \Sigma \to \Gamma$ is the output function

3

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

- A Mealy machine $\mathcal{A} = (Q, q_0, \Sigma, \Gamma, \delta, \omega)$ with:
 - Q is a finite set of states with initial state $q_0 \in Q$
 - Σ is the input alphabet
 - Γ is the output alphabet
 - $\delta: Q \times \Sigma \to Q$ is the deterministic (input) transition function, and
 - $\omega: Q \times \Sigma \to \Gamma$ is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton that produces **output** on a transition, based on current input and state.

э

・ 祠 ト ・ ヨ ト ・ ヨ ト

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

- A Mealy machine $\mathcal{A} = (Q, q_0, \Sigma, \Gamma, \delta, \omega)$ with:
 - Q is a finite set of states with initial state $q_0 \in Q$
 - Σ is the input alphabet
 - Γ is the output alphabet
 - $\delta: Q \times \Sigma \to Q$ is the deterministic (input) transition function, and
 - $\omega: Q \times \Sigma \to \Gamma$ is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton that produces **output** on a transition, based on current input and state.

Moore machines

In a Moore machine $\omega: Q \to \Gamma$, output is purely state-based.

Input and output events

Any input is a set of events, and any output is a set of events.

Next-state function δ

Defines the effect of executing a step.

Output function ω

Defines all events sent to some SC outside the system (SC_1, \ldots, SC_n) .

< ロ > (同 > (回 > (回 >)))

States

A state q is a tuple of the (local) states of SC_1 through SC_k .

Formally:

- $Q = \prod_{k=1}^{n} (\underline{Conf}_k \times 2^{E_k} \times \underline{Val}_k)$ is the set of states
 - where $Conf_k$ is the set of configurations of SC_k ,
 - E_k is the set of the events of SC_k ,
 - and Val_k is the set of variable valuations of SC_k

メ 伺 ト メ ヨ ト メ ヨ ト

States

A state q is a tuple of the (local) states of SC_1 through SC_k .

Formally:

- $Q = \prod_{k=1}^{n} (Conf_k \times 2^{E_k} \times Val_k)$ is the set of states
 - where $Conf_k$ is the set of configurations of SC_k ,
 - E_k is the set of the events of SC_k ,
 - and Val_k is the set of variable valuations of SC_k

• $q_0 = \prod_{k=1}^n (C_{0,k}, \emptyset, Val_{0,k})$ is the initial state

- where $\overline{C_{0,k}}$ is the default completion of the set {root}
- the initial set of events is empty
- $Val_{0,k}$ is the initial variable valuation of SC_k

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Input and output events

Any input is a set of events, and any output is a set of events.

Formally,

• Input alphabet:
$$\Sigma = 2^E - \{ \varnothing \}$$

• where $E = \bigcup_{k=1}^{n} E_k$ is the set of events in all statecharts

• Output alphabet:
$$\Gamma = 2^{E'}$$

• with $E' = \underbrace{\left\{ send \ j.e \in \bigcup_{k=1}^{n} SC_k \mid j \notin \{1, \dots, n\} \right\}}_{\text{all outputs that cannot be consumed}}$

(日) (部) (E) (E) (E)

Next-state function δ

Defines the effect of executing a step.

Formally,

•
$$(s'_1, \ldots, s'_n) \in \delta((\underline{s_1, \ldots, s_n}), \underline{E})$$
 where
• $s''_i = (\underline{C}'_i, I''_i, \overline{V}'_i)$ is the next state after executing Some
 $\overline{T_i} = \underbrace{\text{nextStep}(C_i, I_i, V_i)}_{\text{and } s'_i = (\overline{C}'_i, I''_i \cup (E \cap E_i), V'_i)}$

ヘロト ヘ週ト ヘヨト ヘヨト

э

Output function ω

Defines all events sent to some SC outside the system (SC_1, \ldots, SC_n) .

Formally,

•
$$\omega((\underline{s_1, \dots, s_n}), \underline{E}) = \left\{ \underbrace{\underline{send \ j.e}}_{i \in \mathbb{N}} \mid \underline{j \notin \{1, \dots, n\}} \land \exists i. \exists X \xrightarrow{e[g]/send \ j.e} Y \in \underline{nextStep}(\underline{C_i, I_i, V_i}) \right\}$$

э