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Local formulas

Definition (Syntax of local formulas)
For communication action σ ∈ Act and path expression α, the grammar
of local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

The syntax of path expressions α will be defined later on.

Definition (Derived operators)

false := ¬true
ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2

[α]ϕ := ¬〈α〉¬ϕ
[α]−1ϕ := ¬〈α〉−1 ¬ϕ
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Path expressions

Definition (Syntax of local formulas)
For communication action σ ∈ Act and path expression α, the grammar of
local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Definition (Syntax of path expressions)
For local formula ϕ, the grammar of path expressions is given by:

α ::= {ϕ } | proc | msg | α;α | α+ α | α∗
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PDL formulas

Definition (Syntax of PDL formulas)
For local formula ϕ, the grammar of PDL formulas is given by:

Φ ::= ∃ϕ | ∀ϕ | Φ ∧ Φ | Φ ∨ Φ

Negation
Negation is absent. As existential and universal quantification, as well as
conjunction and disjunction are present, PDF-formulas are closed under
negation.
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Intuitive meaning of PDL formulas

MSC M satisfies ∃ϕ if M has some event e satisfying ϕ

MSC M satisfies ∃〈α〉ϕ if from some event e in M , there exists an
α-labelled path from e to an event e′, say, satisfying ϕ

MSC M satisfies ∃[α]ϕ if from some event e in M , every event that
can be reached via an α-labelled path satisfies ϕ
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Semantics of PDL formulas

Definition (Semantics of PDL formulas)
Let M = (P, E, C, l,m,<) ∈ M be an MSC.

(M,Φ) ∈ |= iff PDL formula Φ holds in MSC M .

M |= ∃ϕ iff ∃e ∈ E.M, e |= ϕ

M |= ∀ϕ iff ∀e ∈ E.M, e |= ϕ

M |= Φ1 ∧ Φ2 iff M |= Φ1 and M |= Φ2

M |= Φ1 ∨ Φ2 iff M |= Φ1 or M |= Φ2
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Example (1)

The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.
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Example (1)

The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

∀ (〈(proc + msg)∗〉([proc] false ∧ ?(2, 1, a))) Yes. No.
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Example (2)

The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.
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Example (2)

The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.

∃ ([proc] false ∧ ?(2, 1, a)) Yes. Yes.
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Example (3)

No two consecutive events are labeled with ?(2, 3, c) No. Yes.

∀ ([{ ?(2, 3, c) }; proc; { ?(2, 3, c) }] false ) No. Yes.
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Example (4)

The number of send events at process 3 is odd. No. No.
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Example (4)

The number of send events at process 3 is odd. No. No.

See next slide
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Example

MSC M has an even number of messages sent from process 1 to 2:

∀
(

[proc]−1 false ∧ P1︸ ︷︷ ︸
minimal event on process 1

→ 〈α〉 [proc] false︸ ︷︷ ︸
maximal event on process

)

where P1 =
∨

j∈P,j #=1(!1,j ∨ ?1,j) with !1,j =
∨

a∈C !(1, j, a) and ?1,j is
defined in a similar way, i.e., e |= P1 iff e occurs at process 1.
Path expression α is defined by:

α = (({¬!1}; proc)∗; {!1}; proc; ({¬!1}; proc)∗; {!1}; proc; ({¬!1}; proc)∗)∗

and where !1 abbreviates
∨

a∈C !(1, 2, a)
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Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.
(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as
regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local
formulae ϕi (in Φ). Any such expression can be transformed into a corresponding
finite automaton of linear size. We proceed by inductively labelling events of the
given MSC with states of the finite automata. This state information is then used to
discover whether or not an event of M satisfies a sub-formula 〈α〉ϕ and 〈α〉−1ϕ

which yields labellings in { 0, 1 }.
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Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.
(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as
regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local
formulae ϕi (in Φ). Any such expression can be transformed into a corresponding
finite automaton of linear size. We proceed by inductively labelling events of the
given MSC with states of the finite automata. This state information is then used to
discover whether or not an event of M satisfies a sub-formula 〈α〉ϕ and 〈α〉−1ϕ

which yields labellings in { 0, 1 }. Boolean combinations and ∃ϕ and ∀ϕ are then
handled in a straightforward manner. Time complexity: O(|E| · |Φ|2) with |E| is the
number of events in M and |Φ| the length of Φ.
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PDL model checking algorithm for MSCs (1)
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PDL model checking algorithm for MSCs (2)
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PDL model checking algorithm for MSCs (3)
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PDL model checking algorithm for MSCs (4)
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Communication finite-state machines

Let a CFM now be accepting if all its processes have reached a local accepting
state and either halt there or visit a local accepting state infinitely often.

An example CFM and an infinite MSC accepted by it

Client-server interaction to get access to an interface. Accepting state is (s3, t0, q0).
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PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language L(A) of CFM A is the set of MSCs that admit an
accepting run.

CFM versus PDL
A CFM A satisfies PDL-formula Φ, denoted A |= Φ, whenever for all
MSCs M it holds: M ∈ L(A) if and only if M |= Φ.

The example CFM satisfies ∀ (P1 → (〈proc∗;msg; proc∗;msg〉P3) where for
i ∈ P , formula Pi =

∨
j∈P,j #=i(!i,j ∨ ?i,j), i.e., M, e |= Pi iff e occurs at process

i. The PDL formula asserts that process 3 (Interface) can be “reached” from 1
(Client) by exactly two messages using an intermediate process in between.
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PDL model checking problem

Model checking CFMs versus PDL
The following model-checking problem is undecidable:

Input: a CFM A, PDL-formula Φ

Output: is there an MSC M ∈ L(A) with M |= Φ?

Proof.
Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula true, the above problem encodes the
emptiness problem.
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PDL model checking problem

Model checking CFMs versus PDL
The following model-checking problem is undecidable:

Input: a CFM A, PDL-formula Φ

Output: is there an MSC M ∈ L(A) with M |= Φ?

Proof.
Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula true, the above problem encodes the
emptiness problem.

To obtain decidable model-checking problems, we consider B-bounded MSCs.
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Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ.
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Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
AΦ is exponential in the length of Φ and the number of processes in P .
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Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
AΦ is exponential in the length of Φ and the number of processes in P . Then
construct a CFM accepting L(A) ∩ L(AΦ).
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Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
AΦ is exponential in the length of Φ and the number of processes in P . Then
construct a CFM accepting L(A) ∩ L(AΦ). Decide whether the resulting CFM
accepts some ∃B-bounded MSC. This can all be done in polynomial space.
The PSPACE-hardness follows from the hardness of LTL model checking.
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Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).
Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),
and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The
size of AG is linear in the size of G. Construct a CFM AΦ for PDL-formula Φ with
M ∈ L(AΦ) iff M |= Φ. Construct a transition system by running AG and AΦ

simultaneously. This construction terminates as AG only accepts linearizations that
are B-bounded (as every linearization of MSG G is ∃B-bounded by definition).
Deciding whether some simultaneous run is accepting can be done in polynomial
space. The PSPACE-hardness follows from the hardness of LTL model checking.
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Satisfiability problem for MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

MSC satisfiability for PDL [Bollig et. al, 2011]

The following satisfiability problem is undecidable:

Input: PDL-formula Φ

Output: is there an MSC M with M |= Φ?
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Other PDL decision problems

Theorem: [Alur et al., 2001, Bollig et al., 2007]

Let Φ be a PDL formula. Then:
1 The decision problem “does there exist a CFM A such that for any

MSC M ∈ L(A) we have M |= Φ” is undecidable.
2 The decision problem “does there exist a CFM A such that for

some ∃B-bounded MSC M ∈ L(A) we have M |= Φ” is decidable in
PSPACE.

3 The decision problem “for MSG G, is there an MSC M ∈ L(G)
such that M |= Φ” is NP-complete.
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JDL verification problems
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For Logic - interested people :
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③ PDL supports
" forward

"

navigation

a > y

and
" backward "

navigation a >
→

X .
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"
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