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Overview

© PDL Formulas
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Local formulas

Definition (Syntax of local formulas)

For communication action o € Act and path expression «, the grammar
of local formulas is given by: l(h2,0) 1(23,%) fonserd
7
pu=true | 0 | o | oV | (a)p | (@7l
The syntax of path expressions a will be defined later on. bedkoed
Definition (Derived operators)
<°<)‘P false = —true oL is o regelor
AP RINOAS
AN Y V =
L 22 (=1 2) Aescaoes kue
p1—>p2 = PV PosSle M eihed
[l = o) Gays do raipete
[a]_lgp o —|<a>_1 — bm,xs\. o WASC
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Path expressions

Definition (Syntax of local formulas)

For communication action o € Act and path expressibn «, fhe grammar of

local formulas is given by:

@ u=true | o | mp | oV | (a)p | (@) ¢

Definition (Syntax of path expressions)

For local formula ¢, the grammar of path expressions is given by:

*

{p} | proc | msg | ;a | at+a | «

R A YW

locol veds Cc\\: / (M,o) \eft 1v\3\‘\<

Bomde  dogneads £ T @ Me2\eft
e, e Comg> " =3
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PDL formulas

does he HASC contel En exvelk 8°’k";.3‘\'3 ‘P
do oM eseks Wlnme MSC sekidy @

Definition (Syntax of PDL formulas)
r of PDL formulas is given by:

For local formula ¢, the gramm

du=Tp | Vo | BAD | DV D

Negation
Negation is absent. As existential and universal quantification, as well as
conjunction and disjunction are present, PDF-formulas are closed under

negation.
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Intuitive meaning of PDL formulas

o MSC M satisﬁeif M has some event e satisfying ¢

o MSC M satisﬁef from some event e in M, there exists an
a-labelled path from € to an event €, say, satisfying ¢

o MSC M satisfie f from some event e in M, every event that

can be reached —labelled path satisfies ¢

=] 3—1 <°<>"‘\F
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Semantics of PDL formulas

Definition (Semantics of PDL formulas)
Let M = (P, E,C,l,m,<) € M be an MSC.
(M, ®) €  iff PDL formula ® holds in MSC M.

. ME3p iff Je€e E.M,eE=o

o MEVYy iff Yee E.M,el=¢
e ME® AD, iff Mg and M =
« ME® VO iff ME® o ME S
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Example (1)

o The (unique) maximal event of M is labeled by 7(2,1,a) Yes. No.
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Example (1)

3] 3]
C C
C C
0 b 14
|

o The (unique) maximal event of M is labeled by 7(2,1,a) Yes. No.

o V ({(proc 4+ msg)*)([proc]| false A ?(2,1,a))) Yes. No.
- - - —_—

/‘\

Joost-Pieter Katoen Theoretical Foundations of the UML



P=pnc
M E Y ()™ (Tp] fbe A 2ane)) T T

~p
s (x semeics of PPL Dl 4;)

Veek . (e = CCoand® (Tr] %«»\s«a\?ma»)
T
sefol eenks
PN

(s semarbies oF  \ocel ’Q‘DNY\u\QS J;)

W
Ve cE. ( JrneMN. e\ <(P+m>> ( Cel fedsen ?(2«\.0)

e
e s $or ?xe.\n) ek W e WSC | bhee exioks

an ek ef sech ek ie -<AE Q’ ana

e/ = Tel Fde A 2(zn e

———— _

c’ has no Swacedsdcs

1] ] )/
e . . 4 f\a\
ok ks praCess o~ ¢ = (a £ <P ) Q

iS la\:t\ga \.—‘\\'\-. ?(&\413) ’Q (Q f) — ?( 2.1, 0\>

(%)



H(em; : § Vads

LoV CCery> ((To) $Ven (e

)Cokﬁ e,/ = €

O

& = () ,a~d \V[QQ«E,Q<A’-§€O
“q g = po<PY % (r=2)

ond  Shlar  dor e\l elher eaenks

-

\Ya M\QQL‘ (T\f\s«S) H\ng\: Tzﬁ

Mﬁj\f\\: : ebl\: [:P] ’F‘\AQ A /?(’\\'2\ Q)
c~d 18 e bn\D ene~ & ). V\n*skb
SG\'.\\\V%S k\n?j "%m/\u\a

- S
ve@gﬁs\,,£~ e < e

bris daes aot hWo\d oo Q,_" <* Qo/ |
s M r\S\\‘c \3& § .



Example (2)

: L E‘ z*
C C
C C
b€l
I |

@ The maximal event on process 2 is labeled by ?(2,1,a)
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Example (2)

: L E‘ z*
C C
C C
b€l
I |

@ The maximal event on process 2 is labeled by 7(2,1,a) VYes. Yes.

o J([proc] false N?(2,1,a)) Yes. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 25/41



SEMBINE))

(3] (3]
b€l
e No two consecutive events are labeled with 7(2, 3, ¢) No. Yes.
?
o V([{7(2,3,¢) };proc; { (2,3, ¢) }] false) g {230 No. Yes.
) (23 ¢)
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Example (4)

(3] (3]
C C
C C
b€l
] |
@ The number of send events at process 3 is odd. No. No.
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Example (4)

(3] (3]
C C
C C
b€l
] |
@ The number of send events at process 3 is odd. No. No.

o Sec next slide for o $OL-fomole for o Siniler Mf‘r)’\‘)-
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MSC M has an even number of messages sent from process 1 to 2:

V(  [proc] ! false APy — (a) [proc] false /\?1 ) C’k)
= 4 _—
minimal event on process 1 maximal event on process

where Py = ij’P,j#l(!lvj V ?17]') with !17]' = \/aEC I(1,4,a) and ?17]' is
defined in a similar way, i.e., e = P; iff e occurs at process 1.

Path expression « is defined by:

a = (({=h}sproc)s {1 }; procs ({=1 s proc) s {1 }; proc; ({ﬁh};prOC)”)*

e ]
and where !; abbreviates \/ . !(1,2,a) &«
— = o \.1 e~k ocoucs —
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gven a ™Msc ™

@ Verification problems for PDL €
@ Model checking MSCs } 3+ PoL-foma &
@ Model checking CFMs M3 ?
@ Model checking MSGs Does

@ Satisfiability s e ek o

VL~ Tomn-No mse ¥, Myg 7
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Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

INPUT: MSC M, PDL—formul

OuTpUT: does M = @7

(Sketch). Let ® be a PDL formula. In subformulae (o) and (o)~ ¢ of ®, view « as

regular expression over finite alphabet { proc, msg, {1}, ..., {¥n} } with local
formulae @; (in ®). Any such expression can be transformed into a corresponding
finite automaton of linear size. We proceed by inductively labelling events of the
given MSC with states of the finite automata. This state information is then used to
discover whether or not an event of M satisfies a sub-formula (o) and (@)
which yields labellings in {0,1 }. — -

B

Joost-Pieter Katoen Theoretical Foundations of the U



Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:
InpuT: MSC M, PDL-formula &
OuTpUT: does M = @7

(Sketch). Let ® be a PDL formula. In subformulae (o) and (o)~ ¢ of ®, view « as
regular expression over finite alphabet { proc, msg, {1}, ..., {¥n} } with local
formulae @; (in ®). Any such expression can be transformed into a corresponding
finite automaton of linear size. We proceed by inductively labelling events of the
given MSC with states of the finite automata. This state information is then used to
discover whether or not an event of M satisfies a sub-formula (o) and (@)
which yields labellings in { 0,1 }. Boolean combinations and 3¢ and V¢ are then
handled in a straightforward manner. Time complexity: O(|E| - |®|?) with |E| is the
number of events in M and |®| the length of ®.

- O

o
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PDL model checking algorithm for MSCs (1)

LOCAL FORMULA CHECK:

1 V={0,. n1} V seb of everks
2
3 boolean[] Sat(LocalFormula f) {
4 boolean[] sat = new boolean[n]; €—
5 switch(f) {
6 case Not(fl):
7 boolean|] satl = Sat(fl);
8 for (int i = 0;1 < n; i++)
9 sat[i] = !satl[i];
10 break;
11 case Or(fl, £2):
12 boolean|[] satl = Sat(f1);
13 boolean|] sat2 = Sat(f2);
14 for (int i = 0;1 < n; i++)
15 sat(i] = satl[i] || sat2[i];
16 break;
17 case Event(..):
18 for (int i = 0;1 < n; i++)
19 sat[i] = (V[i].event.equals(f));
20 break;
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PDL model checking algorithm for MSCs (

21  case <pl> f2: Coln
22 boolean|[][] transl = Trans(pl);

23 boolean|[] sat2 = Sat(f2);

24 for (int i = 0;1 < n;i++) {

25 sat[i] = false;

26 for (int j = 0; j < n; j++)

27 if(transli][j])

28 sat[i] = sat2[j];

29

30 break; -4
31 case <pl>—1 f2: <°<'> \P
32 boolean[][] transl = TransBack(p1);

33 boolean|[] sat2 = Sat(f2);

34 for (int i =0;1 < n;i++) {

35 sat[i] = false;

36 for (int j = 0; j < n; j++)

37 if(trans[i][j])

38 sat[i] = sat2[j];

39

40 break;

a1}

42 }
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PDL model checking algorithm for MSCs (3)

FORWARD PATH EXPRESSION CHECK:

krenas T3 1)
= tme
i (e ,e\‘Q =

00 ~1 O Ul = W b =

) —
boolean([][] Trans(PathFormula p) { / (e‘ € ) \‘

boolean|][] trans = new boolean|n][n]

switch(p)
case (pl; p{2): / concakenckoan

boolean( ][] transl = Trans(pl);
boolean( ][] trans2 = Trans(p2);
for (inti = 0; i < nj i++)
for (int k = 0; k < n; k++) {
trans[i][k] = false;
for (int j = 05 j < n; j++)
if(trans1i][j] && transl[j]k])
transli][k] = true;

break;
case pl + p2:
boolean([][] transl = Trans(pl);
boolean[][] trans2 = Trans(p2);
for (inti=0;1i< n;i++)
for (int j = 05 j < n; j++)
transli][j] = trans1[i][j] || trans2[i][j];

/]l choice

break;
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PDL model checking algorithm for MSCs (4)

22 case pl*: /7 K\eene star
23 boolean[ ][] transl = Trans(pl);

24 for (inti=0;i < n;it++)

25 for (int j = 0; j < n; j++)

26 star(i][j] = (i==j);

27 while (true) {

28 for (inti=0;i < n;it++)

29 for (int j = 0; j < n; j++)

30 if (trans1[i][j])

31 for (int k = 0; k < n; k++)

32 if ('trans(i] k] && transi[j][k]) {
33 transli][k] = true;

34 continue;

35

36 break;

37 }

38 break;

39

40 }
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Communication finite-state machines

state and either halt there or visit a local accepting state infinitely often.

Let a CFM now be accepting if all its processes have reached a local acceptingJ

An example CFM and an infinite MSC accepted by it

ACliem AServer -AInt,erfacc
IClient(l)] [Servor(?)] |lmcrface(3)|
(9
, , M1, % .
1722 2L rl o v 39Tlc
172, v

Client-server interaction to get access to an interface. Accepting state is (ss,t0,qo)-

V.
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PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language £(.A) of CFM A is the set of MSCs that admit an
accepting run.

CFM versus PDL

A CFM A satisfies PDL-formula ®, denoted A |= ®, whenever for all
MSCs M it holds: M € L(A) if and only if M = ®.

The example CFM satisfies V (P; — ({proc*; msg; proc*; msg) P3) where for
i € P, formula P, = \/;p (% j V7i5), ie., M,e = P iff e occurs at process
i. The PDL formula asserts that process 3 (Interface) can be “reached” from 1

(Client) by exactly two messages using an intermediate process in between.
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PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is undecidable:
InpuT: a CFM A, PDL-formula &
OUTPUT: is there an MSC M € L(A) with M = ®?

V.

Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula true, the above problem encodes the

emptiness problem. / O

N Ve
I e
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PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is undecidable:
InpuT: a CFM A, PDL-formula &
OUTPUT: is there an MSC M € L(A) with M = ®?

Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula true, the above problem encodes the

emptiness problem. ]

To obtain decidable model-checking problems, we consider B-bounded MSCs.
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Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]
The following model-checking problem is PSPACE-complete:

InpPuT: & CFM A and B € Ny, PDL-formula &
OUTPUT: is there an 3B-bounded MSC M € L(A) with M | &7

Proof.

(Sketch). Every PDL formula ® can effectively be translated into a CFM Ag
such that Ag | @. Conshmction 15 dnushsed.

Vg He imem| MET] con be ccepkd b o

CFMA A soh thet
v = M. )
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Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]
The following model-checking problem is PSPACE-complete:

InpPuT: & CFM A and B € Ny, PDL-formula &
OUTPUT: is there an 3B-bounded MSC M € L(A) with M | &7

Proof.

(Sketch). Every PDL formula ® can effectively be translated into a CFM Ag
such that Ag = ®. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
Ag is exponential in the length of ® and the number of processes in P.

§ ~—~———> CFn A§ \%\ 60.(2\‘)

o
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Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]
The following model-checking problem is PSPACE-complete:

InpPuT: & CEFM(A and B € Ny, PDL-formula &
OUTPUT: is there an 3B-bounded MSC M € L(A) with M | &7

Proof.

(Sketch). Every PDL formula ® can effectively be translated into a CFM Ag
such that Ag = ®. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
Ag is exponential in the length of ® and the number of processes in P. Then
construct a CFM accepting L(A) N L(Ag).

<
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Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]
The following model-checking problem is PSPACE-complete:

InpPuT: & CFM A and B € Ny, PDL-formula &
OUTPUT: is there an 3B-bounded MSC M € L(A) with M | &7

Proof.

(Sketch). Every PDL formula ® can effectively be translated into a CFM Ag
such that Ag = ®. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
Ags is exponential in the length of ® and the number of processes in P. Then
construct a CFM accepting £(.A) N £(Ag). Decide whether the resulting CFM
accepts some 3B-bounded MSC. This can all be done in polynomial space.
The PSPACE-hardness follows from the hardness of LT\L model checking. D)

lechee Ml Chedking € ~\JiSe 2020)24
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Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]
The following model-checking problem is PSPACE-complete:

INPUT: a MSG G and PDL-formula ®

OuTPUT: is there an MSC M € L(G) with M = &7

Proof.

(Sketch.) For every vertex v, we can determine a linearization of the MSC A(v).
Construct a finite automaton A that accepts a linearization for every M € L(G),
and vice versa, each word accepted by Ag is a linearization of some M € L(G). The
size of Agq is linear in the size of G. Construct a CFM As¢ for PDL-formula ® with
M € L(As) iff M = ®. Construct a transition system by running Ag and Ag
simultaneously. This construction terminates as Ag only accepts linearizations that
are B-bounded (as every linearization of MSG G is 3B-bounded by definition).
Deciding whether some simultaneous run is accepting can be done in polynomial
space. The PSPACE-hardness follows from the hardness of LTL model checking. D)
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Satisfiability problem for MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:
InpuT: MSC M, PDL-formula &

OutpUT: does M |= &7

MSC satisfiability for PDL [Bollig et. al, 2011]
The following satisfiability problem is undecidable:
InpPUT: PDL-formula ¢

OuTPUT: is there an MSC M with M | ®?
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Other PDL decision problems

Theorem: [Alur et al., 2001, Bollig et al., 2007]
Let ® be a PDL formula. Then:

© The decision problem “does there exist a CFM A such that for any
MSC M € L(A) we have M = ®” is undecidable.

© The decision problem “does there exist a CEM A such that for
some 3B-bounded MSC M € L(A) we have M |= ®” is decidable in
PSPACE.

© The decision problem “for MSG G, is there an MSC M € L(G)
such that M | ®” is NP-complete.
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