
Theoretical Foundations of the UML
Lecture 15+16: A Logic for MSCs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

June 15, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML 1/41

HMM (Part 2)

Head

Outline

1 Introduction

2 Local Formulas and Path Expressions
Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL
Model checking MSCs
Model checking CFMs
Model checking MSGs
Satisfiability

Joost-Pieter Katoen Theoretical Foundations of the UML 2/41

Propositional

)
c

-
MSC M PDL - formula OI

MEE ?

\ MSG g PDL - formula OI

COI Frisch
. MKOI ? tf ME Leg) .

MKE ?

Overview

1 Introduction

2 Local Formulas and Path Expressions
Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL
Model checking MSCs
Model checking CFMs
Model checking MSGs
Satisfiability

Joost-Pieter Katoen Theoretical Foundations of the UML 20/41

Local formulas

Definition (Syntax of local formulas)
For communication action σ ∈ Act and path expression α, the grammar
of local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

The syntax of path expressions α will be defined later on.

Definition (Derived operators)

false := ¬true
ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2

[α]ϕ := ¬〈α〉¬ϕ
[α]−1ϕ := ¬〈α〉−1 ¬ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 10/41

#
! 4,2 , a) ? C 2

,
forward

✓ backward

2 is a regular
G) e

expressions

describes the

possible admitted

ways to navigate
through a MSC

Path expressions

Definition (Syntax of local formulas)
For communication action σ ∈ Act and path expression α, the grammar of
local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Definition (Syntax of path expressions)
For local formula ϕ, the grammar of path expressions is given by:

α ::= {ϕ } | proc | msg | α;α | α+ α | α∗

Joost-Pieter Katoen Theoretical Foundations of the UML 12/41

A

4 T I
horizontally

local vertically I s msg) left 2 right
formula downwards (proc) cmsgj

'
right ileft

backwards C
pros >

- ^

PDL formulas

Definition (Syntax of PDL formulas)
For local formula ϕ, the grammar of PDL formulas is given by:

Φ ::= ∃ϕ | ∀ϕ | Φ ∧ Φ | Φ ∨ Φ

Negation
Negation is absent. As existential and universal quantification, as well as
conjunction and disjunction are present, PDF-formulas are closed under
negation.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/41

does the MSC contain an event satisfying if

(!
& ° " eh " " " " " " " " " $ &

v

-

Intuitive meaning of PDL formulas

MSC M satisfies ∃ϕ if M has some event e satisfying ϕ

MSC M satisfies ∃〈α〉ϕ if from some event e in M , there exists an
α-labelled path from e to an event e′, say, satisfying ϕ

MSC M satisfies ∃[α]ϕ if from some event e in M , every event that
can be reached via an α-labelled path satisfies ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 22/41

O

O

O
(

= ask > - t

Semantics of PDL formulas

Definition (Semantics of PDL formulas)
Let M = (P, E, C, l,m,<) ∈ M be an MSC.

(M,Φ) ∈ |= iff PDL formula Φ holds in MSC M .

M |= ∃ϕ iff ∃e ∈ E.M, e |= ϕ

M |= ∀ϕ iff ∀e ∈ E.M, e |= ϕ

M |= Φ1 ∧ Φ2 iff M |= Φ1 and M |= Φ2

M |= Φ1 ∨ Φ2 iff M |= Φ1 or M |= Φ2

Joost-Pieter Katoen Theoretical Foundations of the UML 23/41

•

•
-

•

- -

•
-

-

Example (1)

The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/41

f
• o o

e ; t ? an
,
a)

-
-

Example (1)

The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

∀ (〈(proc + msg)∗〉([proc] false ∧ ?(2, 1, a))) Yes. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/41

§
. . a

-
-

-

-

y=

p = proc

M F tf C (ptm)* > (Ep] false n ? (2. ma))
m - ms 8

= -

T
iff (* semantics of PPL formulas te)

V-e EE . (e f fcptm) 's) (Ep] false n ? (2. ya)))
T -

setof events
-

in M

iff Ck semantics of local formulas t)

V-e.EE
.

(Fn E IN . et Xptm) >
"

(Ep] falser ? Can
.

intuitive : for every eventin the MSG
,

there exists

an event e
'

such that and

e
'

f- Ep] false r ? (2in ,
a)

-

C
' has no Successors

at its process and it
7 (F e

"

.
e

'

Ep e
") and

is labeled wits ? Can,a§ ele ') = ?(a , a)
(*)

Heft : OI holds

↳ f Lcptm)t > (Ep] falser ? fan,aD
I

take e 's eo

eo K Ck)
,

and

V-ec-E.es?eoe-ge
,

f Sp > sp > eo (n=z)

and similar for all other events

in

Mcneff
.Thus ,

M left FOI .

M right
i eo 't CPT false n ? G. za)

and is the only event in Mright

satisfying this formula

V-ec-En.ge .

e Teo '

this does not hold as eg
' St eo

'

.

Thus M right # OI .

Example (2)

The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 25/41

• co

M K F (Ep] false n ? (? ma))

iff FEEE
. (e f Ep) false n 2C ? a. a))

iff FEEE (e f Ep] false and et ? (G. a))

Tff FEEE I(F e' EE
. espe

'
r e

'
t false)

and ele) =
? Cana))

iff FEEE (7 (FLEE . ecope
') and Nele ?kmaD

M left # I since tteok ? (? ma)

and eo has no successors

at its process

Msight KOI in a similar
way using

0
e - Eo

Example (2)

The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.

∃ ([proc] false ∧ ?(2, 1, a)) Yes. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 25/41

Example (3)

No two consecutive events are labeled with ?(2, 3, c) No. Yes.

∀ ([{ ?(2, 3, c) }; proc; { ?(2, 3, c) }] false) No. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/41

• O

O ⑨

+
-

- - -t ::::::

M f tf [{ ? (as ,
c) } ; p ; f ? Case))) false

Tff He EE
.

e f- [- . . .] false

iff Ct use that Ex] y = 752377 I)

He EE
.

e f 7 (- . . .) n false
-

time

iff IEEE
.

not (e f (. . . . > true)

Iff He EE
.

not (et (L ? C 2,3 , c) } > sp) s { 7133,0 } > line)
iff feet

.
not (If e) = 7133

, c) n e Fsp > s . .) the)

iff V-ec-E.net/lCe)=?C43,c) and

1-
-

F e' EE
. ec.pe

'
and l(e.) =

? Case))

M left # OI take e = e
,

and et = ez

q and ez violate the above formula

Mnnght FOI two cases e = e
,

'
and e = ez

'

e
,

'

ape,

'

but llg ') I 76,3
,

ez '
Ep

eo
' but lleo

') =/ ? Cas
, I

Example (4)

The number of send events at process 3 is odd. No. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 27/41

• o

• co

-

Abbreviations (auxiliary formulas)

send acton at
I

. = V ! G. j ,
a)

"
' d aec -

process r to

g
local process j

u formula

message
contents

send action at

V I
°

top process 1

PEP

?mj =
V ? G. j ,

a) receive some

AEC message
from j

at process 1

% = ¥p,* .

(tsjv ?
,
;) a£Y÷!

- -

e f Py Tff e occurs at process 1

2

Path expression asserting that a certain

-
at some process j

event happens an even number of times

(↳
O

,
2

, 4,6
,

- - -

4 (local formula)

*

a (43 243)
- -

-

no event no event no event

satisfying 4 satisfying 4 satisfying Y

occurs

(Ent) ; proc)* ; proc ; (Int) ; proc)*

Example (4)

The number of send events at process 3 is odd. No. No.

See next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 27/41

for a PDL - formula for a similar property .

Example

MSC M has an even number of messages sent from process 1 to 2:

∀
(

[proc]−1 false ∧ P1︸ ︷︷ ︸
minimal event on process 1

→ 〈α〉 [proc] false︸ ︷︷ ︸
maximal event on process

)

where P1 =
∨

j∈P,j #=1(!1,j ∨ ?1,j) with !1,j =
∨

a∈C !(1, j, a) and ?1,j is
defined in a similar way, i.e., e |= P1 iff e occurs at process 1.
Path expression α is defined by:

α = (({¬!1}; proc)∗; {!1}; proc; ({¬!1}; proc)∗; {!1}; proc; ({¬!1}; proc)∗)∗

and where !1 abbreviates
∨

a∈C !(1, 2, a)

Joost-Pieter Katoen Theoretical Foundations of the UML 28/41

.

- -
I as

- -

C-
 - - - -

I
←

-

 = no !
,

event occurs ←

Let it j

tf Cfp;
 → (

spree
; msg

;pwsing
> Pj))

expresses that process
i can

"
reach

"

process j

by exactly two
messages (using intermediate

processes)

Pi

⇐ Pj•

Ii
t →

I.-4.1-1
. Epi

Overview

1 Introduction

2 Local Formulas and Path Expressions
Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL
Model checking MSCs
Model checking CFMs
Model checking MSGs
Satisfiability

Joost-Pieter Katoen Theoretical Foundations of the UML 29/41

g

←
given a

rises+ PDL - formula OI

- Does MEE ?

-

- Does there exist a

↳ PPL -
formula

Msc M
,

M FOI ?
OI

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.
(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as
regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local
formulae ϕi (in Φ). Any such expression can be transformed into a corresponding
finite automaton of linear size. We proceed by inductively labelling events of the
given MSC with states of the finite automata. This state information is then used to
discover whether or not an event of M satisfies a sub-formula 〈α〉ϕ and 〈α〉−1ϕ

which yields labellings in { 0, 1 }.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

B

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.
(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as
regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local
formulae ϕi (in Φ). Any such expression can be transformed into a corresponding
finite automaton of linear size. We proceed by inductively labelling events of the
given MSC with states of the finite automata. This state information is then used to
discover whether or not an event of M satisfies a sub-formula 〈α〉ϕ and 〈α〉−1ϕ

which yields labellings in { 0, 1 }. Boolean combinations and ∃ϕ and ∀ϕ are then
handled in a straightforward manner. Time complexity: O(|E| · |Φ|2) with |E| is the
number of events in M and |Φ| the length of Φ.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

- -

PDL model checking algorithm for MSCs (1)

Joost-Pieter Katoen Theoretical Foundations of the UML 31/41

K set of events

←

PDL model checking algorithm for MSCs (2)

Joost-Pieter Katoen Theoretical Foundations of the UML 32/41

say

45
'

y

PDL model checking algorithm for MSCs (3)

Joost-Pieter Katoen Theoretical Foundations of the UML 33/41

~
(e. e

') K p
trans Ei] Ej]

= time k concatenation

iff (e ; ,ej) f- P

A choice

PDL model checking algorithm for MSCs (4)

Joost-Pieter Katoen Theoretical Foundations of the UML 34/41

A Kleene star

Communication finite-state machines

Let a CFM now be accepting if all its processes have reached a local accepting
state and either halt there or visit a local accepting state infinitely often.

An example CFM and an infinite MSC accepted by it

Client-server interaction to get access to an interface. Accepting state is (s3, t0, q0).

Joost-Pieter Katoen Theoretical Foundations of the UML 35/41

:

PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language L(A) of CFM A is the set of MSCs that admit an
accepting run.

CFM versus PDL
A CFM A satisfies PDL-formula Φ, denoted A |= Φ, whenever for all
MSCs M it holds: M ∈ L(A) if and only if M |= Φ.

The example CFM satisfies ∀ (P1 → (〈proc∗;msg; proc∗;msg〉P3) where for
i ∈ P , formula Pi =

∨
j∈P,j #=i(!i,j ∨ ?i,j), i.e., M, e |= Pi iff e occurs at process

i. The PDL formula asserts that process 3 (Interface) can be “reached” from 1
(Client) by exactly two messages using an intermediate process in between.

Joost-Pieter Katoen Theoretical Foundations of the UML 36/41

PDL model checking problem

Model checking CFMs versus PDL
The following model-checking problem is undecidable:

Input: a CFM A, PDL-formula Φ

Output: is there an MSC M ∈ L(A) with M |= Φ?

Proof.
Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula true, the above problem encodes the
emptiness problem.

Joost-Pieter Katoen Theoretical Foundations of the UML 37/41

(
t true

F tune

PDL model checking problem

Model checking CFMs versus PDL
The following model-checking problem is undecidable:

Input: a CFM A, PDL-formula Φ

Output: is there an MSC M ∈ L(A) with M |= Φ?

Proof.
Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula true, the above problem encodes the
emptiness problem.

To obtain decidable model-checking problems, we consider B-bounded MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 37/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ.

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Construction is involved .

HOI
.

Me { ME IM I MKE) can be accepted by a

CFM A such that

LCA) = M .

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
AΦ is exponential in the length of Φ and the number of processes in P .

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

I - CFM AOI IA I c- OG
'

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
AΦ is exponential in the length of Φ and the number of processes in P . Then
construct a CFM accepting L(A) ∩ L(AΦ).

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

-

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
AΦ is exponential in the length of Φ and the number of processes in P . Then
construct a CFM accepting L(A) ∩ L(AΦ). Decide whether the resulting CFM
accepts some ∃B-bounded MSC. This can all be done in polynomial space.
The PSPACE-hardness follows from the hardness of LTL model checking.

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

-

lecture Model Checking µ wise 2020/27

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).
Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),
and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The
size of AG is linear in the size of G. Construct a CFM AΦ for PDL-formula Φ with
M ∈ L(AΦ) iff M |= Φ. Construct a transition system by running AG and AΦ

simultaneously. This construction terminates as AG only accepts linearizations that
are B-bounded (as every linearization of MSG G is ∃B-bounded by definition).
Deciding whether some simultaneous run is accepting can be done in polynomial
space. The PSPACE-hardness follows from the hardness of LTL model checking.

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Satisfiability problem for MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

MSC satisfiability for PDL [Bollig et. al, 2011]

The following satisfiability problem is undecidable:

Input: PDL-formula Φ

Output: is there an MSC M with M |= Φ?

Joost-Pieter Katoen Theoretical Foundations of the UML 40/41

-

Other PDL decision problems

Theorem: [Alur et al., 2001, Bollig et al., 2007]

Let Φ be a PDL formula. Then:
1 The decision problem “does there exist a CFM A such that for any

MSC M ∈ L(A) we have M |= Φ” is undecidable.
2 The decision problem “does there exist a CFM A such that for

some ∃B-bounded MSC M ∈ L(A) we have M |= Φ” is decidable in
PSPACE.

3 The decision problem “for MSG G, is there an MSC M ∈ L(G)
such that M |= Φ” is NP-complete.

Joost-Pieter Katoen Theoretical Foundations of the UML 41/41

JDL verification problems

Msc M
M FOI ? decidable in P

PDL - formula OI

CFM A

PDL - formula OI
FMELCA) .

MKE ? undecidable

CFM A FM e Lca)
.

decidable

PDL - formula OI M KOI and (PSPACE -

bound BEIN
> o µ is FB - bounded ? complete)

decidable
MSG G Fm .e L CG) .

M FOI ?
(PSPACE -

PDL - formula IT complete)

PDL satisfiability problems

PDL - formula OI FMEIM
. M KOI ? undecidable

-

PDL -

formula OI FCFM A such that
undecidable

VMELCA
)

. MKE ?

PDL - formula OI FCFM A such that decidable

bound BEIN FM c- LIA)
.

M is FB - bounded
th

M FOI ? PSPACE

For Logic - interested people :
- -

-

① PDL € FMSO - logic

monadic second

order - logic

Fx try
FX FY Fxex

.

② Extending PDL with intersection yields

a logic that is more expressive then CFMS
.

#

(x
, naz > T

"
there exist too paths

described by a
,

and q resp .

that both lead to an

event satisfying Y
"

Then E Bollig et al
.

, 2010J showed i

F y such that

I
ME Its IM K if }

I
in extended

cannot be accepted by a CFM
,

PDL

③ PDL supports
" forward

"

navigation

a > y

and
" backward "

navigation a >
→

X .

PDL does not allow to mix
" forward

"

and
" backward

"
in a single formula

'

proc

't

; msg
'

; proc is not

a syntactically admitted formula
.

④ The temporal logic formula Y until 4
,

-

i.e
. T holds at all events until an event

satisfying 4 is
"

reached
"

can be expressed

as PDL - formula

*

((2x } ; Cproctmsg)) > Y
- -

-

