Theoretical Foundations of the UML Lecture 15+16: A Logic for MSCs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

June 15, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML

4 □ ▶ 4 一 ■ ▶ 4

Outline

Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

3 PDL Formulas

- 4 Verification problems for PDL
 - Model checking MSCs
 - Model checking CFMs
 - Model checking MSGs
 - Satisfiability

Overview

Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

3 PDL Formulas

- 4 Verification problems for PDL
 - Model checking MSCs
 - Model checking CFMs
 - Model checking MSGs
 - Satisfiability

< 47 ▶ <

A logic for MSCs

• This lecture will be devoted to a logic that is interpreted over MSCs

э

局▶

A logic for MSCs

- This lecture will be devoted to a logic that is interpreted over MSCs
- The logic is used to umambigously express properties of MSCs
 does a given MSC M satisfy the logical formula φ?
- And to characterise a set of MSCs by means of a logical formula
 all MSCs that satisfy the formula φ
- Based on propositional dynamic logic (PDL) [Fischer & Ladner, 1979]

A logic for MSCs

- This lecture will be devoted to a logic that is interpreted over MSCs
- The logic is used to umambigously express properties of MSCs
 does a given MSC M satisfy the logical formula φ?
- And to characterise a set of MSCs by means of a logical formula
 all MSCs that satisfy the formula φ
- Based on propositional dynamic logic (PDL) [Fischer & Ladner, 1979]
 - combines easy-to-grasp concepts such as regular expressions and Boolean operators
- Syntax, semantics, examples and various verification problems.

(日本) (日本) (日本)

③ The (unique) maximal event of M is labeled by ?(2,1,a) Yes. No.

æ

Mleft Mnight

- **()** The (unique) maximal event of M is labeled by ?(2,1,a) Yes. No.
- **2** The maximal event on process 2 is labeled by ?(2,1,a) Yes. Yes.

Mleft Mnight

- **③** The (unique) maximal event of M is labeled by ?(2,1,a) Yes. No.
- **2** The maximal event on process 2 is labeled by ?(2,1,a) Yes. Yes.
- Solution No two consecutive events are labeled with ?(2,3,c) No. Yes.

¹left ^Mright

- **③** The (unique) maximal event of M is labeled by ?(2,1,a) Yes. No.
- **2** The maximal event on process 2 is labeled by ?(2,1,a) Yes. Yes.
- Solution No two consecutive events are labeled with ?(2,3,c) No. Yes.
- Solution The number of send events at process 3 is odd. No. No.

- Properties stated in natural language are ambiguous.
- We prefer to use a formal language for expressing properties.
- A formal semantics yields an unambiguous interpretation.
- This provides the basis for verification algorithms and common understanding.
- As formal language for properties we use logic.

Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

B PDL Formulas

- 4 Verification problems for PDL
 - Model checking MSCs
 - Model checking CFMs
 - Model checking MSGs
 - Satisfiability

< / → <

- Statements interpreted for single events in an MSC
- Express properties about other events at the same process
- Express properties about send and matched receive events

- Statements interpreted for single events in an MSC
- Express properties about other events at the same process
- Express properties about send and matched receive events

The logic PDL

- events

• Local formulas -

- Statements interpreted for single events in an MSC
- Express properties about other events at the same process
- Express properties about send and matched receive events

• Path expressions

- Used to navigate through an MSC
- Use choice, concatenation and repetition
- Can be embraced in box and diamond modalities

• PDL-formulas

• Express properties about an entire MSC

Local formulas

These are statements over single events in an MSC. That is, an event either satisfies or refutes such formula.

Example local formulas

Local formulas

These are statements over single events in an MSC. That is, an event either satisfies or refutes such formula.

3

Example local formulas

- !(1,2,a)
- $\langle proc \rangle true$

The current event is labeled with !(1, 2, a)

There is a next event at the same process

e = <proc> true

< 日 > < 同 > < 回 > < 回 > < 回 > <

These are statements over single events in an MSC. That is, an event either satisfies or refutes such formula.

Example local formulas

• !(1,2,a)

The current event is labeled with !(1, 2, a)

• $\langle \text{proc} \rangle true$

There is a next event at the same process

• $\langle \text{proc}; \text{proc} \rangle true$ There are (at least) two next events at this process

e = (poc; proc) true

< ロ > (同 > (回 > (回 >)))

These are statements over single events in an MSC. That is, an event either satisfies or refutes such formula.

Example local formulas

- !(1,2,a)
- $\langle proc \rangle true$
- $\langle proc; proc \rangle true$ There are (at least) two next events at this process
- $[\operatorname{proc}]^{-1} false$ There is no preceding event at this process $e \models [\operatorname{proc}]^{-1} folse$ $e' \models [\operatorname{proc}]^{-1} folse$ $e' \models [\operatorname{proc}]^{-1} folse$

The current event is labeled with !(1, 2, a)

There is a next event at the same process

(1日) (日) (日)

These are statements over single events in an MSC. That is, an event either satisfies or refutes such formula.

Example local formulas

- !(1,2,a)
- $\langle \mathsf{proc} \rangle true$
- $\langle proc; proc \rangle true$
- $[\operatorname{proc}]^{-1} false$
- $\langle msg \rangle true$

C

The current event is labeled with !(1, 2, a)

There is a next event at the same process

There are (at least) two next events at this process

There is no preceding event at this process

<ロト < 同ト < ヨト < ヨト

This event is a send matching a (next) receive event

These are statements over single events in an MSC. That is, an event either satisfies or refutes such formula.

Example local formulas

- !(1,2,a)
- $\langle proc \rangle true$
- $\langle \text{proc}; \text{proc} \rangle true$
- $[proc]^{-1} false$
- $\langle msg \rangle true$
- $\langle \mathsf{proc} \rangle ? (1,2,b)$

The current event is labeled with !(1, 2, a)There is a next event at the same process There are (at least) two next events at this process There is no preceding event at this process This event is a send matching a (next) receive event Event ?(1, 2, b) is a possible next event on this process

イロト 不得下 イヨト イヨト

These are statements over single events in an MSC. That is, an event either satisfies or refutes such formula.

Example local formulas

- !(1,2,a) The current event is labeled with !(1,2,a)
- $\langle \text{proc} \rangle true$ There is a next event at the same process
- $\langle proc; proc \rangle true$ There are (at least) two next events at this process
- $[proc]^{-1} false$
- $\langle msg \rangle true$
- $\langle \operatorname{proc} \rangle ? (1,2,b)$

The current event is labeled with !

There is no preceding event at this process

<ロト < 同ト < ヨト < ヨト

This event is a send matching a (next) receive event

Event ?(1,2,b) is a possible next event on this process

• $[\{\neg!(1,2,a)\}]$ true An event is possible after any event different from !(1,2,a)

Definition (Syntax of local formulas)

For communication action $\sigma \in Act$ and path expression α , the grammar of local formulas is given by:

$$\varphi ::= \underline{true} \ \middle| \ \neg \varphi \ | \ \varphi \lor \varphi \ | \ \langle \alpha \rangle \varphi \ | \ \langle \alpha \rangle^{-1} \varphi$$

- !(1,2,a)- ?(2,3,b)]

The syntax of path expressions α will be defined later on.

"navigate" "navig forwards back

A B M A B M

Definition (Syntax of local formulas)

For communication action $\sigma \in Act$ and path expression α , the grammar of local formulas is given by:

$$\varphi ::= true \mid \sigma \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \alpha \rangle \varphi \mid \langle \alpha \rangle^{-1} \varphi$$

The syntax of path expressions α will be defined later on.

Intuitive meaning of local formulas

 $\langle \rangle$

trueValid statement. Satisfied by every event. σ Current event is labelled with σ $\neg \varphi$ Current event does not satisfy φ $\varphi_1 \lor \varphi_2$ Current event satisfies φ_1 or φ_2 $\langle \alpha \rangle \varphi$ Some forward path satisfying α reaches an event satisfying φ

Intuitive meaning of local formulas

true	Valid statement. Satisfied by every event.
σ	Current event is labelled with σ
$\neg \varphi$	Current event does not satisfy φ
$\varphi_1 \lor \varphi_2$	Current event satisfies φ_1 or φ_2
$\langle \alpha angle \varphi$	Some forward path satisfying α reaches an event satisfying φ
$\langle \alpha \rangle^{-1}_{\uparrow} \varphi$	Some backward path α reaches an event satisfying φ

trueValid statement. Satisfied by every event. σ Current event is labelled with σ $\neg \varphi$ Current event does not satisfy φ $\varphi_1 \lor \varphi_2$ Current event does not satisfy φ $\langle \alpha \rangle \varphi$ Some forward path satisfying α reaches an event satisfying φ $\langle \alpha \rangle^{-1} \varphi$ Some backward path α reaches an event satisfying φ $[\alpha] \varphi$ All forward paths satisfying α reach an event satisfying φ

true	Valid statement. Satisfied by every event.
σ	Current event is labelled with σ
$\neg \varphi$	Current event does not satisfy φ
$\varphi_1 \lor \varphi_2$	Current event satisfies φ_1 or φ_2
$\langle \alpha \rangle \varphi$	Some forward path satisfying α reaches an event satisfying φ
$\langle \alpha \rangle^{-1} \varphi$	Some backward path α reaches an event satisfying φ
$[\alpha]\varphi$	All forward paths satisfying α reach an event satisfying φ
$[\alpha]^{-1}\varphi$	All backward paths satisfying α reach an event satisfying φ

How are path expressions like α defined?

< ロ > (同 > (回 > (回 >)))

Definition (Syntax of local formulas)

For communication action $\sigma \in Act$ and path expression α , the grammar of local formulas is given by:

$$\varphi$$
 ::= true | σ | $\neg \varphi$ | $\varphi \lor \varphi$ | $\langle \alpha \rangle \varphi$ | $\langle \alpha \rangle^{-1} \varphi$

Definition (Syntax of path expressions)

For local formula φ , the grammar of path expressions is given by:

$$\alpha ::= \{\varphi\} \mid \text{proc} \mid \text{msg} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$$

$$keywords \quad \text{concatenation} \quad kleene \quad \text{star} \quad \text{s$$

Joost-Pieter Katoen Theoretical Foundations of the UML

12/41

Intuitive meaning of path expressions

- { φ } specifies an event that satisfies φ
- proc requires a (direct) successor relation between events at the same process
- msg requires a matching between current event and a receive event
- The composition $\alpha; \beta$ defines the set of pairs (e, e') for which there exist event e'' such that $(e, e'') \models \alpha$ and $(e'', e') \models \beta$

Intuitive meaning of path expressions

- { φ } specifies an event that satisfies φ
- proc requires a (direct) successor relation between events at the same process
- msg requires a matching between current event and a receive event
- The composition $\alpha; \beta$ defines the set of pairs (e, e') for which there exist event e'' such that $(e, e'') \models \alpha$ and $(e'', e') \models \beta$
- $\alpha + \beta$ denotes the union of the relations α and β

• α^* denotes the reflexive and transitive closure of the relation α

Intuitive meaning of local formulas

- Local formulas are interpreted over MSC events
- Event e satisfies $\underbrace{!(p,q,a)}_{\sigma}$ iff e is labelled with action $\underbrace{!(p,q,a)}_{\sigma}$
- Path expression α defines a binary relation between events:
 - **③** $\{\varphi\}$ is the set of pairs (e, e') such that e satisfies φ
 - ② $(e, e') \models \text{proc iff } e \text{ and } e' \text{ reside at the same process } (p, \text{ say})$ and $e' \text{ is a direct successor of } e \text{ wrt. } <_p$

(e, e') \models msg iff e' is the matching event of e, i.e., e' = m(e)

・ロット (雪) (日) (日)

Forward and backward local formulas

Event e satisfies (α)φ iff there is an event e' such that (e, e') satisfies α and e' satisfies φ

3

・ 御 ト ・ ヨ ト ・ ヨ ト

Forward and backward local formulas

Event e satisfies (α)φ iff there is an event e' such that (e, e') satisfies α and e' satisfies φ

Formula $\langle \alpha \rangle \varphi$ looks "forward" along the partial order of the MSC starting from the current event

• The interpretation of $\langle \alpha \rangle^{-1} \varphi$ is dual, i.e., *e* satisfies it iff there is an event *e'* such that (e', e) satisfies α and *e'* satisfies φ

Formula $\langle \alpha \rangle^{-1} \varphi$ looks "backward" along the partial order of the MSC starting from the current event

Example

 $u \models !(1,2,a)$ $u \models !(1,2,a)$ $u \models [\operatorname{proc}]^{-1} false$ $u \models \langle \operatorname{msg} \rangle ?(2,1,a)$ $u \models ?(2,1,a)$

• $u \models !(1,2,a)$ • $u \models [\operatorname{proc}]^{-1} false$ • $u \models \langle \operatorname{msg} \rangle?(2,1,a)$ • $u \models \langle (\operatorname{proc} + \operatorname{msg})^* \rangle!(3,2,c)$

u is labelled with the action !(1, 2, a)u is the first event on u's process event u matches with the event vevent u happens before !(3, 2, c)

Semantics of local formulas (1)

Definition (Syntax of local formulas)

For communication action $\sigma \in Act$ and path expression α :

$$\varphi ::= true \mid \sigma \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \alpha \rangle \varphi \mid \langle \alpha \rangle^{-1} \varphi$$

Definition (Semantics of base local formulas)

Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ be an MSC and $e \in E$.

Binary relation \models is defined such that $((\underline{M}, e), \varphi) \in \models$ iff event e of MSC M satisfies local formula φ . We write $\underline{M}, e \models \varphi$ for $((M, e), \varphi) \in \models$.

• $M, e \models true$ for all $e \in E$

 $M, e \models \sigma \quad \text{iff} \quad l(e) = \sigma$

•
$$M, e \models \neg \varphi \quad \text{iff} \quad \text{not}(M, e \models \varphi)$$

 $M, e \models \varphi_1 \lor \varphi_2 \quad \text{iff} \quad M, e \models \varphi_1 \text{ or } M, e \models \varphi_2$

Semantics of local formulas (2)

Definition (Semantics of forward path formulas)

Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ be an MSC and $e \in E$. $\aleph e \models \checkmark \uparrow$

•
$$e \models \langle \{\psi\} \rangle \varphi$$
 iff $e \models \psi$ and $e \models \varphi$

 $\langle \rangle \gamma$

•
$$e \models \langle \operatorname{proc} \rangle \varphi$$
 iff $\exists e' \in E. e \lessdot_p e'$ and $e' \models \varphi$

$$e \models \langle \mathsf{msg} \rangle \varphi \quad \text{iff} \quad \exists e' \in E. \ e' = m(e) \text{ and } e' \models \varphi \qquad \mathsf{mag}$$

•
$$\int e \models \langle \alpha_1; \alpha_2 \rangle \varphi$$
 iff $e \models \langle \alpha_1 \rangle \langle \alpha_2 \rangle \varphi$ $\triangleleft \langle \alpha_1 \rangle \langle \alpha_2 \rangle \varphi$

•
$$e \models \langle \alpha_1 + \alpha_2 \rangle \varphi \quad \text{iff} \quad e \models \langle \alpha_1 \rangle \varphi \text{ or } e \models \langle \alpha_2 \rangle \varphi \\ e \models \langle \alpha^* \rangle \varphi \quad \text{iff} \quad \exists n \in \mathbb{N}. \ e \models (\langle \alpha \rangle)^n \varphi \qquad \qquad \checkmark \checkmark \checkmark$$

 $e \models (\langle \mathsf{x} \rangle)^{\mathsf{M}_p} \text{ iff } e \models \langle \mathsf{x} \rangle \langle \langle \mathsf{x} \rangle \rangle \not p \text{ iff } e \models \mathcal{P}$ Where $e <_p e'$ iff $e <_p e'$ and $\neg (\exists e''. e <_p e'' <_p e')$, i.e., e' is a direct

successor of e under $<_p$.

・ロト ・聞ト ・ヨト ・ヨト

Semantics of local formulas (3)

Definition (Semantics of backward path formulas)

Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ be an MSC and $e \in E$.

 $e \models \langle \{ \psi \} \rangle^{-1} \varphi \quad \text{iff} \quad e \models \psi \text{ and } e \models \varphi$

•
$$e \models \langle \mathsf{proc} \rangle^{-1} \varphi$$
 iff $\exists e' \in E. e' \lessdot_p e$ and $e' \models \varphi$ mis by each

•
$$e \models \langle \mathsf{msg} \rangle^{-1} \varphi$$
 iff $\exists e' \in E. e' = \underline{m^{-1}(e)}$ and $e' \models \varphi$

•
$$e \models \langle \alpha_1; \alpha_2 \rangle^{-1} \varphi$$
 iff $e \models \langle \alpha_1 \rangle^{-1} \langle \alpha_2 \rangle^{-1} \varphi$

$$e \models \langle \alpha_1 + \alpha_2 \rangle^{-1} \varphi \quad \text{iff} \quad e \models \langle \alpha_1 \rangle^{-1} \varphi \text{ or } e \models \langle \alpha_2 \rangle^{-1} \varphi$$

(a) P

3

well-defined, as function

・ 戸 ト ・ ヨ ト ・ ヨ ト

Examples M, e = (msg) bue iff (* semantics of (proc) P *) (Je'. e EE iff (+ sematice of (msg) e' +) (∃e'. e <p e' ∧ (∃e"∈E. e"=m(e') and e" = true)) iff (∃ e' ∈ E. e < · p e' ∧ (∃ e' ∈ E. e'' = m (e'))) "event e has a direct successor at its process which is a send event with a matching receive " e'

Example 2 u = [proc] folse iff (* rewrite [x] interns of <x)*) E - (proc) - folse U iff (* sematics of - *) not (u = <poc) the) (+ sematics of (pac) p +) 7ff not (Jv'EE. V'ep u and v' = tme) 771

not ($\exists v' \in E, v' \leq p u$)

"there is no preceding event to u at its pacess"

Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

3 PDL Formulas

- 4 Verification problems for PDL
 - Model checking MSCs
 - Model checking CFMs
 - Model checking MSGs
 - Satisfiability

< 47 ▶ <

properties over an entire MSC

Definition (Syntax of PDL formulas)

For local formula φ , the grammar of PDL formulas is given by:

$$\Phi ::= \exists \varphi \mid \forall \varphi \mid \Phi \land \Phi \mid \Phi \lor \Phi$$

Negation

Negation is absent. As existential and universal quantification, as well as conjunction and disjunction are present, PDF-formulas are closed under negation.

• MSC *M* satisfies $\exists \varphi$ if *M* has some event *e* satisfying φ

Joost-Pieter Katoen Theoretical Foundations of the UML

э

▲御▶ ▲ 唐▶ ▲ 唐▶

- MSC M satisfies $\exists \varphi \text{ if } M \text{ has some event } e \text{ satisfying } \varphi$
- MSC *M* satisfies $\exists \langle \alpha \rangle \varphi$ if from some event *e* in *M*, there exists an α -labelled path from *e* to an event *e'*, say, satisfying φ

- MSC M satisfies $\exists \varphi \text{ if } M \text{ has some event } e \text{ satisfying } \varphi$
- MSC *M* satisfies $\exists \langle \alpha \rangle \varphi$ if from some event *e* in *M*, there exists an α -labelled path from *e* to an event *e'*, say, satisfying φ
- MSC *M* satisfies $\exists [\alpha] \varphi$ if from some event *e* in *M*, every event that can be reached via an α -labelled path satisfies φ

Definition (Semantics of PDL formulas)

Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ be an MSC. $(M, \Phi) \in \models$ iff PDL formula Φ holds in MSC M.

 $M \models \exists \varphi \quad \text{iff} \quad \exists e \in E. \, M, e \models \varphi$

• $M \models \forall \varphi$ iff $\forall e \in E. M, e \models \varphi$

- $M \models \Phi_1 \land \Phi_2$ iff $M \models \Phi_1$ and $M \models \Phi_2$
- $M \models \Phi_1 \lor \Phi_2$ iff $M \models \Phi_1$ or $M \models \Phi_2$

(本間) ((日) (日) (日)

• The (unique) maximal event of M is labeled by ?(2,1,a) Yes. No. • $\forall (\langle (\text{proc} + \text{msg})^* \rangle ([\text{proc}] false \land ?(2,1,a)))$ Yes. No. • $\forall (\langle (\text{proc} + \text{msg})^* \rangle ([\text{proc}] false \land ?(2,1,a)))$ Yes. No.

• The maximal event on process 2 is labeled by ?(2,1,a) Yes. Yes.

•
$$\exists ([\operatorname{proc}] false \land ?(2,1,a))$$
 Yes. Yes.

No two consecutive events are labeled with ?(2,3,c) No. Yes.
∀([{?(2,3,c)}; proc; {?(2,3,c)}] false) No. Yes.
two consecutive events impossible event (obelied) ?(2,3,c) * (abelied) *

Joost-Pieter Katoen Theoretical Foundations of the UML