Theoretical Foundations of the UML
Lecture 14: Realising Local-Choice MSGs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

June 9, 2020
Outline

1. Introduction

2. Local Choice MSGs

3. A Realisation Algorithm for MSGs
Overview

1. Introduction

2. Local Choice MSGs

3. A Realisation Algorithm for MSGs
Today’s topic

Today’s lecture

An algorithm to realise local-choice MSGs using CFMs with synchronisation messages.

Results:

1. An algorithm that generates a CFM from local-choice MSGs.
1 Introduction

2 Local Choice MSGs

3 A Realisation Algorithm for MSGs
Non-local choice

Inconsistency if process p behaves according to vertex v_1 and process q behaves according to vertex v_2

\implies realisation by a CFM may yield a deadlock

Problem:

Subsequent behavior in G is determined by distinct processes. When several processes independently decide to initiate behavior, they might start executing different successor MSCs (= vertices). This is called a non-local choice.
Definition (Local choice)

Let $MSG\ G = (V, \rightarrow, v_0, F, \lambda)$. $MSG\ G$ is **local choice** if for every branching vertex $v \in V$ it holds:

$$\exists \text{process } p. \ (\forall \pi \in \text{Paths}(v). \ |\min(\pi')| = 1 \land \min(\pi') \subseteq E_p)$$

where for $\pi = vv_1v_2 \ldots v_n$ we have $\pi' = v_1v_2 \ldots v_n$.

MSG\ G:

- v
- w
- $\pi_1 = vv$
- $\pi_1' = w$
- $\pi_2 = vw$
- $\pi_2' = w$
Local choice property

Definition (Local choice)

Let \(MSG\ G = (V, \rightarrow, v_0, F, \lambda) \). \(MSG\ G \) is local choice if for every branching vertex \(v \in V \) it holds:

\[\exists \text{ process } p. \ (\forall \pi \in \text{Paths}(v). \ |\min(\pi')| = 1 \land \min(\pi') \subseteq E_p) \]

where for \(\pi = vv_1v_2 \ldots v_n \) we have \(\pi' = v_1v_2 \ldots v_n \).

Intuition:
There is a single process that initiates behavior along every path from the branching vertex \(v \). This process decides how to proceed. In a realisation by a CFM, it can inform the other processes how to proceed.

Local choice or not?
Deciding whether \(MSG\ G \) is local choice or not is in \(P \).
Overview

1. Introduction

2. Local Choice MSGs

3. A Realisation Algorithm for MSGs
Local choice MSGs

An example local-choice MSG on black board.
Realising local choice (C)MSGs

Theorem [Genest et al., 2005]

Any local-choice MSG G is safely realisable by a CFM with synchronisation data (which is of size linear in G).

Proof

As MSG G is local choice, at every branch v of G there is a unique process, $p(v)$, say, such that on every path from v the unique minimal event occur at $p(v)$. Then:

1. Process $p(v)$ determines the successor vertex of v.
2. Process $p(v)$ informs all other processes about its decision by adding synchronisation data to the exchanged messages.
3. Synchronisation data is the successor vertex (in G) from v chosen by $p(v)$.
Structure of the CFM of local choice MSG G

Let MSG $G = (V, \rightarrow, v_0, F, \lambda)$ be local choice.

Define the CFM $A_G = (((S_p, \Delta_p))_{p \in P}, D, s_{init}, F')$ with:

- Local automaton $A_p = (S_p, \Delta_p)$ as defined on next slides

\[\text{pairs } (v, E) \]

\[\text{downward-closed wrt } <_p \]
Structure of the CFM of local choice MSG G

Let MSG $G = (V, \rightarrow, v_0, F, \lambda)$ be local choice.

Define the CFM $A_G = (((S_p, \Delta_p))_{p \in \mathcal{P}}, D, s_{init}, F')$ with:

1. Local automaton $A_p = (S_p, \Delta_p)$ as defined on next slides

2. $D = V$

 synchronisation data = vertices in the MSG

3. $s_{init} = \{(v_0, \emptyset)\}^n$ where $n = |\mathcal{P}|$

 each local automaton A_p starts in initial state (v_0, \emptyset), i.e.,
 in initial vertex v_0 while no events of p have been performed
Structure of the CFM of local choice MSG G

Let MSG $G = (V, \rightarrow, v_0, F, \lambda)$ be local choice.

Define the CFM $A_G = (((S_p, \Delta_p))_{p \in \mathcal{P}}, D, s_{init}, F')$ with:

1. Local automaton $A_p = (S_p, \Delta_p)$ as defined on next slides

2. $D = V$

 synchronisation data = vertices in the MSG

3. $s_{init} = \{(v_0, \emptyset)\}^n$ where $n = |\mathcal{P}|$

 each local automaton A_p starts in initial state (v_0, \emptyset), i.e., in initial vertex v_0 while no events of p have been performed

4. $s \in F'$ iff for all $p \in \mathcal{P}$, local state $s[p] = (v, E)$ with $E \subseteq E_p$ and:

 1. $v \in F$ and E contains a maximal event wrt. $<_p$ in MSC $\lambda(v)$, or
 2. $v \notin F$ and $\pi = v \ldots w$ is a path in G with $w \in F$ and E contains a maximal event wrt. $<_p$ in MSC $M(\pi)$.
State space of local automaton A_p

- $S_p = V \times E_p$ such that for any $s = (v, E) \in S_p$:

\[\forall e, e' \in \lambda(v). (e <_p e' \text{ and } e' \in E \text{ implies } e \in E) \]

That is, E is downward-closed with respect to $<_p$ in MSC $\lambda(v)$.
State space of local automaton A_p

- $S_p = V \times E_p$ such that for any $s = (v, E) \in S_p$:
 \[
 \forall e, e' \in \lambda(v). \ (e <_p e' \text{ and } e' \in E \implies e \in E)
 \]
 that is, E is downward-closed with respect to $<_p$ in MSC $\lambda(v)$

- Intuition: a state (v, E) means that process p is currently in vertex v of MSG G and has already performed the events E of $\lambda(v)$

- Initial state of A_p is (v_0, \emptyset)
Transition relation of local automaton A_p

- Executing events **within a vertex** of the MSG G:

 $$e \in E_p \cap \lambda(v) \text{ and } e \notin E$$

 $$(v, E) \xrightarrow{l(e), v} (v, E \cup \{e\})$$

Note: since $E \cup \{e\}$ is downward-closed wrt. $<_p$, e is enabled.
Transition relation of local automaton A_p

- Executing events **within a vertex** of the MSG G:

 \[
 e \in E_p \cap \lambda(v) \text{ and } e \not\in E
 \]

 \[
 \frac{}{(v, E) \xrightarrow{l(e),v} p (v, E \cup \{ e \})}
 \]

 Note: since $E \cup \{ e \}$ is downward-closed wrt. $<_p$, e is enabled

- **Taking an edge** (possibly a self-loop) of the MSG G:

 \[
 E = E_p \cap \lambda(v) \text{ and } e \in E_p \cap \lambda(w) \text{ and }
 \]

 \[
 v u_0 \ldots u_n w \in V^* \text{ with } p \text{ not active in } u_0 \ldots u_n
 \]

 \[
 \frac{}{(v, E) \xrightarrow{l(e),w} p (w, \{ e \})}
 \]

 Note: vertex w is the first successor vertex of v on which p is active
Taking an edge (possibly a self-loop) of the MSG G:

\[
E = E_p \cap \lambda(v) \text{ and } e \in E_p \cap \lambda(w) \text{ and } \\
uu_0 \ldots uu_n w \in V^* \text{ with } p \text{ not active in } uu_0 \ldots uu_n \\
(v, E) \xrightarrow{l(e), w} p (w, \{e\})
\]

Note: vertex w is the first successor vertex of v on which p is active

all events that p executed in vertex v

1. MSG

2. MSG

synchronisation data
On the black board.
Local automata \(A_1, A_2, A_3 \)

\[\text{\(A_1: \)} \quad V_0, \varnothing \xrightarrow{!(1,2,a)} V_0, \{e_1\} \]

\[\text{\(V_0, \{e_1\} \xrightarrow{?(1,2,c)} V_3, \{e_8\} \)} \]

\[\frac{e \in E_p \cap \lambda(v) \text{ and } e \notin E}{(v, E) \xrightarrow{l(e),w} \gamma_p (v, E \cup \{e\})} \]

Taking an edge (possibly a self-loop) of the MSG \(G \):

\[E = E_p \cap \lambda(v) \text{ and } e \in E_p \cap \lambda(w) \text{ and } \]

\[vu_0 \ldots u_n w \in V^* \text{ with } p \text{ not active in } u_0 \ldots u_n \]

\[(v, E) \xrightarrow{l(e),w} \gamma_p (w, \{e\}) \]

Note: vertex \(w \) is the first successor vertex of \(v \) on which \(p \) is active

\[V_0 \xrightarrow{e_8} V_3 \]

\[V_0 \xrightarrow{\text{process 1 is inactive}} V_2 \xrightarrow{V_3} \]
local automaton A_2

$\rightarrow v_0, \emptyset \xrightarrow{? (2,1,a)} v_0, \{e_2\} \xrightarrow{! (2,3,a)} v_1, \{e_3\}$

$\xrightarrow{! (2,3,b)} v_2, \{e_5\} \xrightarrow{! (2,1,c)} v_3, \{e_7\}$

$\frac{e \in E_p \cap \lambda(v) \text{ and } e \notin E}{(v, E) \xrightarrow{l(e), v}_p (v, E \cup \{e\})}$

local automaton A_3

$\rightarrow v_0, \emptyset \xrightarrow{? (3,2,a)} v_1, \{e_4\}$

$\xrightarrow{? (3,2,b)} v_2, \{e_6\}$
Second example

A \xrightarrow{reg} e_1 \rightarrow e_2

B \xrightarrow{ack} e_3

regular expression = A \cdot (A + B)^*

MSG

Applying the realiziation construction yields \(A_1, A_2 \)

local automaton \(A_1 \):

\(V_0, \emptyset \) \rightarrow \(V_0, \{ e_1 \} \)
local automaton A_2: