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Today's topic

Today's lecture

An algorithm to realise local-choice MSGs using CFMs with
synchronisation messages.

© An algorithm that generates a CFM from local-choice MSGs. l
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Overview

© Local Choice MSGs
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Non-local choice

Inconsistency if process p behaves according to vertex v;
and process q behaves according to vertex ve

— realisation by a CFM may yield a deadlock

Subsequent behavior in G is determined by distinct processes. When several

processes independently decide to initiate behavior, they might start executing
different successor MSCs (= vertices). This is called a non-local choice.
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Local choice property

Definition (Local choice)

Let MSG G = (V, —, v, F, A). MSG G is local choice if for every
branching vertex v € V it holds: J/

Iprocess p. (Vr € Paths(v). |min(7’)| =1 A min(x") C E,)

where for m = vv1v9 . .. v, we have 7’ = vivy ... v,.
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Local choice property

Definition (Local choice)

Let MSG G = (V, —, v, F, A). MSG G is local choice if for every
branching vertex v € V it holds:

Iprocess p. (Vr € Paths(v). |min(7’)] = 1 A min(x) C E,)

where for m = vv1v9 . .. v, we have 7’ = vivy ... v,.

Intuition:

There is a single process that initiates behavior along every path from the
branching vertex v. This process decides how to proceed. In a realisation by a

CFM, it can inform the other processes how to proceed.

Local choice or not?
Deciding whether MSG G is local choice or not is in P.
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Overview

© A Realisation Algorithm for MSGs
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Local choice MSGs

An example local-choice MSG on black board. |
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Realising local choice (C)MSGs

Theorem [Genest et al., 2005]

Any local-choice MSG G is safely realisable by a CFM with
synchronisation data (which is of size linear in G).

Proof

As MSG G is local choice, at every branch v of G there is a unique
process, p(v), say, such that on every path from v the unique minimal
event occur at p(v). Then:

© Process p(v) determines the successor vertex of v.

@ Process p(v) informs all other processes about its decision by
adding synchronisation data to the exchanged messages.

© Synchronisation data is the successor vertex (in G) from v chosen
by p(v).
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Structure of the CFM of local choice MSG GG

Let MSG G = (V, —,vg, F', \) be local choice.
Define the CFM Ag = (((Sp, &p))per, D, Sinit, F') with:
© Local automaton A, = (Sp,A,) as defined on next slides

l
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Structure of the CFM of local choice MSG GG

Let MSG G = (V, —, 9, F', \) be local choice.
Define the CFM Ag = (((Sp, Ap))per, D, Sinit, F') with:
© Local automaton A, = (Sp,A,) as defined on next slides

QD =1V

synchronisation data = vertices in the MSG v
eueny PSS drets inbne \nls el vetex Saith

o eve s execuked IO $or
O sinit = { (09,2) }" where n = |P|

each local automaton A, starts in initial state (vo, @), i.e.,
in initial vertex vg while no events of p have been performed
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Structure of the CFM of local choice MSG GG

Let MSG G = (V, —,vg, F', \) be local choice.

Define the CFM A = (((Sp, Ap))pers D, Sinit, BB with:
© Local automaton A, = ($,,4,) as defined on next slides
shide
oD =1V A3 ¥y

synchronisation data = vertices in the MSG

O sinit = { (vo, ) }™ where n = |P|
each local automaton A, starts in initial state (vo, @), i.e.,
in initial vertex vg while no events of p have been performed
(5,5, ,%) Pl=n
Q 5 € @ iff for all p € P, local state 3[p] = (v, E) with E C Ej, and:
@ v € F and E contains a maximal event wrt. <;, in MSC A(v), or
—20® vw¢ Fand 7 =@...w is a path in G with w € F and E contains a
maximal event wrt. <, in MSC M (7). - -
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State space of local automaton A4,

elkex inthe MSG he sk oF esects bwek
/‘ EF proress p haS exe-
cved SO Sfor (A

@ S, =V x E, such that for any s = (v,E) € Sp: vekex Vo AW

Ve,e' € A(v). (e <p € and ¢’ € E implies e€ E) (k)

that is, £ is downward-closed with respect to <, in MSC A(v)
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State space of local automaton A4,

o S, =V x E, such that for any s = (v, E) € Sp:
Ve,e' € A(v). (e <p € and ¢’ € E implies e € E)

that is, £ is downward-closed with respect to <, in MSC A(v)

o Intuition: a state (v, E') means that process p is currently in vertex
v of MSG G and has already performed the events E of A(v)

o Initial state of A, is (vo, @)
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Transition relation of local automaton .Ap

eve~t oliurs
o Executing events within a vertex of the MSG G / ok pocess p

\~ \lef\ﬁ* v

ecE, N Av)andeg E

— crd WS ot
(pE) ==, (v, Bu{e}) amé\ A

Note: since E'U {e} fs downward-closed wrt. <,, e is enabled
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Transition relation of local automaton .Ap

@ Executing events within a vertex of the MSG G:

ecE,NAv)ande g E
(v, B) 122 (v, EU{e})

Note: since E'U {e} is downward-closed wrt. <, e is enabled
@ Taking an edge (possibly a self-loop) of the MSG G:

E=FE, N A(v)and e € E, N A(w) and
vUg . . . upw € V* with p not active in ug ... uy,

(v, B) 1225 (w,{e})

Note: vertex w is the first successor vertex of v on which p is active
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@ Taking an edge (possibly a self-loop) of the MSG G: ( )
»
E=E,N Av)and e€ E, N A(w) and /
vug . .. upw € V* with p not active in ug ... uy,

(U, E) M)p (w, {6}) Qn\a et execlled

L—> \.dpww\cex\d

Note: vertex w is the ﬁrst(ilccessor vertex of v on which p is active
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Examples

On the black board. J
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® Taking an edge (possibly a W) of the MS(V

E=FE,N Xv) and e€ E, N A(w) and
vug ... upw € VF with p not active in gt \IL
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