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Today’s topic

Today’s lecture
An algorithm to realise local-choice MSGs using CFMs with
synchronisation messages.

Results:
1 An algorithm that generates a CFM from local-choice MSGs.
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Non-local choice

p q

a

msc p q

b

msc

G:

v1 v2

Inconsistency if process p behaves according to vertex v1
and process q behaves according to vertex v2

=⇒ realisation by a CFM may yield a deadlock

Problem:
Subsequent behavior in G is determined by distinct processes. When several
processes independently decide to initiate behavior, they might start executing
different successor MSCs (= vertices). This is called a non-local choice.
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Local choice property

Definition (Local choice)
Let MSG G = (V,→, v0, F,λ). MSG G is local choice if for every
branching vertex v ∈ V it holds:

∃process p.
(
∀π ∈ Paths(v). |min(π′)| = 1 ∧ min(π′) ⊆ Ep

)

where for π = vv1v2 . . . vn we have π′ = v1v2 . . . vn.

Joost-Pieter Katoen Theoretical Foundations of the UML 7/14

I

P
p

①
IT ,  =  VU IT ,

'
- U

MSG G : ①
✓

itzevw To '=W

\
. @

t

p



Local choice property

Definition (Local choice)
Let MSG G = (V,→, v0, F,λ). MSG G is local choice if for every
branching vertex v ∈ V it holds:

∃process p.
(
∀π ∈ Paths(v). |min(π′)| = 1 ∧ min(π′) ⊆ Ep

)

where for π = vv1v2 . . . vn we have π′ = v1v2 . . . vn.

Intuition:
There is a single process that initiates behavior along every path from the
branching vertex v. This process decides how to proceed. In a realisation by a
CFM, it can inform the other processes how to proceed.

Local choice or not?
Deciding whether MSG G is local choice or not is in P.
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Local choice MSGs

An example local-choice MSG on black board.
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Realising local choice (C)MSGs

Theorem [Genest et al., 2005]

Any local-choice MSG G is safely realisable by a CFM with
synchronisation data (which is of size linear in G).

Proof
As MSG G is local choice, at every branch v of G there is a unique
process, p(v), say, such that on every path from v the unique minimal
event occur at p(v). Then:

1 Process p(v) determines the successor vertex of v.
2 Process p(v) informs all other processes about its decision by

adding synchronisation data to the exchanged messages.
3 Synchronisation data is the successor vertex (in G) from v chosen

by p(v).
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Structure of the CFM of local choice MSG G

Let MSG G = (V,→, v0, F ,λ) be local choice.

Define the CFM AG = (((Sp,∆p))p∈P ,D, sinit , F ′) with:
1 Local automaton Ap = (Sp,∆p) as defined on next slides
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Structure of the CFM of local choice MSG G

Let MSG G = (V,→, v0, F ,λ) be local choice.

Define the CFM AG = (((Sp,∆p))p∈P ,D, sinit , F ′) with:
1 Local automaton Ap = (Sp,∆p) as defined on next slides

2 D = V
synchronisation data = vertices in the MSG

3 sinit = { (v0,∅) }n where n = |P|
each local automaton Ap starts in initial state (v0,∅), i.e.,
in initial vertex v0 while no events of p have been performed
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Structure of the CFM of local choice MSG G

Let MSG G = (V,→, v0, F ,λ) be local choice.

Define the CFM AG = (((Sp,∆p))p∈P ,D, sinit , F ′) with:
1 Local automaton Ap = (Sp,∆p) as defined on next slides

2 D = V
synchronisation data = vertices in the MSG

3 sinit = { (v0,∅) }n where n = |P|
each local automaton Ap starts in initial state (v0,∅), i.e.,
in initial vertex v0 while no events of p have been performed

4 s ∈ F ′ iff for all p ∈ P, local state s[p] = (v,E) with E ⊆ Ep and:
1 v ∈ F and E contains a maximal event wrt. <p in MSC λ(v), or
2 v $∈ F and π = v . . . w is a path in G with w ∈ F and E contains a

maximal event wrt. <p in MSC M(π).
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State space of local automaton Ap

Sp = V × Ep such that for any s = (v,E) ∈ Sp:

∀e, e′ ∈ λ(v).
(
e <p e

′ and e′ ∈ E implies e ∈ E
)

that is, E is downward-closed with respect to <p in MSC λ(v)
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State space of local automaton Ap

Sp = V × Ep such that for any s = (v,E) ∈ Sp:

∀e, e′ ∈ λ(v).
(
e <p e

′ and e′ ∈ E implies e ∈ E
)

that is, E is downward-closed with respect to <p in MSC λ(v)

Intuition: a state (v,E) means that process p is currently in vertex
v of MSG G and has already performed the events E of λ(v)

Initial state of Ap is (v0,∅)
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Transition relation of local automaton Ap

Executing events within a vertex of the MSG G:

e ∈ Ep ∩ λ(v) and e $∈ E

(v,E) l(e),v−−−−→p (v,E ∪ { e })

Note: since E ∪ {e} is downward-closed wrt. <p, e is enabled
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Transition relation of local automaton Ap

Executing events within a vertex of the MSG G:

e ∈ Ep ∩ λ(v) and e $∈ E

(v,E) l(e),v−−−−→p (v,E ∪ { e })

Note: since E ∪ {e} is downward-closed wrt. <p, e is enabled
Taking an edge (possibly a self-loop) of the MSG G:

E = Ep ∩ λ(v) and e ∈ Ep ∩ λ(w) and
vu0 . . . unw ∈ V ∗ with p not active in u0 . . . un

(v,E) l(e),w−−−−→p (w, {e})

Note: vertex w is the first successor vertex of v on which p is active
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Examples

On the black board.
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Local automata Ay ,
Az , Az
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